
Methods

• Extension of the Stevens, et. al [1] lumped parameter 
model by including alternative vascular drainage 
pathways [2,3] and enforcing the Monroe-Kellie 
doctrine.

• Fixed Mean Arterial Pressure (MAP) and Central Venous 
Pressure (CVP), linear ramp to target Thoracic Pressure 
over the course of 1 minute.

• Examined Changes in Intracranial CSF Pressure and 
Volume over a 30-minute timescale.

• Model validated against Cerebral Perfusion Pressure 
(CPP) and CSF pressures measured in [4,5,6].
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Results

• The change in CSF pressure that results from increasing the 
thoracic pressure from -6 mmHg to +10 mmHg is 
independent of the MAP.

• A 16 mmHg change in thoracic pressure results in a transient 
increase in CSF pressure by < 1 mmHg.

• Less than 1 mL of fluid shift between internal cranial 
compartments occurs.

• CSF Pressure is strongly tied to CPP.

Conclusions

• For a fixed MAP and CVP, the CCMP Cranial Model does not 
predict physiologically significant change in pressure or fluid 
volume for the CSF system as a result of an increase in 
thoracic pressure. 

• Changes in CSF pressure in response to changes in thoracic 
pressure are more likely tied to an alternative mechanism, 
such as changes in CPP.

Introduction
• Space acquired neuro-ocular syndrome (SANS) remains 

a difficult risk to characterize. 
• Fluid shift and the resultant change on the 

Cardiovascular (CV) and cerebral spinal fluid (CSF) 
systems in the absence of gravity continue to be 
considered a contributing factor to SANS. 

• This study seeks to identify the impact of increased 
pressure in the thoracic space (due to fluid shifts) on 
the CSF system via compliance.
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