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CMC Research at NASA Glenn

• CMC Development & Characterization

• Modeling & Validation

• Additive Manufacturing
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Material Development and Characterization

• Demonstrated a durable 2700°F CMC / EBC system in a turbine 
environment 

• Established a facility for long-term fatigue testing of CMC’s 
in a steam environment at turbine temperatures  

• Implemented Digital Image Correlation capability for full-field strain 
characterization showing failure progression in cooled CMC 

• Measured effect of through-thickness thermal gradient on CMC 
deformation in creep and fatigue at 2700°F 

• Characterized CMAS infiltration of advanced EBC materials
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NASA 2700°F CMC combines three 
technology advancements

• Creep-resistant 
Sylramic-iBN fiber

• Advanced 3D fiber architecture

• Hybrid CVI-PIP
SiC matrix 

Contact: Ramakrishna.T.Bhatt@nasa.gov 
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Recent progress toward a durable 2700°F CMC / EBC 

APS Yb2Si2O7 2400°F EBC 
Modified for Long Life

• Modified EBCs reduced TGO by 80% 
(~20x life improvement)

• Hypothesis: modifiers dissolve in 
SiO2, modify structure, slow TGO

• TGO is life-limiting failure 
mechanism for SOA 2400°F EBC

• Certain oxides known to reduce 
diffusivity in SiO2

2400°F Steam Cycle Oxidation (90%) 

• Synergy of failure mechanisms
• (3) Test Articles, 45 hrs total
• Compared in-house against 

commercial EBCs
• 2500-2700°F

Durable 2700°F CMC / EBC 
material demonstrated

Cooled CMC / EBC Airfoils 
Evaluated in Turbine Rig Tests

PS-PVD & Slurry Coat Process 
Development & Optimization

• Slurry provides economical, non-line 
of sight, and chemistry friendliness. 

• PS-PVD is a hybrid process (plasma 
and/or vapor) that provides variable 
microstructure along with non-LOS.

• Both methods demonstrating 
2700°F capable coatings. 

Contact: Raymond.Robinson-1@nasa.gov
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Fundamental tests characterize CMC/EBC failure modes

K. N. Lee, “Environmental Barrier 
Coatings for CMC’s”; in Ceramic Matrix 
Composites, Wiley, New York (2015)

Steam Oxidation

H2O

Si(OH)4

Hydroxide 
Formation/Recession

CMAS Attack 
& Infiltration

Thermomechanical 
Durability

Erosion and FOD

damage models are incorporated into life prediction codes

Contact: Ken.K.Lee@nasa.gov
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Capability for 2700ºF fatigue testing in steam environment 
is being developed 

OBJECTIVE
Characterize fatigue durability of Ceramic Matrix Composites (CMCs) 
coated with Environmental Barrier Coatings (EBCs) in steam environment 
up to 2700 °F for future turbine engine components.

APPROACH
• Initially demonstrate fatigue testing capability at 2200 and 2400 °F in 

steam environment; eventually develop fatigue testing capability up to 
2700 °F in steam.

• Perform sustained peak, low-cycle fatigue (SPLCF) tests on EBC coated 
MI SiC/SiC composite at 2200 and 2400 °F in steam environment up to 
300 hours.

• Develop fatigue testing capability in steam up to 2700°F and perform 
SPLCF testing on EBC coated CMCs with 3D fiber architectures and 
hybrid (CVI+PIP) matrices.

SIGNIFICANCE
Assessment of long-term fatigue durability of EBC coated CMCs in 
steam environment up to 2700°F will enable development of future 
aero-propulsion engines with greatly improved performance metrics.

STATUS & ACCOMPLISHMENTS
SPLCF loading at 2200ºF
• 3D hybrid CMC/EBC in steam at lasted 160 hours
• Hexoloy with EBC did not fail after 200 hours 
• 3D CMC / EBC failed at 48 hours
• Test of MI SiC/SiC with Gen 2 EBC is underway

Failed in gage section after 48 hours (1,200 cycles)

Tensile SPLCF at 2200 °F in Steam
Two minute hold at, 69 MPa max. stress; R = 0.5

Time to failure = 48 hours; ~ 1,200 cycles

Steam test rig

Contact: Sreeramesh.Kalluri-1@nasa.gov 
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(H2O)
Isothermal tensile creep test on 3D hybrid CMC generated highest tensile strain followed by TG test 
on 2D hybrid matrix CMC.  Uncoated CMCs sustained steady thermal gradients for a total of 160 hr., 
with creep at 10 ksi for 80 hr. followed by SPLCF at 10 ksi max. stress for 80 hr., without an EBC. 

CMCs with 2D & 3D fiber architectures and CVI (2D only), PIP (2D 
only), and hybrid (CVI+PIP) matrices tested for 80 hr. in creep at 10 
ksi [69 MPa] followed by 80 hr. in SPLCF at 10 ksi (8 hr. hold at max 
stress/cycle) under isothermal (Iso.) & thermal gradient (TG) 
conditions (2700 °F hot side and 2400 °F cold side)

Through-thickness TGs generated in uncoated SiC/SiC CMCs with 
laser heating and backside air cooling.  Front and back side temp. 
measured with pyrometers and IR camera

Contact: Sreeramesh.Kalluri-1@nasa.gov 

Effect of thermal gradients on sequential tensile creep 
and SPLCF testing on SiC/SiC CMCs at 2700 °F

(HO)
+

+ SPLCF
Creep

Creep Only
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Digital Image Correlation shows how cooling holes affect 
damage progression 

Objective
Quantify the effect of holes and hole orientation on the material properties of SiC / SiC composites with 
EBC. Monitor crack evolution and compare to baseline  

Contact: Craig.E.Smith@nasa.gov

Results
• Tensile samples were tested with cooling holes 

ultrasonically drilled at 30° and 90° to the loading 
direction.

• The net-section Proportional Limit (PL) was the 
same as it was for samples without holes.

• The ultimate strength of samples with 90° holes 
was reduced by 10%, while samples with 30°
holes showed no reduction. 

• Local DIC strain accumulated near the 90° holes 
at stress well below the PL.

• Local DIC strain did not accumulate near 30°
holes until the PL.

• For EBC coated samples, local DIC strain 
indicated that near 90 holes the EBC cracked 
before the CMC.  Near 30° holes, the EBC and 
CMC cracked at the same time. 

Proportional limit stress was not affected by stress concentration near drilled holes.
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Multi-Modal Characterization of CMC Damage Accumulation 

surface damage at progressive stresses 

sensor

sensor

Observed crack density vs AE signal 

Objective:

 Quantify damage initiation and evolution at room 
temperature in SiC/SiC CMCs towards understanding 
microstructure effect on damage mechanisms

Approach:

 Conducted tensile tests of CVI SiC/SiC mini-composites 
in SEM   

 Documented damage evolution while making Acoustic 
Emission measurements to determine damage 
location and magnitude

High 
Fiber 
Content 

Low 
Fiber 
Content 

Contact: James.D.Kiser@nasa.gov,                
Amjad.S.Almansour@nasa.gov, or        
Bhavana Swaminathan (UCSB) 

Results 

 Characterized CMC damage in two systems (LFC, HFC)
 Detected damage initiation & progression below the 

proportional limit 
 Correlated AE measurements to microscale damage 

development
 Obtained Crack Opening Displacements vs. stress  
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CMC / EBC Durability 
Modeling & Validation 

• Developed & validated an enhanced oxidation (TGO) model 
for silicon bond coat

• Studying TGO formation conditions in steam and effect on the 
mechanical behavior of coated SiC/SiC minicomposites.

• Validated a computational approach to simulate CMC damage 
development under flexural fatigue in steam environment 
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Reformulation of Oxide Growth Equations for 
Silicon Bond Coat Oxidation in Environmental Barrier Coatings
Objective: Revisit Deal and Grove’s original formulation for silicon 
oxidation and include the effect of a Yb2Si2O7 top coat.

Results:
 The original linear-parabolic growth equation (𝑥𝑥𝑜𝑜2 + 𝐴𝐴𝑥𝑥𝑜𝑜 = 𝐵𝐵𝐵𝐵) 

developed for uncoated silicon surfaces  is still applicable, except A is  
modified to include the effect of the top coat: A′ = A + 2 𝛾𝛾𝑜𝑜𝑜𝑜/𝛾𝛾𝑐𝑐 𝛿𝛿, 
where 𝛿𝛿 is the top coating thickness and 𝛾𝛾𝑜𝑜𝑜𝑜 and 𝛾𝛾𝑐𝑐 are the oxidant 
permeability in the oxide and coating layers, respectively.

Approach:
 Assume oxidant diffusion mechanisms through the oxide and coating 

layers. Derive oxidant mass flux equations.
 Derive equation for oxide thickness as a function of time.

Contact: Roy.M.Sullivan@nasa.gov, “Reformulation 
of oxide growth equations for oxidation of silicon bond coat in 
environmental barrier coating systems,” Journal of the European 
Ceramic Society Vol. 39 pp. 5403-5409 (2019).
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Results from Lee [2], in air

Equation (13a) fit to air data

Uncoated Si in air

𝑥𝑥𝑜𝑜2 + 𝐴𝐴𝑥𝑥𝑜𝑜 = 𝐵𝐵𝐵𝐵

Oxide thickness 𝑥𝑥𝑜𝑜 vs. time for coated and 
uncoated silicon surfaces in air at 1316 oC

Accomplishments:
 Understand how top coat affects oxide growth on bond coat 
 Simple approach for sizing top coat thickness of EBC  
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Objective:

 Establish temperature and time dependence of TGO 
(thermally grown oxide) growth in steam. Identify effects   
of TGO growth on EBC and CVI-SiC matrix cracking.

Approach:

 Coat minicomposites with ytterbium disilicate-based EBC
bond coat and top coat 

 Expose EB-coated SiC/SIC minicomposites to 2200, 2400,  
and 2600°F steam environment to establish temperature 
and time dependence of TGO growth

 Conduct RT tensile tests of coated                        
minicomposites with insitu AE and                                        
digital imaging to estimate EBC cracking                                    
stress   

 Use polished sections to establish TGO 
growth temperature and time dependence,                               
and quantify EBC and CVI-SiC cracking

Results:

 Measuring TGO thickness for a given                                     
exposure condition and comparing that 
with EBC thickness

Steam 
Rig furnace

specimen holder

EBC/CMC System

Contact: Amjad.S.Almansour@nasa.gov

Effects of High Temperature Steam Exposure 
on 2700°F EB-Coated SiC/SiC Minicomposites
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Modeling effects of steam environment 
on CMC durability & failure modes

Contact: Jerry.Lang-1@nasa.gov

Results will provide the baseline to assess effects of steam on CMC/EBC fatigue life 

Matrix crack 
propagation

in CMC 
bend 

specimen

Finite Element analysis 
of CMC 4-point bend specimen 

FEA model

failed elements
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NASA GRC Focus in 2020
CMC Development & Model Validation

• Determine durability limits and model failure process of 3D Hybrid 
and Melt-infiltrated CMC under fatigue load in steam environment  

• Extend capability for fatigue testing in steam environment to 2700ºF

• Extend temperature capability of Digital Image Correlation measurements

• Validate model of cooling hole effect on failure initiation & progression  

• Evaluate durability of alternate turbine blade / disk attachment designs 

Additive Manufacturing
• Fabricate stator conductive coils and insulation for a large-scale electric 

generator using additive manufacturing technologies 

• Optimize Binder Jet fabrication & densification processes for SiC with 
chopped-fiber reinforcement 
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This work is sponsored by the Aeronautics Research Mission Directorate 

and the following projects: 

• Advanced Air Transport Technology

• Convergent Aeronautics Solutions

• Transformational Tools and Technologies

• Revolutionary Vertical Lift Technology
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