

Lot-to-lot variability of BN grades for space electric propulsion applications

Jon Mackey¹, Jon Salem¹, Malcolm Stanford¹, Hani Kamhawi¹, Bryan McEnerney², Richard Hofer²

1. NASA Glenn Research Center, Cleveland, Ohio

2. NASA Jet Propulsion Laboratory, Pasadena, California

44th International Conference and Expo on Advanced Ceramics and Composites (ICACC)

Daytona Beach, Florida, 2020

Background

- Focus of this work are commercially available machinable ceramics for electric propulsion components.
 - Specifically interested in hot pressed boron nitride.
- Electric propulsion applications may subject ceramics to harsh environments including:
 - Plasma erosion, high temperature, low temperature, vacuum, and back-sputtered deposition.
 - Components may need to provide electrical isolation, thermal isolation, or some limited structural support.
- This work investigates material properties of various commercially available ceramic materials with a focus on lot-to-lot variation.

Materials of Interest

- Several commercial hexagonal boron nitride grades are being considered in this study.
- Grades considered were selected from geometric considerations for typical components.
- Previous study focused on "Lot 1", this work investigates differences for "Lot 2" compared against "Lot 1".

Grade*	Vendor*	Description	Relative Cost**	Lot 1	Lot 2
HP	Saint-Gobain	BN Ca(BO ₂) ₂ Binder	1.0	HP6073, HP6035	T3044
M26	Saint-Gobain	BN/SiO ₂ Composite	1.1	M266072	M266037, M268032
Μ	Saint-Gobain	BN/SiO ₂ Composite	1.0	M5118	M6011
BN-XX	Kennametal	BN/SiO ₂ /ZrO ₂ Composite	1.0	N/A	N/A
Hi-M	Tokuyama/ Precision Ceramics	AIN/BN Composite	4.6	N/A	N/A

* Trade names and vendors are used for identification purposes only.

** Cost normalized to HP grade for comparable lot sizes.

Factors of Interest

- Primary factors of interest:
 - Dielectric properties, thermal properties, mechanical properties, moisture sensitivity, secondary electron emission yield, thermal stability, and erosion resistance in a plasma environment.
- Secondary factors of interest:
 - Microstructure, crystal structure, details of processing, and mass spectroscopy.
- Additional factors to consider:
 - Hot press anisotropy, lot-to-lot property variability, billet uniformity/property variability, storage/handling concerns, and machining concerns.
- Beyond materials characterization work:
 - component fabrication and testing.

General Properties Overview

- Building dataset to contrast between different grades and against corporate literature.
 - Estimating measurement uncertainty from instrument uncertainty and sample size statistics.
 - Collecting data over a range of temperatures from 25 to 900°C whenever possible.
 - Following ASTM standards whenever possible.
- Collecting data on samples with primary measurement direction "Parallel ∥" or "Perpendicular ⊥" to the hot press direction.

hexagonal BN platelet orientation

Property trends in BN/SiO₂ content

Property	Method	HP ∥ / ⊥	M26 ∥ / ⊥	BN-XX ∥ / ⊥	M ∥ / ⊥
XRD BN Phase (wt%)	Rietveld-refinement	98	70	56	45
Porosity (%)	ASTM C830	<14	<4.7	<2.4	<3.0
CTE (µm/m-K)	Dilatometry	3.1 / 0.4	2.9/0.5	N/A	0.5 / 0.6
Dielectric Constant	Impedance Spectroscopy	4.7 / 4.6	4.6 / 4.7	4.1	4.0 / 4.2
Thermal Conductivity (W/m-K)	ASTM E1461	33 / 31	22 / 28	6	9 / 12
Elastic Modulus (GPa)	ASTM C1259	80 / 79	55 / 47	N/A	16 / 61

* All data collected at NASA GRC or California Institute of Technology

Property trends in BN/SiO₂ content

Property	Method	HP ∥ / ⊥	M26 ∥ / ⊥	BN-XX ∥ / ⊥	M ∥ / ⊥
XRD BN Phase (wt%)	Rietveld-refinement	98	70	56	45
Porosity (%)	ASTM C830	<14	<4.7	<2.4	<3.0
CTE (µm/m-K)	Dilatometry	3.1 / 0.4	2.9/0.5	N/A	0.5 / 0.6
Dielectric Constant	ic Constant Impedance Spectroscopy		4.6 / 4.7	4.1	4.0 / 4.2
Thermal Conductivity (W/m-K)	ASTM E1461	33 / 31	22 / 28	6	9 / 12
Elastic Modulus (GPa)	ASTM C1259	80 / 79	55 / 47	N/A	16 / 61

* All data collected at NASA GRC or California Institute of Technology

		De	nsity			
Pro Property		Lo	ot 1		×	M
		Geometric	Archim	edes		∥ ⊥
XRD BN Phase	Grade	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)		45
(wt%)	HP	1.95-1.99 [0.01]	1.95-1.98 [0.01]	12.7-14.4 [1]		
Porosity	M26	2.10-2.13 [0.01]	2.10-2.12 [0.01]	0.7-4.6 [1]	_	<3.0
(70)	Μ	2.12-2.13 [0.01]	2.12-2.13 [0.01]	0.3-3.0 [1]	- 1	0 5 / 0
(µm/m-K)					- 1	0.5/0
Dielectric Consta		Lo	ot 2		-	4.0 / 4
Thermal Conduc	Orreade	Geometric		edes		9/12
(W/m-K)	Grade	Density (g/cm ³)	Density (g/cm ³)	Porosity (%)		
Elastic Modulus	HP	1.96-2.07 [0.01]	1.95-2.07 [0.01]	9.6-13.8 [1]		16 / 6 ⁻
(GPa)	M26	2.03-2.10 [0.01]	2.03-2.07 [0.01]	6.7-9.2 [1]		
* All data	Μ	2.08-2.14 [0.01]	2.09-2.13 [0.01]	0.9-4.5 [1]	av.	
* All data	М	2.08-2.14 [0.01]	2.09-2.13 [0.01]	0.9-4.5 [1]	5Y	

_			Ther	mal	
Prope	rty	Lot 1			
Property	Me	Grade	Emissivity 630ºC	CTE 400-800⁰C (10⁻⁵/K)	
KRD BN Phase	Riet	HP	0.82 [0.01]	3.1 [0.5]	
Wt%)		$HP \perp$	0.81 [0.01]	0.4 [0.4]	
Porosity	AST	M26	0.80 [0.01]	2.9 [0.1]	
(70)		M26 ⊥	0.75 [0.01]	0.5 [0.2]	
CTE (µm/m-K)	Dila	M	0.76 [0.01]	0.5 [0.1]	
Dielectric Constant	Imp	M ⊥	0.71 [0.01]	0.6 [0.1]	
Thermal Conductivity W/m-K)	AST		Lot	2	
Elastic Modulus	AST	Grade	Emissivity 630ºC	CTE 400-800⁰C (10⁻⁵/K)	
(GPa)		HP II	0.85 [0.01]	3.4 [0.5]	
* All data colled	ted a	$HP \perp$	0.81 [0.01]	0.5 [0.4]	
		M26	0.79 [0.01]	2.8 [0.1]	
		M26 ⊥	0.80 [0.01]	0.6 [0.2]	

M II

M⊥

0.82 [0.01]

0.83 [0.01]

1.8 [0.2]

0.8 [0.1]

Hot Press Anisotropy

- Hot pressed BN platelets tend to align during processing.
- Property anisotropy strongest in CTE, Thermal conductivity, and Flexural strength data.
- Characterize
 crystallographic texture
 with XRD pole figures.
 - Can also be used to identify unknown hot press direction.

Crystallographic Direction

Stereographic Projection

- HP, M26, and M grades evaluated with XRD pole figures.
- HP & M26 (98 & 70 wt% BN) show similar level of texturing, M (45 wt% BN) is less textured based on maximum intensity.
- Texture is consistent with hot press orientation in all samples tested.
 - Some samples have up to 10° mis-alignment between axial direction and maximum (0004) direction.

Hot Press Anisotropy (cont.)

- Some samples have up to 10° mis-alignment between axial direction and maximum (0004) direction.

Microstructure Overview

- SEM microstructure is not clearly textured by hot press direction.
- Porosity is apparent in HP grade, less in other grades.
- M26, BN-XX, and M have similar BN/SiO2 structure.
- XRD phase analysis matches with micrograph area analysis.

Grade	BN (wt%)	CaF ₂ (wt%)	ZrO ₂ (wt%)	AIN (wt%)	Amorp. (wt%)*
HP	98	2	0	0	0
M26	68	0	0	0	32
BN-XX	56	0	1	0	43
Μ	41	0	0	0	59
Hi-M	27	0	0	72	0

Powder XRD Rietveld Refinement

*Amorphous content is likely SiO₂, confirmed with EDS.

Microstructure Overview

Lot 1

Grade	BN (wt%)	CaF ₂ (wt%)	ZrO ₂ (wt%)	AIN (wt%)	Amorp. Bal. (wt%)*
HP	98	2	0	0	0
M26	68	0	0	0	32
М	41	0	0	0	59

Grade	BN (wt%)	CaF ₂ (wt%)	ZrO ₂ (wt%)	AIN (wt%)	Amorp. Bal. (wt%)*
HP	98	2	0	0	0
M26	74	0	0	0	25
М	38	0	0	0	62

Lot 2 similar within expected capability to determine amorphous content

Lot 2 microstructure qualitatively and semi-quantitatively similar

Moisture Absorption

- Samples were subjected to one of three moisture levels for >20 days while mass change was tracked.
 - Drying Oven,100C, <5% rel.
 humidity.
 - Environmental Chamber, 50C, 90% rel. humidity.
 - Submerged Water Bath, 25C, 100% rel. humidity.
 - Each hot press orientation was investigated on high aspect ratio samples.

Submerged in Water 25C, 100% rel. humidity, 90 days

Moisture Absorption (cont.)

- Mass change tracks with open pore porosity (high, medium, low).
- HP hot press orientation has influence on the transfer of moisture (high, low).
- HP samples produced a CaB₆O₉(OH)₂(H₂O)₃ salt on the surface of the submerged samples.

Sample	Porosity (%)	Dry Oven, 100C Mass Loss (%)	90% Chamber, 50C Mass Gain (%)	Submerged, 25C Mass Gain (%)
HP II	<14	1.1 ± 0.5	0.97 ± 0.07	4.6 ± 0.3
$HP \perp$	<14	0.12 ± 0.01	0.33 ± 0.05	3.7 ± 0.5
M26	<4.7	0.025 ± 0.003	0.020 ± 0.005	2.7 ± 0.3
M26 ⊥	<4.7	0.035 ± 0.004	0.019 ± 0.008	3.2 ± 0.8
M	<3.0	0.026 ± 0.005	0.018 ± 0.005	1.8 ± 0.1
M ⊥	<3.0	0.036 ± 0.003	0.005 ± 0.003	1.7 ± 0.1

Moisture Absorption (cont.)

- Mass change tracks with open pore porosity (high, medium, low).
- HP hot press orientation has influence on the transfer of moisture (high, low).
- HP samples produced a CaB₆O₉(OH)₂(H₂O)₃ salt on the surface of the submerged samples.

Sample	Porosity (%)	Dry Oven, 100C Mass Loss (%)	90% Chamber, 50C Mass Gain (%)	Submerged, 25C Mass Gain (%)
HP II	<14	1.1 ± 0.5	0.97 ± 0.07	4.6 ± 0.3
$HP \perp$	<14	0.12 ± 0.01	0.33 ± 0.05	3.7 ± 0.5
M26	<4.7	0.025 ± 0.003	0.020 ± 0.005	2.7 ± 0.3
M26 ⊥	<4.7	0.035 ± 0.004	0.019 ± 0.008	3.2 ± 0.8
M	<3.0	0.026 ± 0.005	0.018 ± 0.005	1.8 ± 0.1
M ⊥	<3.0	0.036 ± 0.003	0.005 ± 0.003	1.7 ± 0.1

Moisture Absorption (cont.)

the

•	Mas			Moisture Absor	ption
•	HP		Lot 1		
	(high	Grade	Dry Oven Mass Change (%)	Environment Chamber Mass Change (%)	
•	HP	HP II	-1.1 [0.5]	0.97 [0.07]	
	cubr	HP ⊥	-0.12 [0.01]	0.33 [0.05]	Lot 2 dry oven results are
	Subi	M26	-0.025 [0.003]	0.020 [0.005]	similar to Lot 1.
		M26 ⊥	-0.035 [0.004]	0.019 [0.008]	
_	Same	M	-0.026 [0.005]	0.018 [0.005]	Lot 2 onvironmental
	Camp	M ⊥	-0.036 [0.003]	0.005 [0.003]	
	HP		Lot 2		inconsistent and have
	HP ⊥	Grade	Dry Oven Mass Change (%)	Environment Chamber Mass Change (%)	standard deviations as large as 100% of average.
	M26	HP II	-0.697 [0.596]	-0.241 [0.245]	
	M26	HP ⊥	-0.208 [0.064]	0.056 [0.012]	Lot 2 environmental
	10120 -	M26	-0.043 [0.005]	0.017 [0.005]	chember settings were
	M	M26 ⊥	-0.043 [0.011]	0.099 [0.081]	champer settings were
	MI	M	-0.012 [0.006]	0.046 [0.024]	different from lot 1.
_		M ⊥	-0.013 [0.004]	0.047 [0.011]	_

Flexural Testing

- 4-point bend testing performed on HP, M, and M26.
 - 26+ room temperature samples and 10 high temperature samples per configuration.
 - || and ⊥ hot press orientations, asmachined, dry oven, and humidity chamber samples.
- All grades exhibited brittle failure at room temperature (25°C).
- HP exhibited significant deflection at 600°C.
 - Possibly CaF₂ or CaB₆O₉(OH)₂(H₂O)₃ related mechanism.
- HP || suffered significant decrease in strength at 600°C.

National Aeronautics and Space Administration

Representative load extension curves

Flexural Testing (cont.)

- Weibull modulus of all grades ranged from 7 to 22.
 - M and M26 have similar Weibull modulus at 600°C as room temp.

~~~~

 M || strength is significantly below literature values (103) MPa Literature), consistent at room temperature and 600°C.

|        | Rooi             | m Temperatu        | 600°C              |                  |                    |                    |
|--------|------------------|--------------------|--------------------|------------------|--------------------|--------------------|
| Sample | Average<br>(MPa) | Std. Dev.<br>(MPa) | Weibull<br>Modulus | Average<br>(MPa) | Std. Dev.<br>(MPa) | Weibull<br>Modulus |
| HP     | 39.7             | 2.3                | 19.3               | 9.8              | 4.7                | -                  |
| HP ⊥   | 70.5             | 3.6                | 22.3               | 70.1             | 9.7                | -                  |
| M26    | 55.6             | 7.3                | 8.6                | 66.3             | 6.7                | 10.7               |
| M26 ⊥  | 45.0             | 6.6                | 7.0                | 56.2             | 8.1                | 7.6                |
| M      | 23.6             | 2.0                | 13.4               | 27.7             | 1.8                | 15.2               |
| M⊥     | 59.1             | 5.9                | 11.2               | 71.4             | 8.7                | 8.6                |

### Flexural Testing (cont.)



|              |         |            |                         |             |         |                   |                    |               | 1- 00      | _   |
|--------------|---------|------------|-------------------------|-------------|---------|-------------------|--------------------|---------------|------------|-----|
| • • • •      |         | Mechanical |                         |             |         |                   |                    |               |            |     |
|              | M and   |            |                         |             |         |                   |                    |               |            | i t |
| . N/         | lletro  |            | Lot 1                   |             |         |                   | Lot 2              |               |            | 1   |
|              |         | Grad       | Grade Flexural Strength | Dynamic     | Grade   | Flexural Strength | Dynamic<br>Modulus |               |            |     |
| IVI          | Pa Lite |            | 25                      |             | (GPa)*  |                   |                    | 20 0 (iiii a) | (GPa)      | D   |
| 60           | )0°C.   | HP         | 9 39                    | .7 [2.3]    | 80 [3]  |                   | HP ∥               | 22.8 [4.0]    | 36.9 [1.0] |     |
|              |         | HP         | 9⊥ 70                   | .5 [3.6]    | 79 [3]  |                   | $HP \perp$         | 57.6 [3.7]    | 75.1 [1.0] |     |
|              |         | M2         | 26    55                | 6.6 [7.3]   | 55 [11] |                   | M26                | 19.9 [0.9]    | 83.9 [4.1] |     |
|              | Comple  | M2         | 26⊥ 45                  | 5.0 [6.6]   | 47 [7]  |                   | M26 ⊥              | 47.9 [1.7]    | 49.8 [6.2] |     |
| ,            | Sample  | Μ          | 23                      | 6.6 [2.0]   | 16 [1]  |                   | M                  | 39.1 [7.1]    | 58.3 [3.3] |     |
| _            |         | M .        | ⊥ 59                    | .1 [5.9]    | 61 [3]  |                   | M⊥                 | 65.0 [6.1]    | 26.5 [3.4] |     |
| ŀ            | IP      |            |                         | Lot 2 diffe | erences | s are             | e signi            | ficant for    |            |     |
| F            | IP⊥     |            |                         | strength a  | and mo  | dul               | us of a            | all grades.   |            |     |
| $\mathbb{N}$ | /126    | 55.6       | 7.                      | .3          | 8.6     |                   | 66.3               | 6.7           | 10         | 7   |
| N            | /126 ⊥  | 45.0       | 6                       | .6          | 7.0     |                   | 56.2               | 8.1           | 7.6        | )   |
| N            | /       | 23.6       | 2                       | .0          | 13.4    |                   | 27.7               | 1.8           | 15         | .2  |
| N            | / ⊥     | 59.1       | 5                       | .9          | 11.2    |                   | 71.4               | 8.7           | 8.6        | )   |

### **Moisture Sensitivity**



- Samples from moisture absorption study were tested for flexural strength and elastic modulus after soak.
- HP ||, HP ⊥, and M ||, all have significant changes in strength and elastic modulus properties with moisture exposure (P<0.05).

|        | <5% Rel. Humidity          | ~60% Rel. Humidity            | 90% Rel. Humidity             |                           |
|--------|----------------------------|-------------------------------|-------------------------------|---------------------------|
| Sample | Dry Oven<br>Strength (MPa) | As-machined<br>Strength (MPa) | 90% Chamber<br>Strength (MPa) | P-Value<br>[Oven>Chamber] |
| HP     | 52.1                       | 42.5                          | 27.5                          | 0.000005                  |
| HP ⊥   | 80.1                       | 76.1                          | 69.7                          | 0.005                     |
| M26    | 59.9                       | 61.8                          | 57.9                          | 0.3                       |
| M26 ⊥  | 43.2                       | 49.6                          | 39.7                          | 0.2                       |
| M      | 23.9                       | 24.7                          | 22.3                          | 0.01                      |
| M⊥     | 60.1                       | 62.4                          | 59.2                          | 0.3                       |

### **Moisture Sensitivity**



- Samples from moisture absorption study were tested for flexural strength and elastic modulus after soak.
- HP ||, HP ⊥, and M ||, all have significant changes in strength and elastic modulus properties with moisture exposure (P<0.05).</li>

|        | <5% Rel. Humidity          | ~60% Rel. Humidity            | 90% Rel. Humidity             |                           |
|--------|----------------------------|-------------------------------|-------------------------------|---------------------------|
| Sample | Dry Oven<br>Strength (MPa) | As-machined<br>Strength (MPa) | 90% Chamber<br>Strength (MPa) | P-Value<br>[Oven>Chamber] |
| HP     | 52.1                       | 42.5                          | 27.5                          | 0.000005                  |
| HP ⊥   | 80.1                       | 76.1                          | 69.7                          | 0.005                     |
| M26    | 59.9                       | 61.8                          | 57.9                          | 0.3                       |
| M26 ⊥  | 43.2                       | 49.6                          | 39.7                          | 0.2                       |
| M      | 23.9                       | 24.7                          | 22.3                          | 0.01                      |
| M⊥     | 60.1                       | 62.4                          | 59.2                          | 0.3                       |

• Sa flea • HF

ex

Sam

HP ||

HP ⊥

M26

M26

MI

 $M \perp$ 

#### Moisture Sensitivity

#### Lot 1

| Grade | Dry Oven<br>Strength (MPa) | As-Machined<br>Strength (MPa) | Environment Chamber<br>Strength (MPa) | P-Value<br>[Oven>Chamber] |
|-------|----------------------------|-------------------------------|---------------------------------------|---------------------------|
| HP II | 52.1 [5]                   | 42.5 [3]                      | 27.5 [2]                              | <0.005                    |
| HP ⊥  | 80.1 [3]                   | 76.1 [4]                      | 69.7 [6]                              | 0.005                     |
| M26   | 59.9 [9]                   | 61.8 [10]                     | 57.9 [7]                              | 0.3                       |
| M26 ⊥ | 43.2 [8]                   | 49.6 [8]                      | 39.7 [8]                              | 0.2                       |
| M     | 23.9 [1]                   | 24.7 [1]                      | 22.3 [1]                              | 0.01                      |
| M ⊥   | 60.1 [2]                   | 62.4 [4]                      | 59.2 [6]                              | 0.3                       |

#### Lot 2

| Grade | Dry Oven<br>Strength (MPa) | As-Machined<br>Strength (MPa) | Environment Chamber<br>Strength (MPa) | P-Value<br>[Oven>Chamber] |
|-------|----------------------------|-------------------------------|---------------------------------------|---------------------------|
| HP II | 32.2 [5]                   | 22.8 [4]                      | 18.8 [3]                              | <0.005                    |
| HP ⊥  | 67.3 [8]                   | 57.6 [4]                      | 62.9 [5]                              | 0.07                      |
| M26 ∥ | 22.0 [1]                   | 19.9 [1]                      | 20.6 [1]                              | 0.02                      |
| M26 ⊥ | 53.6 [4]                   | 47.9 [2]                      | 47.0 [1]                              | <0.005                    |
| M II  | 35.9 [6]                   | 39.1 [7]                      | 36.8 [7]                              | 0.3                       |
| M ⊥   | 37.2 [5]                   | 65.0 [6]                      | 60.8 [10]                             | <0.005                    |

#### Lot 2 is more moisture sensitive.

#### Summary



- So far only two lots have been characterized, so the following statements should be interpreted appropriately.
- Properties with significant lot-to-lot variation:
  - Flexural strength, elastic modulus, moisture sensitivity
- Properties with minimal lot-to-lot variation:
  - Density, moisture absorption
- Properties with no lot-to-lot variation:
  - CTE, emissivity, microstructure, surface roughness, trace contaminates, anisotropy, composition
- Properties not yet characterized on multiple lots:
  - Slow crack growth, fracture toughness, compression strength, coefficient of sliding friction, thermal conductivity, electrical properties, specific heat
- Lot testing is strongly recommended for critical applications.

#### Acknowledgements



- Funding provided by NASA Space Technology Mission Directorate.
- Technical assistance provided by NASA Glenn Research Center, NASA Jet Propulsion Laboratory, and California Institute of Technology (Contract #NNN17D002T).

