

Calorimetric Measurements of the Thermodynamic Properties of RE-Silicate Coating Materials

Gustavo Costa^{1,2}, Bryan Harder¹, Michael Kulis¹, Benjamin Kowalski¹, Narottam Bansal¹, Jamesa Stokes¹

¹NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH, 44135, USA ² Vantage Partners, LLC, 3000 Aerospace Pkwy, Brookpark, OH, 44142

Thermodynamics Genome of Environmental Barrier Coatings

- Thermodynamic properties of rare earth silicate based coatings including their reaction products with silicate debris will be measured
- Integral thermodynamic quantities: High Temperature Reaction Calorimetry
- Rare-earth silicates (RE_xSi_yO_z)
- RE mono and disilicates (Y, Nd, Gd, Dy, Er, Yb and Lu)
- Calcium rare earth apatites
- CaRE₄Si₃O₁₃ (Y, Nd, Sm, Gd, Dy, Er, and Yb)

 $RE_2Si_2O_{7(xl)} + 0.5CaO_{(CMAS)} = 0.5CaRE_4Si_3O_{13(xl)} + 0.5SiO_{2(CMAS)}$

 $RE_2SiO_{5(xl)} + 0.5CaO_{(CMAS)} + 0.5SiO_2 = 0.5CaRE_4Si_3O_{13(xl)}$

Chemical Interactions of RE Silicates Coating Materials in Extreme Environments

- Corrosive agents: e.g. Water vapor; deposits: salts, volcanic ash, desert sands
- Understanding Chemical reactions at high temperatures
 - Thermodynamics

High Temperature Calorimetry

- Drop in molten lead borate solvent
- Determine the formation enthalpies for RE Silicates (EBCs) and Oxyapatites (CMAS-EBCs) ۲ reaction product)

Understanding the interplay between energetic stability and structural properties Input into thermodynamic codes

Thermodynamic Quantities

Limited thermodynamic data for designing coatings materials for gas turbine applications

- Input for thermodynamic codes (FactSage, ThermoCalc)
- Rare earth silicates and reaction products with CMAS
- Enthalpy of formation (Δ Hf)
- Heat capacity (Cp) from almost 0 to 1600 °C
- Enthalpy of fusion (△Hfusion)

Energetics of Calcium Rare-earth Silicate Oxyapatites

Corrosion product of Ceramic Coatings $Ca_2RE_8Si_6O_{26}$ (Y, Nd, Sm, Gd, Dy, Er, and Yb) Rare – earth silicates (EBCs) + silicate debris (CMAS) = Rare-earth silicate oxyapatites

 $RE_{10}Si_6O_{27}$ – interstitial oxygen

 $RE_{9.33}\square_{0.67}Si_6O_{26}$ – cation vacancies

 $RE_8AE_2Si_6O_{26}$ – stoichiometric AE – alkaline earth

Costa et al, J. Am. Ceram Soc. 2019.

National Aeronautics and Space Administration

High Temperature Drop Solution Calorimetry

 $\Delta \mathbf{H}_{\mathsf{ds}} = \Delta \mathbf{H}_{\mathsf{TTD}} + \Delta \mathbf{H}_{\mathsf{s}}$

- $1 Ca_2 RE_8 Si_6 O_{26(xl, 25 \circ C)} = Ca_2 RE_8 Si_6 O_{26(sol, 800 \circ C)}$
- 2 $4RE_2O_{3(xl, 25 \circ C)} = 4RE_2O_{3 (sol, 800 \circ C)}$
- 3 $6SiO_{2(xl, 25 \circ C)} = 6SiO_{2(sol, 800 \circ C)}$
- 4 $2CaO_{(xl, 25 \circ C)} = 2 CaO_{(sol, 800 \circ C)}$
- 5 $2CaO_{(xl, 25 \circ C)} + 6SiO_{2(xl, 25 \circ C)} + 4RE_2O_{3(xl, 25 \circ C)}$
- $= Ca_2 RE_8 Si_6 O_{26 (xl, 25 \circ C)}$
 - $\Delta H_1 = -\Delta H_{ds (calcium RE oxyapatites)}$ $\Delta H_2 = 4\Delta H_{ds (RE oxides)}$ $\Delta H_3 = 6\Delta H_{ds (quartz)}$ $\Delta H_4 = 2\Delta H_{ds (lime)}$ $\Delta H_5 = \Delta H_{f, ox (calcium RE oxyapatites)}$

Calorimetric Results

Enthalpy of formation of oxyapatites Versus their ionic potential (Z/r) in the M(1) sites. $RE_{9.33}$ O_{26} from an earlier study*

Costa et al, J. Am. Ceram Soc. 2019.

*Risbud et al J. Mater. Res. 2001. www.nasa.gov

National Aeronautics and Space Administration

Calorimetric Results

Z/r Enthalpy of formation of oxyapatites Versus their ionic potential (Z/r) in the M(2) sites. RE_{9.33}□_{0.67}Si₆O₂₆ from an earlier study*

Costa et al, J. Am. Ceram Soc. 2019.

*Risbud et al J. Mater. Res. 2001. www.nasa.gov

Calorimetric Results

Enthalpies of formation of the oxyapatites from the oxides versus the c/a. Enthalpies of formation of $RE_{9.33}\square_{0.67}Si_6O_{26}$ and $AE_{3x/2}Nd_{9.33-x}Si_6O_{26}$ (AE = Ca, Sr and Ba, X = 0 and 1.33) are from an earlier studies

*Hosseini et al J. Am. Ceram. Soc. 2013.

*Risbud et al J. Mater. Res. 2001.

Summary

Calcium Rare-earth Silicate Oxyapatites

- Oxyapatites are significantly more stable relative to their binary oxides.
- Oxyapatites becomes more stable when achieving fully stoichiometric composition.
- Oxyapatites stability increases with decreasing ionic potential of the rare-earths in the M(1) and M(2) sites and ionic field strength, meaning that stability increases with their ionic radius.

Thermodynamics of Rare-earth Silicates

Periodic Table of Solid Binary Silicates Opila, UVa

Coating Materials Candidates

IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIII	VIII	VIII	IB	IIB	IIIB	IVB	VB	VIB	VIIB	0
н																	Не
Li	Ве		Liquid		No		Known		High			В	С	Ν	0	F	Ne
					silicate		high		Vapor								
							a(SiO2)		Pressure								
Na	Mg											AI	Si	Р	S	CI	Ar
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
Cs	Ва	La-Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn
				-		_				-			-	-			
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	dl	Dy	Но	Er	Im	d Y D	Lu	
		Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	FM	Md	No	Lr	

- Rare earth silicates: Limited thermodynamic data
- Input for thermodynamic codes (FactSage, ThermoCalc)
- YMS, YDS and YbMS (measured: thermodynamic activities, Δ Hf, Δ Hvaporization and Cp)
- On going work:
- **ΔHf** and Cp measured by calorimetry: Nd, Gd, Dy, Er, Yb and Lu disilicates
- AHfusion: Y and Yb disilicate
- Thermodynamic activities and ∆Hvaporization also measured for LuMS-DS by KEMS

High Temperature Drop Solution Calorimetry

 $\Delta \mathbf{H}_{ds} = \Delta \mathbf{H}_{TTD} + \Delta \mathbf{H}_{s}$

- 1 $RE_2Si_2O_{7(xl, 25 \circ C)} = RE_2Si_2O_{7 (sol, 800 \circ C)}$
- 2 $RE_2O_{3(xl, 25 \circ C)} = RE_2O_{3 (sol, 800 \circ C)}$
- 3 $2SiO_{2(xl, 25 \circ C)} = 2SiO_{2(sol, 800 \circ C)}$

4 - $RE_2O_{3(xl, 25 \circ C)} + 2SiO_{2(xl, 25 \circ C)} = RE_2Si_2O_{7 (sol, 800 \circ C)}$

 $\Delta H_1 = -\Delta H_{ds (RE \text{ disilicates})}$ $\Delta H_2 = \Delta H_{ds (RE \text{ oxides})}$ $\Delta H_3 = 2\Delta H_{ds (quartz)}$ $\Delta H_4 = \Delta H_{f, \text{ ox (RE disilicates)}}$

National Aeronautics and Space Administration Calorimetric Results

Enthalpy of formation of RE disilicates Vs RE³⁺ ionic radius.

Differential Scanning Calorimetry - Specific Heat Capacity

Netzsch – DSC F1 Pegasus®

- 3 measurements required: empty (baseline), sapphire (standard) and sample.
- ASTM E1269.

Calorimetric Results

Differential Scanning Calorimetry

Heat capacity (Cp) of RE disilicates Vs temperature.

www.nasa.gov

Summary

Rare-earth Disilicates

- Rare-earth disilicates stability increases with increasing RE ionic radius considering the same crystal structure.
- Heat capacity of rare-earth disilicates increases with increasing RE ionic radius except for yttrium and gadolinium disilicates.