

Effects of Texture and Silica Content on Crack Growth in Boron Nitrides

Jonathan Salem, Jonathan Mackey, and Hani Kamhawi

NASA Glenn Research Center, Cleveland, Ohio

44nd International Conference and Expo on Advanced Ceramics and Composites January 31, 2020

www.nasa.gov

Outline

- Background
- Materials and properties of interest
- Past work
 - chemistry, microstructure, texture, moisture absorption
 - strength, modulus, CTE, conductivity
- Slow crack growth
 - procedure
 - failure sources
- Fracture toughness

Background

- Crucibles for melting and casting glasses and metals, insulators for furnaces, molds for hot pressing, and neutron absorbers are subjected to harsh conditions:
 - High temperatures
 - Thermal shock and gradients
 - Structural loads
- Historically, material selection has primarily been driven by cost and capability.
 - > Hot pressed hexagonal boron nitride

National Aeronautics and Space Administration

Grades & Microstructure of BN's

Grade

BN

- Similar costs w/exception of Tokuyama Hi-M
- Very different microstructure.
- Texture is not apparent in microstructure via SEM.
- Porosity is apparent in HP grade, less in other grades.
- Large silica content is a concern for crack growth.

Powder XRD Rietveld Refinement (wt%)

AIN

Amorp.

CaF₂ ZrO₂

*Amorphous content is likely SiO₂, confirmed with EDS.

National Aeronautics and Space Administration

Rel.

Past Work on Moisture Absorption

- Samples were subjected to one of three moisture levels for >20 days while tracking mass change:
 - 100C, w/<5% rel. humidity.
 - 50C, w/90% rel. humidity.
 - 25C, 100% rel. humidity.
 - Investigated for two hot pressed orientations w/ high aspect ratio samples.

Drying Oven 100C, <5% rel. humidity, 50 days

Submerged in Water 25C, 100% rel. humidity, 90 days

National Aeronautics and Space Administration

Moisture Absorption (cont.)

- Mass change tracks with open pore porosity (high, medium, low).
- HP hot press orientation has influence on the transfer of moisture (high, low).
- Submerged HP samples produced $CaB_6O_9(OH)_2(H_2O)_3$ surface salt.

- Mass change is inversely correlated to silica content....
- Absorption effect rather than silica related effect.....

Moisture Absorption on Strength

- Samples from moisture absorption study were tested for flexural strength and elastic modulus after soak.
- HP ||, HP ⊥, and M ||, all have significant changes in strength and elastic modulus properties with moisture exposure (P<0.05).

	<5% Rel. Humidity	~60% Rel. Humidity	90% Rel. Humidity		
Sample	Dry Oven Strength (MPa)	As-machined Strength (MPa)	90% Chamber Strength (MPa)	P-Value [Oven vs Ch	namber]
HPI	52	43	28	0.000005	46% ∆
HP ⊥	80	76	70	0.005	13% ∆
M26	60	62	58	0.3	3%∆
M26 ⊥	43	50	40	0.2	$7\%\Delta$
MI	24	25	22	0.01	8%∆
M⊥	60	62	60	0.3	0%Δ

National Aeronautics and Space Administration

Slow Crack Growth (SCG)

- Ceramics and glass exhibit loss of strength over time under static loads. The phenomenon is know as "slow crack growth" or "static fatigue" and is a form of stress corrosion.
- No data in the literature on BN.
- We need to know the SCG parameters for BN to see if stress corrosion should be a design consideration.

• Usual model:
$$v = \frac{da}{dt} = AK_I^n = A * \left[\frac{K_I}{K_{IC}}\right]^n$$

Sensitivity Parameter *n* < 20 high sensitivity (glasses) < 40 intermediate (alumina's) > 50 low (Si₃N₄) > 100 ~ insensitive (Ge, Si, α SiC)

- v crack velocity
- σ is Stress
- *n* & *A* are SCG parameters
- K_{Ic} is Fracture toughness

SCG Observations and Formulations

• Region I crack growth Function:

$$v = \frac{da}{dt} = AK_I^n = A * \left[\frac{K_I}{K_{IC}}\right]^n$$

9

Rapid Technique for SCG Parameters

- Constant Stress Rate Testing or "Dynamic fatigue":
 - well defined time-to-failure
 - can be rapid
 - simple test
- Strength based approach with advantages & disadvantages:
 - samples the inherent, small flaws (length scale)
 - statistical scatter (many specimens needed)
 - averaging of regions of the SCG curve
 - shorter time scale than the application

NASA

SCG Analysis

• Crack growth Function:

$$v = \frac{da}{dt} = AK_I^n = A * \left[\frac{K_I}{K_{IC}}\right]^n$$

• Constant Stress Rate Testing:

$$S_f = \left[B(n+1)\sigma_i^{n-2}\dot{\sigma} \right]^{1/(n+1)}$$

Log Stress Rate, $\dot{\sigma}$

• Parameter extraction via regression:

$$log_{10} \sigma_{f} = \frac{1}{n+1} log_{10} \dot{\sigma} + log_{10} D \qquad log_{10} D = \frac{1}{n+1} log_{10} [B(n+1)\sigma_{i}^{n-2}]$$
(Slope α) (Intercept β)

11

> Test in air at 60% RH after conditioning for >5 days.

12

Property Measurements

- Building dataset to compare grades:
 - Collecting data from 25 to 900°C .

NASA/TM—2018-219949 "Evaluation of Boron Nitride Materials" *Jonathan A. Mackey, Jonathan A. Salem, and Hani Kamhawi.....*

National Aeronautics and Space Administration

Results for HP BN Perpendicular

- SCG parameter $n = -72 \pm 27$
- Good corrosion resistance to SCG across platelets.

Results for HP BN Parallel

- SCG parameter *n* >100 is very high.
- Very good corrosion resistance between platelets.

HP Failure Source: Ca rich agglomerates

National Aeronautics and Space Administration

Slow Crack Growth Results

Silica Content, wt%

- Silica additions increases slow crack growth susceptibility.
- Better than glass. Easier to corrode across rather than between the platelets.
- Van der Waals bonds are resistant to corrosion......
- Strength loss observed in moisture study is likely an absorption effect rather than a slow crack growth effect (large n for HP //).

Fracture Toughness

TEST

- Three standard methods are available.
- Relatively simple setup: fixture, test frame, load cell, recording device.
- x Indentation caused crushing w/o cracking.
- x That made SCF and SEPB difficult.

"Measuring the Real Fracture Toughness of Ceramics: ASTM C1421," J.A. Salem, G.D. Quinn, M.G. Jenkins, pp. 531-553 in Fracture Mechanics of Ceramics: Active Materials, Nanoscale Materials, Composites, Glass, and Fundamentals, Springer, (2005).

> Used the chevron notch.

P/2

W

W

W

Fracture Toughness Results

- Silica additions increases toughness.
- Similar to glass. Easier to separate than split the platelets.
- This contrasts with the SCG behavior.....Bond type.....

Crack Velocity Curves BN vs Glass

• Glasses readily exhibit SCG and thus are a good comparison.

• As compared to glass, BN's are less sensitive to changes in $K_{I,}$ but M26|| and HP|| have lower K_{Ic} .

Summary

- Fracture toughness is low, around that of glass, and is a function of orientation (bond type). ☺
- It is easier to fracture van der Waal bonds between BN platelets than the covalent bonds within platelets.
- Increasing silica content in BN's increases toughness.
- BN's exhibits limited slow crack growth in humidity. ③
- Increasing silica content in BN's increases SCG. ☺
- SCG parameters are a function of test orientation due crystallographic texture & bond type.
- Van der Waal bonds between platelet are insensitive to water.
- Covalent bonds within platelets are sensitive to water.

Summary (Cont.)

• Crack growth is due to SCG as driven by residual absorption stresses or externally applied stresses.

Future work:

- Fractography to identify origins.
- Reliability analysis of BN components.

Acknowledgements

- Funding provided by NASA Space Technology Mission Directorate.
- Technical assistance provided by NASA Glenn Research Center.
- Chris Burke for setting up humidity chamber.

