

The Porous Microstructure Analysis (PuMA) software for high-temperature microscale modeling

John M. Thornton¹ Joseph C. Ferguson¹ Federico Semeraro² Francesco Panerai³ Arnaud Borner¹ Nagi N. Mansour⁴

May 6th, 2019

- Quick Description
- Motivation
- Capabilities
- Conclusions and Outlook

What is PuMA?

A collection of tools for the analysis of porous materials and generation

of material microstructures

Porous Microstructure Analysis (PuMA)

Technical Specifications

- Written in C++
- GUI built on QT
- Visualization module based on OpenGL
- Parallelized using OpenMP for shared memory systems

File Visualization Oxidation Help Domain Generation Micro-tomography import Generate Artificial Geometry Image Import Load 3D Tiff Image Subdomain Extraction X1 200 Y1 200 Z2 599 Voxel Length (um): 0.65 Import Domain 100% Thresholding Thresholding 0 40 80 120 160 200 240	(PI	IMA		
Domain Generation Material Properties REV Analysis Oxidation Simulation Micro-tomography Import Generate Artificial Geometry Image Import Load 3D Tiff Image 100% Subdomain Extraction X-max 800 Ymax 800 X1 200 Y1 200 Z1 200 Z2 599 Voxel Length (um): 0.65 Import Domain 100 Thresholding 0 00 0 120 160 200 240	Visualizatio	n Oxidation I	lelp					
Micro-tomography import Generate Artificial Geometry Image import Load 3D Tiff Image 100% Subdomain Extraction X-max 800 Ymax 800 Z-max 800 X1 200 Y1 200 Z2 599 Voxel Length (um): 0.65 Import Domain 100 Thresholding Thresholding Generate Artificial Geometry Image 100% Import Domain Import Domain Image 100% Import Domain Image 100% Import Domain Image 100% Import Domain Im	main General	ion Material I	Properties	REV Analy	sis Oxidat	tion Simulation		
Image import Load 3D Tiff Image 100% Subdomain Extraction Revert Threshold Image: 799 Revert Crown X-max 800 Y1 200 Z1 200 Z2 599 Z2 599 Voxel Length (um): 0.65 Image: 799 Revert Crown Import Domain 100 <	cro-tomograp	hy Import Ge	nerate Artifi	cial Geom	etry			
Load 3D Tiff Image 100% Subdomain Extraction Revert Threshold Image: 799 Revert Crol X-max 800 Y-max 800 Z1 200 Z2 S99 Void Comparison Void Comparison Revert Crol Image: 799 Revert Crol Voxel Length (um): 0.65 Import Domain 100% Import Domain 100% Import Domain Import Domain Import Domain Import Domain 100% Import Domain		Impos	manet		000000			
Subdomain Extraction X-max 800 Y-max 800 X1 200 Y2 599 Y2 599 Voxel Length (um): 0.65 Inport Domain 100 Inport Domain 100 Thresholding 100 Inport Domain 100 Inport Domain 100 Inport Domain Inport Domain <td>Land 3D</td> <td>Till leases</td> <td>mport</td> <td>1000</td> <td>-</td> <td>Revert Threshold</td> <td>Image: 799</td> <td>Revert Crop</td>	Land 3D	Till leases	mport	1000	-	Revert Threshold	Image: 799	Revert Crop
Subdomain Extraction X-max 800 Y-max 800 Z-max 800 X1 200 Y-max 800 Z-max 800 X2 599 Y2 599 Z2 2599 Voxel Length (um): 0.65 0	1040 30	ini image		100%		The second s	•	
X-max 800 Y-max 800 Z-max 800 X1 200 Y2 599 Y2 Y2		Subdoma	in Extractio	n				1
X1 200 X2 599 Voxel Length (um): 0.65 mport Domain Thresholding Thresholding	X-max 8	00 Y-max	800	Z-max	800	and the second		-
X2 [599 V2 599 Z2 599 Voxel Length (um): 0.65 Import Domain 1005 Thresholding	X1 200	¥1	200	Z1	200	× ¥		
Voxel Length (um): 0.65 Import Domain 100 Thresholding 0 40 80 120 160 200 240	X2 599	¥2	599	Z2	599			and the second
Import Domain 100%	Voxel Lengt	n (um): [0.65				N 60		100
	Import Do	main			1	01.		
Thresholding								
		Thre	sholding					
		A					N N	
	t)	\wedge						
	F /					-	5-0	2
0 40 80 120 160 200 240		1				1.	100	Pon
0 40 80 120 160 200 240	L				-			and the second se
	0 40	80 1.	0 160	200	240			14
Grayscale Range of Material: 87 to [255	Grayscale Ra	nge of Materia	1: (87	to [255	-	Section 1995	1 14
Apply Threshold			Ap	ply Thresh	old			
						0	1	1 Marsh
Porosity 0.837786 Create 3D Visualization	Porosity	0.837786	Create 3	D Visualiz	ation			
L								

Motivation

Thermal Protection Systems (TPS) 10-7 FAR SOLAR United States C SYSTEM MARS 10-6 RETURN RETURN 300 90 SHUTTLE 10-5 # 250 75 10-3 10 **REUSABLE TPS ABLATIVE TPS** 200 ALTITUDE X1 ¥, DENSIT 45 150 10-2 APOLLO 30 15 50 ٥L 40 50 20 30 60 10 0 VELOCITY × 10⁻³, ft/sec (APPROXIMATE MACH NUMBER) 15 18 20 3 12 6 9 n km/sec P-MISP-061708-01

NASA TM 101055, 1989

Ablative Thermal Protection Systems

Stardust Capsule

Dragon V1 & V2

Mars Science Laboratory

Material Design and Modeling Bow Shock **Boundary Layer** Radiation Char Layer **Pyrolysis Zone** Conduction Virgin Material

Material Design and Modeling

Lawson et. al. 2010

Material Design and Modeling

P. Agrawal et. al. 2016.

Virgin PICA Sample

Charred PICA Sample

Micro-scale modeling

- 1. Material Properties
 - 1. Phenomenological Properties
 - 2. Thermal transport
 - 3. Mass transport

- 2. Material Decomposition
 - 1. Oxidation
 - 2. Sublimation
 - 3. Spallation

High fidelity characterization of heat shield materials in extreme environments is needed

Cannot be achieved with experiments alone

Other applications

 Main impact derives from the ubiquity of the underlying physics.

Plastic/Copper Composites

Parachute Materials

Meteorite Samples

Capabilities

Porous Microstructure Analysis (PuMA)

Technical Specifications

- Written in C++
- GUI built on QT
- Visualization module based on OpenGL
- Parallelized using OpenMP for shared memory systems

- 1					P	uMA		
file Visualizatio	on Oxida	tion H	elp					
Domain Genera	tion Mat	terial Pr	operties	REV Analy	sis Oxida	tion Simulation		
Micro-tomograg	phy Impor	t Gen	erate Artif	icial Geom	etry			
	le le	nace in	noort					
Load 30	Tiff Imac	noye m	ipore	100%	-	Revert Threshold	Image: 799	Revert Crop
	2 minung	14		100010		Contraction (Aug	*	150.90
	Sut	bdomai	n Extractio	n		The local division of		1
X-max 8	800	Y-max	800	Z-max	800			-
X1 20	0	¥1	200	Z1	200	× X		
X2 59	9	¥2	599	Z2	599	1	100	The second
Voxel Lengt	th (um):	0.65				N 65		110
Import Do	omain	1		100%	11-12	01.		
							-	
		Threst	holding -					
	A						2	
	Λ							
								2
	1					4.497	200	Pax.
			i		-			and the second second
0 40	80	120	0 160	200	240			12
Gravscale R	ange of M	aterial:	(87	to [255	and the second second		1 16
			Ac	ply Thresh	old		-	
							- 1	1
Porosity	0.8377	86	Create 3	D Visualiz	ation			

X-ray micro-tomography

- Advanced Light Source (ALS) at the Lawrence Berkeley Natl. Laboratory
- Synchrotron electron accelerator used to produce 14Kev X-rays
- Used for many research areas, including optics, chemical reaction dynamics, biological imaging, and X-ray micro-tomography.

http://www2.lbl.gov/MicroWorlds/ALSTool

Mansour et. al, A new approach to light-weight ablators analysis: from micro-tomography measurements to statistical analysis and modeling, 44th AIAA Thermophysics. (2013)

X-ray micro-tomography

Collect X-ray images of the sample as you rotate it through 180°

Use this series of images to "reconstruct" the 3D object

Courtesy of D. Parkinson (ALS)

NASA

Material Generation

Complex Fiber Generation

- Under Development for PuMA V3
- Capable of generating:
 - Curved fibers
 - Hollow fibers
 - Fibers with complex cross sections
- Degree of randomness can be specified to each of these parameters

Weave Generation

- Under Development for PuMA V3
- TexGen library fully integrated

Effective Material Properties

Porosity

- Based on the grayscale threshold
- Sum of all void voxels over the total volume

Specific Surface Area

- Based on the Marching Cubes algorithm
- Overall surface area computed as a sum of individual triangle areas

Effective Thermal Conductivity

- Computes effective thermal conductivity using a finite difference method [Weigmann, 2006]
- BicGStab iterative method and FFTW used to solve linear system of equations [Sleijpen, 1993]
- Parallelized based on OpenMP
- Verified against complex analytical solutions

Effective Electrical Conductivity

- Computes effective electrical conductivity using a finite difference method [Weigmann, 2006]
- 1V voltage differential applied; solved with periodic boundary conditions
- BicGStab iterative method and FFTW used to solve linear system of equations [Sleijpen, 1993]
- Parallelized based on OpenMP
- Verified against complex analytical solutions
- Steady state current flow through a material can be determed

Steady state current flow through a carbon fiber material with an imposed voltage differential

Anisotropic Thermal/Electrical Conductivity

- Allows for constituents with anisotropic thermal conductivites
- Method uses Multi-Point Flux Approximation (MPFA) which involves integrating over a control volume and enforcing continuity across separate interaction volume
- Solved with periodic boundary conditions
- Parallelized based on OpenMP
- Verified against complex analytical solutions

Steady state current flow through a carbon fiber material with an imposed voltage differential

Diffusivity / Tortuosity

Continuum

- Quantifies a materials resistance to a diffusive flux
- Solves for effective diffusivity using a finite difference method
- Valid for Kn << 1
- Solves diffusion equation using periodic boundary conditions

Diffusivity / Tortuosity – Random Walk

Transitional/Rarified

- Random walk method to simulate diffusion
- Mean square displacement method used to solve effective diffusion
- Valid for all Knudsen numbers.
- Knudsen number is varied by changing the molecular mean free path

 $Kn = \frac{\bar{\lambda}}{\bar{d}} = \frac{mean\;free\;path}{characteristic\;length}$

• Surface collisions based on marching cubes triangles with diffuse reflections used

High Knudsen

Low Knudsen

Representative Elementary Volume

- Defined in PuMA V2.1 as the size for which the std. dev. in a given property falls below a given threshold, usually 2%
- Power law used to interpolate/extrapolate REV
- Provides std. dev. of a given property as a function of sample size, helping to quantify the uncertainty in a calculation

Surface rendering of FiberForm tomography in PuMA V2.1. Visualization contains ≈ 500 million triangles.

Micro-Scale Oxidation Simulations

Ferguson et. al, Modeling the oxidation of low-density carbon fiber materials based on micro-tomography, Carbon. (2016).

Micro-Scale Oxidation Simulations

Ferguson et. al, Modeling the oxidation of low-density carbon fiber materials based on micro-tomography, *Carbon. (2016).* Ferguson et. al, Theoretical study on the micro-scale oxidation of carbon fiber materials, *Carbon. (2017).*

Micro-Scale Oxidation Simulations

Surface Ablation

Volume Ablation

Ferguson et. al, Theoretical study on the micro-scale oxidation of carbon fiber materials, Carbon. (2017).

Molecular Beam Simulations

- Used in conjunction with molecular beam experiments [1] to calibrate finite rate chemistry models
- Particle-based method to solve transport of gas reactants and products
- Simulation of gas-surface collisions with complex, customizable reaction models
- Since particle-particle collisions are negligible, it provides a significant speed increase over DSMC simulations [2].

[1] Murray V J., et al. Inelastic and Reactive Scattering Dynamics of Hyperthermal O and O2 on Hot Vitreous Carbon Surfaces. *The Journal of Physical Chemistry* C 119.26 (2015). [2] Swaminathan-Gopalan K et. al. Development and validation of a finite-rate model for carbon oxidation by atomic oxygen, *Carbon* 137 (2018).

Conclusion and Outlook

- Future work will expand the material properties to include permeability and structural analysis
- Material generation will be expanded to allow realistic materials to be computationally designed, optimized over a set of characteristics
- <u>Need for good quality experimental</u> <u>data for model verification</u>

Microscale Modeling Research Group

Principle Investigator:

NN Mansour

F Panerai

PuMA Development:

F Semeraro

J Ferguson

X-Ray Microtomography:

J Thornton

DSMC Development:

A Borner

A MacDowell D Parkinson

H Barnard

Questions?

Point of Contact: John M. Thornton john.m.thornton@nasa.gov

May 6th, 2019 InterPore 2019