

America Makes

Specialty Workshop Series: Additive Manufacturing Data Management & Schema

Overview of NASA AM Database Efforts

Christopher Roberts Doug Wells Subhayu Sen Teresa Miller **Rick Serwecki** Sam Cordner **Dennis Lambert**

December 9, 2019 Sheraton Tysons Hotel, Tysons, VA (Washington, DC area)

SIEMENS

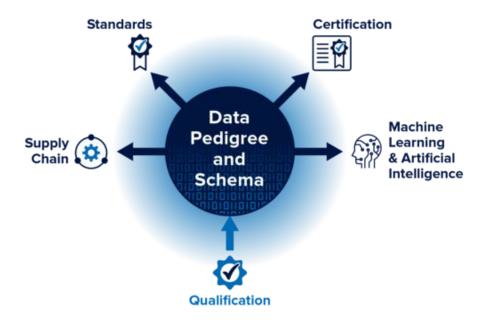
Sponsors

- Diamond sponsors (%) nTopology
- **Gold sponsors**
 - eøs **Silver sponsors**

Supporting organizations

OAK

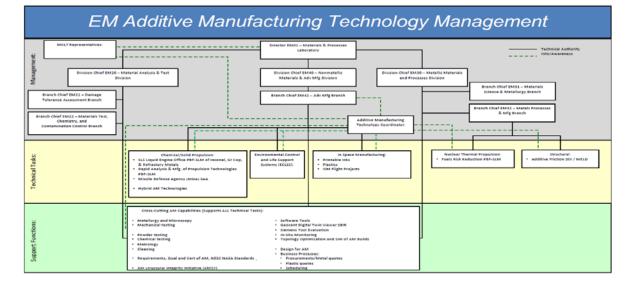
INTAVIA



Vision for AM Data Ecosystem

Vision

- To release various statistically relevant materials properties data records characterizing the capability of additive manufacturing (AM) process. This is to satisfy the vision of sharing information with any NASA AM partner to help establish alloy specific manufacturing techniques especially for demonstration and flight hardware. Furthermore, data was intended to be widely distributed to help mature AM processes and standards.
- To enable the certification of flight hardware produced by AM processes
 - The data contained within the database is based upon a qualified metallurgical process


Organizational Structure

- Motivation and Users of AM Data
- Criteria For Database
- Database Structure and Attributes
- Challenges
- Future Expectations
- Gaps In Standards
- Small Case Study

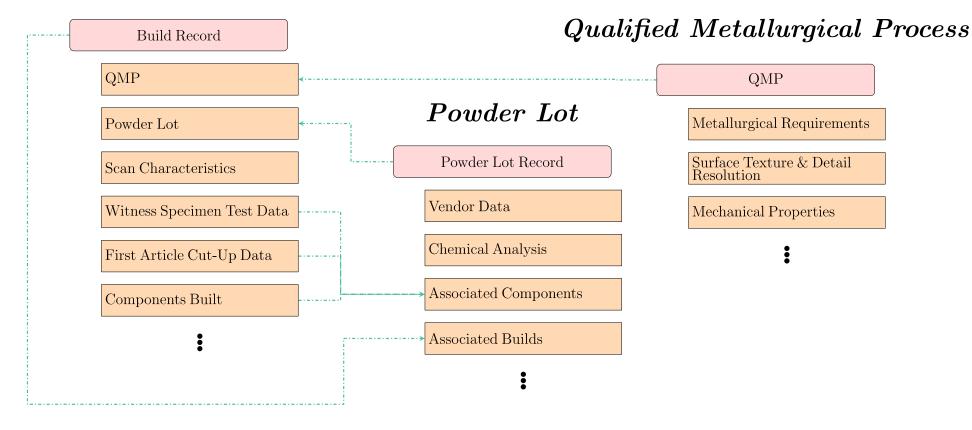
- Multiple NASA programs and projects are interested in utilizing and providing AM data.
 - Propulsion
 - Liquid Engines
 - Solid Propulsion
 - Environmental Control & Life Support
 - In-Space Manufacturing
 - Nuclear Thermal Propulsion
 - Structures

Organizational Information: Criterial For External Usage

5.4.4 Criteria for the Use of External Data in the MPS

[AMR-17] Material property data generated outside the jurisdiction of this MSFC Technical Standard [MSFC-STD-3716], such as prior industry or government data, shall meet each of the following criteria prior to incorporation into an MPS:

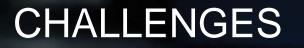
- 1. Properties are generated from material produced by the L-PBF process.
- 2. Authenticating records of traceability are available for the feedstock chemistry and heat treatment operations.
- 3. Properties are generated from material tested in a metallurgical condition (heat treatment and microstructure) equivalent to that defined by QMPs registered to the MPS.
- 4. Authenticating records of traceability are available that illustrate the material internal quality and final microstructure.
- 5. The geometry and build orientation of test specimens are defined.
- 6. The specifications governing the material test methods are defined.
- 7. The external data is provided in the form of actual test results to allow design values and PCRD criteria to be established or independently verified.
- 8. Demonstration that active QMP(s) produce material equivalent in microstructure and mechanical properties based on the registration process of MSFC-SPEC-3717.
- 9. An MUA documenting each of these criteria is approved.


[Rationale: The incorporation of prior databases for L-PBF material properties into an MPS will become standard practice as the technology matures. These criteria ensure the database contains sufficient information to follow the process controls required by this [MSFC-STD-3716] MSFC Technical Standard.]

Organizational Information: Database Structure

Build Record File

1


Build Attributes

Build Details	Scan Characteristics	Powder Lot
Record Name	Record Name	Record Name
Build ID	Material ID	Material ID
AM Technology	Build ID	Specification
Machine Vendor	Process ID	Manufacturer
Material ID	Core Laser Power	Lot Number
•••		

Test Data Attributes

Test Conditions	Specimen	High Cycle Fatigue	Fracture Toughness J1C	Tensile
Test Date	Sample Type	Control Mode	Fracture Valid Test	Tensile Yield Strength
	Specimen MMTF Drawing			
Test Type	Number	Waveform	Nominal Yield Strength	Tensile Ultimate Strength
Test Specification	Specimen Nominal Diameter	Method File	Estimated Young's Modulus	Young's Modulus
Test Temperature	Specimen Nominal Width	Cycles to Failure	Nominal Ultimate Tensile Strength	Elongation, 4D
Test Media	Specimen Nominal Thickness	Stress Ratio	J1C - # pts in region A	Failure Location
•••	•••		•••	•••

Disruptive & New Manufacturing Technology = Challenges

Challenge	Solution/Current Effort
Export Control	-
Integrated Data Acquisition	Establishment of a dynamic database within MAPTIS that interacts with existing tools to consolidate and store data.
Progression of NASA Standards to Industry Standards	Development of a NASA standard which then enables better understanding of the process allowing for the development of an industry standard
NDE & In-Situ Monitoring Data Storage and Analysis	Working with industry to develop NDE and in-situ monitoring technique that utilize the data and extract relevant information
Automated Data Capture	Exploring routes to automate data capture concerning machine state as well as actual process variables.
Agreement on What Data to Capture	Working with standards organization to establish what is "good enough"

Disruptive & New Manufacturing Technology = Challenges

Challenge	Solution/Current Effort
Pre-cursor Geometry of Blanks/Coupons	Known-Gap
Pre-Production Article Data	Known-Gap
Characterization Build Standardization	Known-Gap

Future Expectations

- AM data ecosphere exists with a well-defined open architecture allowing collaborative pooling of non-restricted data.
- Industry standards provide sufficient process control and data requirements for qualified multiple sourced material properties
- Data development and archive methodologies are compatible with developing broad-industry databases: MMPDS, CMH-17
 - ASME, Petroleum, Nuclear
- NASA database develops to be compatible with this ecosphere

- AM process standards lack definitive process quality metrics to ensure each qualified machine is producing AM material of specified quality.
 Industry standards have not yet incorporated qualification metrics
- Standards do not exist for governing build geometry for material characterization
 - Production of AM material in a standard "nominal" state for the AM process
- Standards do not address specimen-to-part material capability
- Standards do not address the development of bulk material property "allowable" data versus "design values" that include AM process influence factors.

CASE STUDY

BUILD QUEUE

				_	_					
	R#	Task Name	Customer	Ma	terial	Dura	tion	Start	Finish	F
	757	med05095_redesign_1_task1	Jonathan Jones - ER50 -	Inc	onel 71	8 1 da	y?	Fri 9/21/12	Fri 9/21/12	
	752	ken's version of baffle	Mike Kynard	Inc	onel 71	18 1 da	y?	Sat 9/21/13	Sat 9/21/13	
		lox inducer	Randall Thornton - ER			18 1 da		Mon 9/24/12	Mon 9/24/12	
		sls nosecone	Victor Pritchett - EV33					Wed 9/26/12	Thu 9/27/12	
	756	lox inducer	Randall Thornton - ER	Inci	onel 71	8 1 da	٧?	Thu 9/27/12	Thu 9/27/12	
	755	lox impeller	Randall Thornton - ER	h [ID	RII	Task	Name		
	752	ken's version of baffle	Mike Kynard	h						
	0	nasabenchmark	NCMS	h	61	889	inj_	hole_test_plate		
	762	20-50-add-matl	Victor Pritchett - EV33	h.	62	856	hd5	_nozzle_thin		
)	0	nasabenchmark	NCMS	6	63	858	SLS	ADO Blank_Inte	rnal Defects Bui	it in
	755	lox impeller	Randall Thornton - ER	6	64	898	Hea	t Treat Develop	ment Tensile	
	775	rawbody-20121106	BillSadowski - ER33	6			Sam	ples_Inconel 62	5	
	752	1/3 scale baffle	Mike Kynard	6	65	878	121	048-001-a_injec	tor_body	
	755	lox impeller	Randall Thornton - ER	6	66	879	121	048-004-a_injec	tor_oxid_cove	
	771	10-22-valvebody-section	Travis Davis - ER	6	67	880	121	048-011-a_fuel_	film_coolant	
,		90m13891-9-water-exit-fuel	Sandy Greene - ER32/Darr	1	68	0	MA	TERIAL CHANGE	- Aluminum	
		SLS-ADO-NDE-Blank-v1.2b	David Brown - EM20	6	69	857	3d 1	Mesh Grids		
	0	005bv090grid	Jim Knox - ES62	1	70	900	ME	002289, MED02	261 (Fuel Turbo	pump
	0	MATERIAL CHANGE - Aluminum					Atta	chment Bracket	s)	
	777	1-mesh-hex-020by200by35deg	Jim Knox - ES62	1	71	0	MA	TERIAL CHANGE	- CL100NB	
	777	1-mesh-hex-020by200by35deg	Jim Knox - ES62	6	72	899	Inje	ctor - (3 qty tota	l - split into 2 bu	uilds)
	777	1-mesh-hex-020by200by35deg	Jim Knox - ES62	2	73	908	Inje	ctor - (3 qty tota	I - split into 2 bu	uilds)
	777	1-mesh-hex-020by200by35deg	Jim Knox - ES62	2	74	907	thru	sternozzle0508	13	
_		030by090grid	Jim Knox - ES62	1	75	909	мо	OG Valve Body v	with Samples	
		015, 020, 025 by 090 grid	Jim Knox - ES62	1	76	906	POG	O Z Baffle Asse	mbly Build 3	
		008, 010,012 by 090 grid	Jim Knox - ES62	1	77	910		lant Control Val		
		015by045	Jim Knox - ES62	1				y_ccv_inst		
	0		Jim Knox - ES62 Jim Knox - ES62	1	78	894	bell			
		015by030			79	918	reb	uild of 908-1 inje	ector	
		025by030,045	Jim Knox - ES62	£ 1	80	920		rogen embrittle		
		020by030,045, 015by030redo	Jim Knox - ES62	4	81	934		rmal Processing		
	807	227371	Curtis Hill -Army	6 1	82	892	wed			
_	800	rawbody-20121106	BillSadowski - ER33	1	83	890		y.prt.15		
	811	3flow-tube, opta_element, optb_element,	Terry Wall - ER	1	84	937		_gas_igniter.stp		
_		cupelement		. 1	85	883		048-025-a chan	nher exhaust fl	
	0	MATERIAL CHANGE - CL100NB		. 1	86	882		048-023-a_chan		
	812 814	first inconel	Doug Wells - EM20	8	87	938		051-021-020_ch		
	814	thermocouple-probe-unfinished-1 MATERIAL CHANGE - In718 Union Carbide	Nick Case - ER21/Erin Bett		88	881		048-021-a chan		
	0	MATERIAL CHANGE - In/18 Union Carbide		11	89	940		rmal Processing		
	816	doug wells samples r1	Doug Wells - EM20		90	946	Tes			
	818	1-piece-dmls-gradl-nozzle	Paul Gradi - ER	1	91	942		earch Build - Qty	(73	
_	819	1-piece-dmls-miki-prt-1-2	Paul Gradi - ER	i i	92	912		ge block	15	
_		r0012666	David Eddleman - ER33	61	93	947		1517-crossover	hsg inst-003	
		54-Notch tensile-build	derek Oneal	1	94	0		TERIAL CHANGE		
		54-Notch_tensile-build	Derek Oneal	i i	95	943		rogen embrittle		aty 90
	022	baffle test section	Lab	1			,.	ogen emorreie	inem sumpres	44,00
	0	MATERIAL CHANGE - CL100NB	Lau	61	96	0	MA	TERIAL CHANGE		
_	ř	RS007245 - POGO1	David Eddleman - ER33	61	97	874		amber mesh		
		RS007245 - POG01 RS007245 - POG01	David Eddleman - ER33	1	98	914		ge block		
				÷1	99	944		rogen embrittle	ment samples -	Otv 16
		R5007245 - POGO1	David Eddleman - ER33	8						
_	840	med05095-1-lox-methane	Robert Polsgrove		100	0	MA	TERIAL CHANGE	- Carpenter 718	
_	841	R5007245 - POGO1	David Eddleman - ER33	1	101	957		er Wattage Trial		
	0	MATERIAL CHANGE - In718 Union Carbide		1	102	960		er Speed Trials -		
_	020	docoor law mathema	Dahart Daharan	. 1	103	961		r Hatch Trials -		
		med05097_lox_methane	Robert Polsgrove		104	915		POST TEST PIEC		
		rs007245 - POGO2	David Eddleman - ER33	1	105	865		1006-001_vane		
	854	R5007245 - POGO2	David Eddleman - ER33	1	106	956		_orifice_build_a		
	853	valve_march4_iconel	jonathan Jones - ER50 -	1	107	0		es with Small Bu		als, etc
	862	poppet, pyro	Jim Richard - ER	1		-		and the second second second	and another der	, ett
		VW-housing-bottom, VW-housing-top	Niki Werkheiser - ZP01	1	108	0	MA	TERIAL CHANGE	- Union Carbide	718
		MATERIAL CHANGE - In 625	Denne Dies ED24		109	979		rsample, et al		
		med04217	Darron Rice - ER34		110	0		es with Broken I	nserts	
	876	med04420	darron Rice - ER34		111	0		ernment Shutdo		
					112	962		er Wattage Trials		ip 4
					113	0		tin/Stacey DOE		
					114	062	1.70	s Spood Triple	Oty 18 - Group I	c .

Red	=	contaminated
Gree	en	= not-contaminated

Fri 4/19/1

Fri 4/26/1

Sup 4/28/1

Sup 4/28/1

Sun 4/28/1

Mon 5/13/

Mon 5/13/

Mon 5/27

Mon 6/24/

Thu 6/27/

Fri 6/28/1

1 day Tue 5/14/13 Tue 5/14/1

inconel 625 16 days? Wed 4/3/13 Thu 4/18/1

inconel 625 2 days? Thu 4/18/13

inconel 625 5 days? Mon 4/22/13

inconel 625 3 days? Fri 4/26/13

inconel 625 3 days? Fri 4/26/13

Inconel 625 3 days? Fri 4/26/13

Inconel 625 2 days Mon 4/29/1

Aluminum 13 days Wed 5/1/13

Aluminum 13 days Wed 5/1/13

Sandy Greene - ER32/Darr Inconel 718 2 days Wed 5/15/13 Thu 5/16/13

David Eddleman - ER33 Inconel 718 21 days Tue 5/28/13 Mon 6/17/ David Eddleman - ER33 Inconel 718 7 days Tue 6/18/13 Mon 6/24/ Inconel 718 7 days Tue 6/18/13

Sandy Greene - ER32/Darr Inconel 718 7 days Tue 6/18/13 Mon 6/24/1

Nick Case - ER21/Erin Bett Inconel 718 2 days Thu 6/27/13 Fri 6/28/13

Inconel 718 9 days

Inconel 718 9 days

Inconel 718 18.5 day

Inconel 718 1 day

Inconel 718 5 day

Inconel 718 5 days

Inconel 625 7 day

Aluminum 1 day

Aluminum 5 days

Aluminum 5 days

Aluminum 5 days

inconel 718 4 days

inconel 718 7 days

Inconel 718 8 day

nel 718 1 d

Inconel 718 3 day

Inconel 718 9 day

inconel 718 4 days

inconel 718 4 days

inconel 718 4 day

16 day

10 day

conel 718 2 davs

Inconel 718 3 days Mon 6/24/13

Inconel 718 1.5 days Thu 6/27/13

Inconel 718 7 days Tue 6/18/13 Mon 6/24/

Inconel 718 1 day Thu 6/27/13 Fri 6/28/1

Fri 6/28/13

Fri 6/28/13

Fri 6/28/1

in its Task Name

9 991 Orion Screen Filte

Scan Line Testing

NDE Missing Layer ADO spec

lps01511-h02a-pump_hsg-003

lps01513-h01a-inlet_hig-003

MATERIAL CHANGE - IN 62

los01517-b01b-crossove-003

911 15 deg compliant mounting bracket

scaled S5 tsc main body;

scaled_55_tsc_nose MAINTENANCE

heat-shield-1-3

024 ADO In625 2nd Bate

1028 ORNL 625 Test Blocks

1032 inlet_adapter_batch; cap

1039 In718 DOE Redo 030mm

LP502014-003-slm.stp

In718 DOF Redo 045m

144 redo of 718 045mm DOF

045 Redo 718 Heat treat stud

fps/02004-003

(M1) Install

1 1051 IM21400 TL64 00F1

49 1038 (M1) FastValve2

ned06299-103

913 POGO 2 Baffle with Defect

[M1] 718 compariso

IM21 MATERIAL CHANCE - THE-4

3050 IM2 718 comparison run

1026 Arcam Rakes

1023 In625 Default Tensile Cor

ORNL parameter block

Inco625 Octimization

Terry Abel

Doug Wells - EM20

Stacey Bagg - EM30

MartyCalvert - ERU1

MartyCalvert - ER31

ADD Adv Dev Office

MartyCalvert - FR31

Jonathan Jones - ERSO -

Dave Reynolds -XP10

Chris Crumbly

8ob Carter

Chris Crumb

Statey Rapp

Morgan Abney

Doug Wells - EM20

Doug Wells - EM20

James Walker - EM20

Po Chen EM30

Jim Richard - ER

Chris Crumbly

Darron Rice

LEO

LEO.

arron Rice

Doug Wells

Inconel 718 5 days The 11/28/18 Mon 12/2/18

Inconel 718 3 days Fri 12/6/13 Sun 12/8/13

Inconel 718 1 day Mon 12/9/13 Mon 12/9/13

Inconel 718 17 days Tue 12/10/13 Thu 12/26/13

Inconel 718 10 days Fri 12/27/13 Sun 1/5/14

Inconel 625 20 days 5at 1/11/14 Thu 1/30/14

Inconel 718 5 days Fri 2/21/14 Tue 2/25/14 Inconel 625 5 days Wed 2/26/14 Sun 3/2/14

Inconel 625 5 days Mon 3/3/14 Fri 3/7/14

Inconel 625 2 days Thu 4/3/14 Fri 4/4/14

Inconel 718 18 days Sat 4/5/14 Tue 4/22/14

Inconel 718 14 days Wed 5/7/14 Tue 5/20/14

Inconel 718 1 day Fri 5/23/14 Fri 5/23/14

Inconel 718 24 days Sat 5/24/14 Mon 6/16/14

Inconel 718 6 days Tue 6/17/14 Sun 6/22/14

Inconel 718 14 days Mon 7/7/14 Sun 7/20/14 0 days Mon 7/21/14 Mon 7/21/1

Inconel 718 5 days Mon 7/21/14 Fri 7/25/14

Inconel 718 5 days Mon 7/21/14 Fri 7/25/14

Ti-GAI-4V 5 days Sat 7/26/14 Wed 7/30/1 TLEALEY 25 days The 7/31/14 Sun 8/34/14

10 days Mon 8/25/14 Wed 9/3/14

Inconel 718 15 days 5at 7/26/14 Sat 8/9/14

Inconel 718 14 days Wed 4/23/14 Tue 5/6/1

sconel 625 S days Mon 1/6/14

Inconel 718 5 days. Sat 2/1/14

Inconel 718 5 days Thu 2/6/14

Inconel 625 26 days Sat 3/8/14

Inconel 718 2 days Wed 5/21/14

Sandy Greene - ER32/Darr Inconel 718 14 days Mon 6/23/14 Sun 7/6/1

Victor Pritchett - EV33 Inconel 718 5 days Tue 2/11/14 Sat 2/15/14

3 days Tue 12/3/13 Thu 12/5/13

5 days Sun 2/16/14 Thu 2/20/14

Wed 2/5/14

Mon 2/10/14

Wed 4/2/1

andy Greene - ER32/Darr Inconel 718 6 days Catherine Sanders - ER33 Inconel 718 5 days Thu 5/23/13

Chris Protz Doug Wells - EM20

doug Wells - EM20

chanceGarcia - ER32

chanceGarcia - FR32

ChanceGarcia - ER32

Nick Case - ER21/Erin

limRichard - ER33

Erin Betts - ER32

Doug Wells - EM20

limRichard - ER33

limRichard - ER33

anceGarcia - ER32

hanceGarcia - ER32

isa Bates - ER35

Kevin Baker - ER34

Erin Betts - ER32

JimKnox - ES62

Erin Betts - ER32

Doug Wells - EM20

Doug Wells - EM20

Doug Wells - EM20

Darron Rice - ER34

MartyCalvert - ER31

David Eddleman

Dr. Chou - UofA

Doug Wells - EM20

Doug Wells - EM20

Doug Wells - EM20

963 Laser Speed Trials - Qty 18 - Group 5

Laurel Karr Gears

Laser Hatch Trials - Oty 18 - Group 6

James Walker - EM20

ames Walker - EM20

Garcia - ER3 oug Wells - EM20

JimKnox - ES62

Betts - ER21

Contamination was more wide-spread than originally believed.

CENTER of

EXCELLENCE

Research to Standards ADDITIVE MANUFACTURING

Lessons Learned:

- Create a schema early on in the development effort to capture necessary data

- Standardization helps ensure proper processing steps are taken and traceability of components

Questions?

- States

Presenter Bio

Christopher Roberts, NASA MSFC

Christopher Roberts is a materials engineer at NASA Marshall Space Flight Center. He received his B.S. in Mechanical Engineering from Auburn University (2014) and his M.S. and Ph.D. in Materials Science and Engineering from the University of Texas at Austin (2016 and 2018, respectively). His graduate work focused on developing materials and processes for Selective Laser Melting (SLM) of traditionally hard-to-process material systems. For the past year and a half, he has worked closely with the In-Space Manufacturing (ISM) team at MSFC to develop additive manufacturing technology demonstrators and to monitor SBIR contracts addressing various challenges associated with manufacturing in space. Furthermore, he is currently working with a number of projects on how to effectively develop and implement additive manufacturing standards and controls.

