Real-Time Hardware-in-the-Loop
‘Simulation and Test Conductor
Platforms

Presented By
ee (NASA)

ARTEMIS Introduction

¢ ARTEMIS — Advanced Real Time Environment for
Modeling, Integration, and Simulation

e Provides Real Time hardware-in-the-loop (HWIL)
environment hosting system simulations (i.e. aerospace
vehicles, robotic systems, etc) which stimulate hardware
under test (avionics components, sensors, effectors,
motion systems)

e Reconfigurable for vehicle design, hardware / software
interfaces, hardware under test, laboratory computer
resources

Why ARTEMIS?

¢ Single source code tree supporting:
e Multiple model fidelities

— Vehicle — flex body, rigid body

— Selectable winds, atmosphere, TVC nozzle, etc.
Non real-time, all-digital
Real-time, distributed configurations

— all-digital, partial HWIL, all HWIL
e Multiple development and test labs
e Software portability between Linux distributions

¢ ARTEMIS operates in a HWIL environment such that a user
can select between models of avionics components or
interfaces to avionics hardware

¢ Simulation interacts with lab configuration and control
software to support model selection and fault insertion

¢ Utilizes modern computing technology to achieve real-time
performance of high-fidelity models

ARTEMIS Requirement Drivers

¢ Model vehicles with high fidelity in real-time

Low/High fidelity models of all avionics components

Low/High fidelity models of all subsystems that effect the vehicle or interact
with avionics

Low/High-fidelity models of environment effects
Model dynamic effects (including flex)

¢ Model all phases of mission (Prelaunch/Pad-ops through orbit insertion)
¢ Support of Multiple Labs & Configurations

Software Development Facility (Flight SW Development)
System Integration Test Facility (Core Stage Avionics Test Lab)
System Integration Lab (Full-Scale SLS Avionics Test Lab)
Off-Site Emulators (KSC, MAF, SSC, etc.)

¢ Support of Multiple Configurations & Scenarios for Each Lab

HW under test can be swapped in and out and replaced with SW models
without recompiling

Data files can be modified by “Scenario” files that contain specific items to be
overwritten that initialize models to the proper state for each test

ARTEMIS Requirements Drivers

¢ Execute in multiple modes of operation
e Non-real-time, all simulated busses (i.e. run on a laptop)
e Real-time, all simulated busses
e Real-time, real busses/hardware

¢ Interact with lab configuration and control software
e Model & configuration selection
e Generation of scenarios (I.C. and fidelity options)
e Real-time data viewing & fault insertion

¢ Data Recording & Archiving
e Each HW bus must be recorded and archived

e Simulation data must be recorded and archived
e Metadata must be provided for all recorded data

ARTEMIS Organization

¢ ARTEMIS is organized into six functional components

e Simulation
— Contains the executive framework
e Synchronization & Timing
— Scheduling, synchronization, global timing source, time stamps

e Models

— Three major categories: Core Simulation, Components,
Subsystems

e Input/ Output

— SCRAMNet, shared memory, discrete, analog, EIA-422, MIL-STD-
1553B, Gigabit Ethernet

e Data Recording

— Global, local, meta data definition
e Hardware

— Computers, I/O cards, cables, racks

ARTEMIS Organization

¢ ARTEMIS is organized into six functional components

e Simulation
— Contains the executive framework

Simulation Overview

¢ Executive Framework Consisting of:
e Input data processing of XML input files
e Multi-phased initialization

e Scheduled (run-time) loop

— Derivative / Integration
e Shutdown
e Error handling
e Monte Carlo

e Fault Insertion

ARTEMIS Organization

¢ ARTEMIS is organized into six functional components

e Timing
— Scheduling, synchronization, global timing source, time stamps

Timing Overview

¢ Sync controls timing and scheduling of frames for each
ARTEMIS executable

e ARTEMIS executables may run at different frame rates that are a multiple of Sync
minor frame rate

¢ Maintains hard real-time operation using a timing card
such as IRIG-B or RCIM
e Can also run non-real-time
¢ Creates and controls access to the shared/reflective
memory region for ARTEMIS

¢ Receives and responds to commands from MAESTRO for
both Master and Slave Sync

e MAESTRO passes test configuration and startup commands through Master Sync
e MAESTRO issues Sync commands to control ARTEMIS execution
e Sync responds to MAESTRO with status messages

10

Sync Architecture

One Master Sync process runs on the
Master Node

Each additional simulation node runs
the Slave Sync process that is
controlled by Master Sync

Master node controls real time
synchronization via reflective
memory

e Receives timer interrupt from
timing card

Sync Data Coherence
e Data input at beginning of sim
thread’s start cycle

e Data output at end of cycle prior
to sim thread’s next start cycle

v

Master Slave
IRIG RefMem RefMem
Core 0 Core 0
Linux Linux
Core 1 Core 1
Sync Sync
[SimThread] [SimThread]
[SimThread] [SimThread]
[Core n] [Core n]
[SimThread] [SimThread]
[SimThread] [SimThread]

11

ARTEMIS Organization

¢ ARTEMIS is organized into six functional components

e Models

— Three major categories: Core Simulation, Components,
Subsystems

12

Models Overview

¢ Core Simulation
e Flexible and rigid
body equations of
motion and
environment
models

¢ Component
e Digital models
representing the
functionality of
actual Ares
avionics boxes

¢ Subsystem
O Digital, physics-based models representing the vehicle’s physical
subsystems that are not typically tested in the lab.

13

ARTEMIS Organization

¢ ARTEMIS is organized into six functional components

e Input / Output

— SCRAMNet, shared memory, discrete, analog, EIA-422, MIL-STD-
1553B, Gigabit Ethernet

14

1/O Layer Overview

Provides a transparent, consistent architecture for performing 1/O for the
ARTEMIS models

Handles simulated device communication between the models via either
shared memory or SCRAMNet reflective memory

Transfers to real or simulated devices must be transparent to the models

Handles the following real devices contained in the Ares | avionics
architecture:

e MIL-STD-1553B, EIA-422, Discrete 1/0O, Analog Sensors, D/A and A/D, Gigabit
Ethernet

Handles other real devices needed by the simulation system such as:
e GPIB, RCIM Il / RCIM Ill, SCRAMNet GT, IRIG

15

/O Layer Overview

¢ The 1/0 Layer consists of:

A set of common library calls that the ARTEMIS models use for communication
with the I/O Layer

The 1/0 Layer process which performs all the I/O with real or simulated
devices

An XML file describing the configuration of the Ares | avionics rings, simulation
computers, and |/O devices used during a simulation

A python based GUI that allows a user to build the XML configuration file
An 1/0 Layer library:

— Contains the initialization, read, write and close calls for each device the
models control

— Communicates with the 1/O Layer process via shared memory semaphores

— Passes unique device information and data from the models to the I/O
Layer process via device structures in shared memory

— The read and write calls communicate directly with the device driver
threads

16

ARTEMIS Organization

¢ ARTEMIS is organized into six functional components

e Data Recording
— Global, local, meta data definition

17

Data Recorder Overview

¢ Data Recorder supports generic data recording of
multiple types of interfaces:

e SCRAMNet, MIL-STD-1553, Gigabit Ethernet, EIA-422, Discrete
/0, Cross Channel Data Link (CCDL)

¢ Configured via an XML file
¢ Datais recorded in its raw format
e Each packet/message is recorded with a timestamp

¢ Each interface is recorded in a separate file

e Filenames contain the beginning and ending timestamp for its
corresponding data

¢ Interfaces with the local MAESTRO daemon

¢ Provides periodic archiving capability for early analysis
during long tests

18

ARTEMIS Organization

¢ ARTEMIS is organized into six functional components

e Hardware
— Computers, /O cards, cables, racks

19

¢ Concurrent RedHawk real-time
operating system

e Devices verified by vendor to meet
real-time requirements

¢ 1/0 Cards

e SCRAMNet, MIL-STD-1553, Gigabit
Ethernet, EIA-422, Discrete 1/0,
Analog Sensors, D/A and A/D
boards, RCIM, IRIG

¢ The SIL will have flight-like
cables

¢ All simulated components will be
positioned in computer racks
near avionics boxes in each ring

20

MAESTRO Introduction SLS

¢ What is MAESTRO?

e MAESTRO stands for Managed Automation Environment for Simulation, Test, and Real-time
Operations.

e Ina nutshell, MAESTRO is an automation, configuration, and orchestration software
framework.

¢ Who developed it?

e Developed by ES53 Avionics and Software Ground Systems Test Branch.

e C(Class D Software.

¢ Why?

e To serve as the lab automation and configuration software for the Integrated Avionics Test
Facilities.

e Allows users to configure real and simulated, execute faults and events, monitor, and analyze
integrated avionics tests.

What MAESTRO does:

Orchestrate the test (configure, start, stop, clean up).
Configure, launch, interface to, and monitor ARTEMIS

Configure lab-specific equipment based on test
configuration.

Display run-time test and facility data
Archive test artifacts

Perform run-time and post-test data analysis

Key Features

Distributed, asynchronous test control

e Distributed : The MAESTRO application runs distributed across the multiple computers
in the lab, allowing it to scale to support multiple lab configurations

Allows for custom user-definable configuration for UUTs

Highly reconfigurable lab supported by XML based configuration management
and user definable node types

Publish/subscribe data distribution including runtime distribution of metadata

Supports Linux and Windows operating systems

Script driven run-time and post test data analysis capabilities

23

MAESTRO typical operating environment

¢ MAESTRO synchronizes the computers involved, configures what is real
or simulated hardware in the loop, runs the test, archives the data, and
shuts down necessary systems.

>

Rsync used to
tranfer files

Test Conductor

(TC)
Ky S =
Display Node Configuration ARTEMIS Nodes
Manager
(MCM) .,
N B «* CentOS
%2 CentOS o
. % Facility Node

Display Node

The Big Picture — Layer View Lt

Configuration, execution,
display, quick-look analysis,
archiving

MAESTRO

ARTEMIS

Initialization, scheduling,
timing, data sharing

Models

Units Under Test

@
38 :
User ‘.

UUT communication,
recording

I/O Layer

Simulation of missing elements,
subsystems and components.

[—

Recorders

Simulation

Executive

25

Test Case Example

Test Orchestration
Script in Python

Requirement
Requirement 4

Test Script

Test Configuration
Test Scenario
Faults

Events

Cursory Checks

Test Case 1

SIL
Configuration

Test Director

ARTEMIS

Manager A
. . . . Thrift Broker,

e Asingle tes’f script will <;over the majorlty of tfest ‘cases‘ interface | Services, SATOCM
* The test script runs during test execution beginning with the Test >

initialization command through the stop test command. Coplg‘é‘:or
e Lab configuration, archiving, and post test analysis are

. . Test Conductor

handled outside of the test script. Gul v
* MAESTRO implements the SATOCM spec for communication MPCV

with emulators. Emulator

26

Test Case — Test Configuration SLS

Space Launch Sy

Requirement
Requirement 4

Test Case 1 I

Test Director

Real / Model Selection
ARTEMIS Version
Display Setup

Test Script

Test Configuration
Test Scenario
Faults

Events

Cursory Checks

Real vs simulated flags indicate which executables to
run.

An ARTEMIS ID indicates which version of ARTEMIS to
execute.

ARTEMIS executables are mapped to computers.
Display executables are mapped to computers.

MPCV
Model

youms JIake eaisAyd
/(809Q) xog 1nO eaig eleq

27

Backup Slides

28

ARTEMIS Customers

¢ SDF - Software Development Facilities (4487, 4436)
e SDF1 — Early integration test lab with FSW
e SDF2 — Lab for development and test of unreleased FSW
e SDF3 — Lab used for formal testing of released FSW
e SDF4 — Lab used for formal testing of released FSW
¢ SITF — Software Integration Test Facility (4205)
e SI|TF-Q - Core stage avionics test — formal qualification
¢ SIL - System Integration Lab (4205)
e Core stage & booster avionics test
¢ TDL - Tester Development Lines (4476)

e SDF & SITF configurations used to develop test cases and support V&V
of ARTEMIS

¢ RINU 6DOF Test (4663)
e HW Testing of RINU avionics using 6DOF platform driven by ARTEMIS

ARTEMIS Customers - Emulators

¢ GSDO - Ground Systems Development and
Operations (KSC)

e SHADE — SLS High Fidelity emulator for Ground Systems
development and testing

¢ MPCV - Multi-purpose Crew Vehicle (JSC, LMCO)
e VTB —MPCV avionics test & development
e ITL - MPCV/ICPS test and dgvelopment
e MS — Mission Systems

¢ Green Run (SSC)

e SLS & Test Stand models used to support hot-fire testing of
SLS & FSW

¢ Booster Hardware-in-the-Loop (HIL) (4205)

e Booster avionics interfaces to the Booster subsystems and
Core Stage

ARTEMIS Development Lines

Software Development Lab (4476/110A)
e SDF Configuration
e SITF Configuration
e ADSB - Single box configuration

“A” Nodes (4476/200)

e SITF Configuration — Internal use only to test new configurations, HW, OS
updates & Software

e SDF Configuration in development (“S” Nodes, Location TBD)
Emulator Development Lines (4476/113)

e Separate lines for each emulator used to test new updates and configurations
Emulator Test Lines (4476/113)

e Separate lines for each emulator used for debugging delivered configurations
— Used in lieu of on-site debugging

Test Nodes (4476/114)
e Used for testing long runs, misc. debug
Control Room (4476/100)

e Multi-monitor consoles for running all development/test lines to be installed
soon

ARTEMIS Simulation Design SLS

Separate executables for each model
e Allows “plug-in operation” for switching model with LRU hardware
e Allows models to be distributed for faster real-time operation

e Allows models to be hosted on a simulation node located in correct physical location to use correct cable
lengths

Single copy of source code for all simulation configurations
e Hardware interfaces defined by configuration files
e Models (executables) are enabled based on configuration generated by MAESTRO
e Models utilize XML input files to load initial conditions and configuration options
All models utilize the same libraries to allow for ease of incorporation & maintenance
e Real-time control
e Inter-model communication
e Hardware communication
e Input file parsing, data recording and utility functions
Vehicle configuration logic and dynamics engine are generic to support changes in vehicle
architecture
Shared Memory region used to transfer data between models
e Blackboard structure defined to include all data shared between models
e Each model “owns” a particular contiguous section of blackboard
e Infiniband is used to copy blackboard to each machine at start of each frame
e Models update blackboard section at end of each frame
Fault insertion engine can override real-time inputs to models
e Ccode-based

MAESTRO

—

Real Time
Display

j=

Config.
Manager

=d

Data
Repository

MAESTRO Ethernet

ARTEMIS Infiniband

I

TEEmmmmmEETEEEEEIA T A

-
Emulator SCRAMnet 1 1

ARTEMIS

CoreSim
Flex/Rigid Dynamics
Environments
Aerodynamics

:- 1 1
I _—yY, Y. _VY_
] 1 1 1
: 1 11
> Uhmaall Uil

i Ethernet ‘]

-n
@]

@]
-
(@]

DACU

’
\

1553, EIA-422
Ethernet, D/A

PDCU
RINU

0O
o
=
™
2
—+
Q
oQ
™
‘__________./
noad

CCSE

’

Y

’
20

TDCU

TCSVC
RS-25

BCPDU
S

DARU

HPUC

N
1
1
1O
1>
1 20
[
1
1
1
L

’

RSRM

FSTVC

MAESTRO

—

Real Time
Display

ié

Config.
Manager

=d

Data
Repository

MAESTRO Ethernet

ARTEMIS Infiniband

ARTEMIS

CoreSim

Emulator SCRAMnet

V

1553, EIA-422
Ethernet, D/A

Flex/Rigid Dynamics >
Environments
Aerodynamics <
CTC
PDCU >4 N
o B
(%]
s
RS-25 T
= .
5
DARU
onvy |
RGA
ko |
s

FSTVC

< 1553, EIA-422, Ethernet, D/A

<

i
i
i
i
i
i
i
i
i
I

.

MAESTRO

—

Real Time
Display

j=

Config.
Manager

=d

Data
Repository

MAESTRO Ethernet

ARTEMIS Infiniband

ARTEMIS

CoreSim
Flex/Rigid Dynamics

V

Environments
Aerodynamics

N

Emulator SCRAMnet

V

-n
(@)

(@]
—
(@]

DACU

PDCU
RINU

1553, EIA-422
Ethernet, D/A

CCSE
TDCU

@
CSTVC

RS-25
PS

HW Busses

BCPDU
SC

m
c

DARU
C

C

1
1
v Vv

_ 1553, EIA-422, Ethernet, D/A

o
o
>

HPUC

-

SS

RSRM

FSTVC

ARTEMIS Software Design SLS

Space Launch System

¢ ARTEMIS Composed of 5 Modules

e Simulation
— Base framework — Provides ‘main’ for each model executable
— Input file processing
— Datarecording
e Timing
— Interacts with RCIM timing card
— Keeps all executables on each node in lock-step
— Manages Infiniband and blackboard shared memory on each machine
e Input/Output Layer
— Provides common, user-level interface to hardware
e Models

— CoreSim — Dynamics, environments & vehicle configurations

— Subsystems — Models effectors and sensors, interfaces between CoreSim and
Components

— Components — Models avionic/electronic systems
e Data Recorder

— Records all HW bus data, sends data to remote archive
e Hardware

— Computers, I/0 cards, cables, racks

Architecture of a Single Model Executable 12

Space Launch System

¢ Each instance of a subsystem or avionics
component is considered a separate
model

e Each model runs in a separate executable to
meet requirements for re-configurability
(i.e. plug-and-play behavior)
¢ Models contain code to simulate
behavior of sensors, effectors, avionics
components & dynamics
e Code for initialization

shutdown | Sched | Init e Code performed each time step of the
simulation run

e Code to be performed at shutdown

¢ The Executive Main provides standard
set of wrapper function prototypes for
each of these simulation phases

e Models are responsible with populating
these functions with code relevant to the
simulation phase

e Executive calls the wrapper functions,
which then call model code
¢ Executive also provides common set of
utilities for input processing, data
S Function Calls recording, mathematics and threading

2/18/2020 37

Architecture of a Single Model Executable

¢ SynclLib is responsible for commanding
the executive to call the init, run and
shutdown functions based on clock
timing and user input (SyncCmd)
e Executive makes function call to Sync to get
current command
¢ Executive registers itself with Sync to

_ _ gain access to Sync shared memory area
ExecutiveMain (RegSim)

SyncCmd (init, run, quit)

RegSim

¢ Models register with Sync a structure
containing all the data to output to
other models, as well as the data
requested to be read in from other
models (RegSimThread)

Shutdown

(V)
2
-

>

O

()

x
(NN]

IOLayerlLib provides functions to models
to read and write to simulated or real
hardware devices

|0 Layer ¢ IOLayerlib also provides functions to
Lib initialize and safely shutdown devices

RegSimThread
L 2

I0Shutdown

— Function Calls

2/18/2020 38

SLS

Space Launch System

¢ Sync Executable is responsible for timing (real-time)
and getting current commands from user interface,
as well as opening up shared memory region

Synclib

Executive Shared Mem. Sync ¢ 1/0 Layer Executable provides communication with
Blackboard; Executable device drivers

c semaphores ¢ On each machine, multiple models may run, but
% c | o and States_for there will only be one Sync Executable and one 1/0
g = [= commanding Layer Executable
s ¢ The Sync & I/0 Layer Executables communicate with
the model executables using POSIX shared memory
IO Layer Lib p— 10 Layer regions
¢ Sync shared memory region
VM Executable Y ryree
Bus Data e Blackboard

— Memory region defined by a group of structures

SynCLIb (one per model).

— Each executable writes output data to an assigned
area

Executive — Other model’s area can be input using Synclib
e Semaphores and data used for commanding

¢ 1/0 Layer shared memory region

e Buffers populated by model with bus data
intended to be sent to device driver

Shutdown
Run
Init

e Buffers populated by IO Layer executable with
10 Layer Lib bus data received from device drivers

2/18/2020 39

Multi-Computer Configuration Eli=

¢ Each machine has a separate Sync and
RCIM 1/O Layer Executables.

Master

commanding

¢ Hardware avionics boxes may or may
not be present, and can communicate
Data directly with 1553, Ethernet, 422, etc.

- L | Recorders ¢ Data Recorders tap off of each bus, as
|
|
|

Sync [- e Only one machine runs Master Sync
“1 Infiniband . . .
) — Interfaces with External Timing card in
| Blackboard; . !
: . addition to functions performed by slave
| Commanding & Timing Semaphores sync
M L e All other machines hosting ARTEMIS
— executables run slave sync
Avionics .
o B e Synchronizes shared memory of computer
oxes with all other computers via Infiniband
Communicates with user interface for

—l——————r -
([]

I
!
I
!
I
!
I
l
—
I
—

well as off the Infiniband network
(only for Blackboard data) to capture
and archive data each frame

1553, GbE, EIA-422

ﬁ Hardware Bus Data

2/18/2020 Model Code Sync ——Sync ShrMem = = =Sync/Infiniband |
Executive I/O Layer =—=|/O Layer ShrMem = == =HW Buses

Multi-Computer Configuration w/ Emulators

¢ Emulators provide ability to communicate
m_m with external systems not modeled within
I
I Infiniband ARTEMIS
“- —1= ¢ Emulator Bridge is a standardized interface
Avionics used to communicate simulation data

Boxes between ARTEMIS & Emulators

e Emulator Bridge is considered a
component of Sync, but runs as

separate executables
e Emulator bridge communicates among
DRZtca Emulators and ARTEMIS using
' SCRAMNet interface with a separate
Blackboard
e ARTEMIS Client Maps Emulator
HW Buses Blackboard data to ARTEMIS
"""" 7 Blackboard Data
|
Emulator
————— Emulator
Bridge SCRAMNet
Emulator
Blackboard

2/18/2020 41

-

Model Code Sync e SyNC ShrMlem = = =Sync/Infiniband
Executive I/O Layer ====1/0 Layer ShrMem = = =HW Buses

Multi-Computer Configuration w/ MAESTRO SLS

Space Launch System

% Ethernet
: Sim. Phase Commands (to Sync)

: Health & Status messages (from Sync)
I Infiniband
== E
: |_| Avionics z-st MAESTRO reeeeee-
| | Boxes
I :
I : E A
L : Blackboard Data
e R |. -’ .)
I | : for Display
- + Data
L Rec BB Reader
-
I
I
I :
I | HWBuses bdStudio I
| -
| |

-------- Ethernet

Emu == | Emul
Bridge '
- == =Emulator BB/SCRAMNet

Model Code Sync Sync ShrMem = = =Sync/Infiniband
2/18/202 42
/18/2020 .Executive .I/O Layer =—=I|/O Layer ShrMem = == =HW Buses

Multi-Computer Configuration w/ MAESTRO

MAESTRO Communicates with the Sync executables on each node
to command the simulation state

Sync reports health & status and error messages back to
MAESTRO

In order to drive displays, the BBReader executable is used
alongside other ARTEMIS executables to read the blackboard and
send data to MAESTRO via Ethernet sockets

For the animation, a bdStudio executable is used to read from the
blackboard and send data to the animation tool

BBReader and bdStudio both utilize the ARTEMIS Executive and
must run on a computer with Sync

MAESTRO generates configuration files specifying run details for
use by ARTEMIS and pushes these files to a pre-determined
location

MAESTRO reads console output from each model and filters out
messages intended to be relayed to user

Fault Insertion

¢ Two Types of Faults

e Overwrite exposed simulation variables in SCRAMNet
— Least expensive to implement
— Limited to exposed simulation variables

— Won't cover all fault requirements
e Execute an embedded fault in the simulation

— Require additional software development and V&V in models to
simulate fault

— Initiated by tripping fault flag in SCRAMNet
— Need to streamline number of embedded faults

¢ Fault Insertion Mechanism
e Peek and Poke via MAESTRO

— User can trip embedded faults via MAESTRO interface to sync

— Non-Deterministic
e Separate fault insertion executable

— Controlled by sync master

— Provides logical conditions to determine when fault inserted
— Input file driven

— Deterministic

44

Core Simulation Models

¢ Stack Dynamics

Coupled rigid body and flexible body dynamics formulation which properly accounts
for variable mass effects and force following terms

Supports all nominal and abort configurations
Input data developed from EV30 LA2 structural models

Multithreaded partitioned equations to achieve real-time performance with a frame
time under 2ms

¢ Stage Dynamics

6 DOF rigid body formulation with vehicle states defined with respect to Constellation
structural frame (fixed point off nose of LAS)

Supports all nominal and abort configurations

¢ Mass Properties

Propellant mass computed using mass flow rate defined by engine model
Propellant mass properties computed from structural model mass matrices
Compute mass properties of each stage from sum of dry structure and propellant

Mass properties of stack (or combined stages) computed from sum of stages for
current configuration defined by flight phase

45

Core Simulation Models SLS

Space Launch System

¢ Structural Properties

e Stage mass and stiffness matrices defined by NASTRAN models
e Family of propellant mass matrices based on stage mass

e Assemble stack mass and stiffness matrices from stage and propellant matrices based on
vehicle configuration

e Update generalized vehicle mass and stiffness matrices each time step for coupled flex body
EOM

e All vehicle node geometry extracted from integrated NASTRAN model

¢ Nozzle Dynamics
e Rigid body formulation uses discrete nozzle EOM driven by vehicle dynamics, TVC actuator
forces, aerodynamic forces, and flex bearing stiffness
e Rigid body formulation also includes Tail-Wag-Dog effects

e Flex body formulation utilizes coupled nozzle dynamics embedded in system Ritz vectors or
modes

¢ Slosh Dynamics
e Rigid body formulation uses discrete slosh masses per tank modeled by spring-mass-damper
systems, Lookup tables for slosh parameters

e Flex body formulation utilizes slosh modes developed from additional effects superimposed
on propellant mass and stiffness matrices

46

Core Simulation Models

¢ Atmosphere and Winds

e US76 standard atmosphere model

e 2007 Global Reference Atmospheric Model (GRAM2007)
e 1800 Measured Day-of-Launch Winds

e Ground winds to support pre-launch

¢ Lumped Aerodynamics

e Linear 1-D table lookup and Nonlinear 2-D table lookup for aerodynamic
coefficients for stack and stages (SRB, LAS, etc)

¢ Distributed Aerodynamics

e Aerodynamic data mapped to NASTRAN mesh for loads applied to the stack
(primary driver of flex)

¢ Gravity

e 3 model options:
— Kepler
- J-2,J)-3, & J-4
— Gravity Recovery and Climate Experiment (GRACE)

47

Component Models

¢ Flight Computer (FC)

e Controller algorithm

— Exact representation of DAC2 Ares Controller algorithms (Gain-
scheduled Flex Mitigation Filters + PID)

¢ Navigation algorithm
— Fundamental Navigation Equations for multiple sensors and rate
gyros

e Guidance algorithm
— Exact representation of DAC2 Ares Guidance algorithms (Open-Loop
Profile for 1st Stage; Closed-Loop Algorithm for US)

e Mission Manager and Event Controller

— Event handler to control flight and vehicle phasing based on flight
time and mission events

¢ Booster Control & Power Distribution Unit (BCPDU)

e Passes commands from the flight computer to downstream avionics boxes
e Prototype MIL-STD-1553 interface from FC with TVC commanded rock and tilt current message

¢ Sensors

e Medium-fidelity RINU model with,Fyroscope and accelerometer error terms (bias, noise, scale
factor, misalignments, initial condition errors)

48

Component Models

¢ Recovery Control Unit (RCU)

e Commands the BTM, aeroshell jettison, and forward skirt extension jettison on the first stage
during recovery operations

¢ Ignition & Staging Controller (I1SC)

e Commands the firing of the first stage, BDM, USM, and first stage separation pyros based on
commands from the BCPDU

¢ Altitude Sensor Assembly (ASA)

e Pressure sensor that activates first stage recovery system once the SRB falls below a given
altitude

¢ Command and Telemetry Computer (CTC)

e Currently relays ground commands to the FC during pre-launch and ascent

¢ Rate Gyro Assembly Electronics (RGAE)

e Buffers the RGA outputs for use in the FC for both the first stage and upper stage RGAs

¢ Redundant Inertial Navigation Unit Electronics (RINUE)

e Uses AV & AB from the RINU to estimate vehicle states & other data needed by the flight
software

49

Component Models

¢ Combined Control System Electronics (CCSE)

e Partial CCSE model outputs valve commands to support tanking ground ops. Incorporates
previous ReCSE model as well.

¢ Roll Control System Electronics (RoCSE)

e Relays the fire commands for the first stage roll control system from the FC to the RoCS
thrusters

¢ Upper Stage Engine Control Unit (US ECU)

e Controls the J-2X firing, mixture ratio, and throttle

¢ Upper Stage TVC Data & Control Unit (US TVC DCU)

e Converts a commanded set of gimbal angles from the FC into a current value used by the
upper stage TVC

50

Subsystem Models

¢ Reaction Control System (RCS)
e I|deal thrust, general valve dynamics developed but not activated
e Lookup tables for thrust & valve dynamics

¢ Booster Separation Motors (BDM, BTM, Ullage)
e Uses lookup table for thrust, supports delayed firing

¢ Engines

e Lookup table driven, supports separate tables for nominal, startup and
shutdown operations

¢ Thrust Vector Control (US & FS TVC)

e High-fidelity simplex algorithm with models of servo valves, power
spool, and actuator

¢ Main Propulsion System (MPS)
e Simple tanking model
e High fidelity model incorporated using existing ROCETS code

51

Current Subsystem Models

¢ Hold-Down Post (HDP)

e Uses stiffness and damping matrix to model flexibility of launch
platform

e Spring can only provide force while in compression

¢ Linear Shaped Charges (LSC)

e Model does not provide forces, but sets flags indication whether stage
separation has occurred

¢ Redundant Inertial Navigation Unit (RINU)

e Converts sensed vehicle motion signals into AV & AB values needed by
the flight software

¢ Rate Gyro Assembly (RGA)

e Senses the vehicle motion and converts to AB signals used by the FC
controller

52

MAESTRO - Components

¢ Core Services — Communications framework,
XML Readers, transfer protocols.

¢ Test Control — Scripting, command
implementation.

¢ Test Monitoring — Run-time data collection,
distribution, and processing.

& — Run time and Quick-look tools
for recorded data.

¢ GUIs — User interfaces.

	Flight Software Workshop�Dec 12-14, 2019
	ARTEMIS Introduction
	Why ARTEMIS?
	ARTEMIS Requirement Drivers
	ARTEMIS Requirements Drivers
	ARTEMIS Organization
	ARTEMIS Organization
	Simulation Overview
	ARTEMIS Organization
	Timing Overview
	Sync Architecture
	ARTEMIS Organization
	Models Overview
	ARTEMIS Organization
	I/O Layer Overview
	I/O Layer Overview
	ARTEMIS Organization
	Data Recorder Overview
	ARTEMIS Organization
	Hardware Overview
	MAESTRO Introduction
	What MAESTRO does:
	Key Features
	MAESTRO typical operating environment
	The Big Picture – Layer View
	Test Case Example
	Test Case – Test Configuration
	Slide Number 28
	ARTEMIS Customers
	ARTEMIS Customers - Emulators
	ARTEMIS Development Lines
	ARTEMIS Simulation Design
	All-Digital Lab Configuration
	SITF Lab Configuration
	SIL Lab Configuration
	ARTEMIS Software Design
	Architecture of a Single Model Executable
	Architecture of a Single Model Executable
	Single Computer Configuration
	Multi-Computer Configuration
	Multi-Computer Configuration w/ Emulators
	Multi-Computer Configuration w/ MAESTRO
	Multi-Computer Configuration w/ MAESTRO
	Fault Insertion
	Core Simulation Models
	Core Simulation Models
	Core Simulation Models
	Component Models
	Component Models
	Component Models
	Subsystem Models
	Current Subsystem Models
	MAESTRO - Components

