
Flight Software
Workshop

Dec 12-14, 2019

Real-Time Hardware-in-the-Loop
Simulation and Test Conductor

Platforms

Presented By:
Ashley Lee (NASA)
& Pat Tobbe (DCI)

ARTEMIS Introduction

♦ ARTEMIS – Advanced Real Time Environment for
Modeling, Integration, and Simulation
• Provides Real Time hardware-in-the-loop (HWIL)

environment hosting system simulations (i.e. aerospace
vehicles, robotic systems, etc) which stimulate hardware
under test (avionics components, sensors, effectors,
motion systems)

• Reconfigurable for vehicle design, hardware / software
interfaces, hardware under test, laboratory computer
resources

♦ Single source code tree supporting:
• Multiple model fidelities

– Vehicle – flex body, rigid body
– Selectable winds, atmosphere, TVC nozzle, etc.

• Non real-time, all-digital
• Real-time, distributed configurations

– all-digital, partial HWIL, all HWIL
• Multiple development and test labs
• Software portability between Linux distributions

♦ ARTEMIS operates in a HWIL environment such that a user
can select between models of avionics components or
interfaces to avionics hardware

♦ Simulation interacts with lab configuration and control
software to support model selection and fault insertion

♦ Utilizes modern computing technology to achieve real-time
performance of high-fidelity models

Why ARTEMIS?

3

ARTEMIS Requirement Drivers

♦ Model vehicles with high fidelity in real-time
• Low/High fidelity models of all avionics components
• Low/High fidelity models of all subsystems that effect the vehicle or interact

with avionics
• Low/High-fidelity models of environment effects
• Model dynamic effects (including flex)

♦ Model all phases of mission (Prelaunch/Pad-ops through orbit insertion)
♦ Support of Multiple Labs & Configurations

• Software Development Facility (Flight SW Development)
• System Integration Test Facility (Core Stage Avionics Test Lab)
• System Integration Lab (Full-Scale SLS Avionics Test Lab)
• Off-Site Emulators (KSC, MAF, SSC, etc.)

♦ Support of Multiple Configurations & Scenarios for Each Lab
• HW under test can be swapped in and out and replaced with SW models

without recompiling
• Data files can be modified by “Scenario” files that contain specific items to be

overwritten that initialize models to the proper state for each test

ARTEMIS Requirements Drivers

♦ Execute in multiple modes of operation
• Non-real-time, all simulated busses (i.e. run on a laptop)
• Real-time, all simulated busses
• Real-time, real busses/hardware

♦ Interact with lab configuration and control software
• Model & configuration selection
• Generation of scenarios (I.C. and fidelity options)
• Real-time data viewing & fault insertion

♦ Data Recording & Archiving
• Each HW bus must be recorded and archived
• Simulation data must be recorded and archived
• Metadata must be provided for all recorded data

♦ ARTEMIS is organized into six functional components
• Simulation

– Contains the executive framework
• Synchronization & Timing

– Scheduling, synchronization, global timing source, time stamps
• Models

– Three major categories: Core Simulation, Components,
Subsystems

• Input / Output
– SCRAMNet, shared memory, discrete, analog, EIA-422, MIL-STD-

1553B, Gigabit Ethernet
• Data Recording

– Global, local, meta data definition
• Hardware

– Computers, I/O cards, cables, racks

ARTEMIS Organization

6

♦ ARTEMIS is organized into six functional components
• Simulation

– Contains the executive framework
• Timing

– Scheduling, synchronization, global timing source, time stamps
• Models

– Three major categories: Core Simulation, Components,
Subsystems

• Input / Output
– SCRAMNet, shared memory, discrete, analog, EIA-422, MIL-STD-

1553B, Gigabit Ethernet
• Data Recording

– Global, local, meta data definition
• Hardware

– Computers, I/O cards, cables, racks

ARTEMIS Organization

7

♦Executive Framework Consisting of:
• Input data processing of XML input files
• Multi-phased initialization
• Scheduled (run-time) loop

– Derivative / Integration

• Shutdown
• Error handling
• Monte Carlo
• Fault Insertion

Simulation Overview

8

♦ ARTEMIS is organized into six functional components
• Simulation

– Contains the executive framework
• Timing

– Scheduling, synchronization, global timing source, time stamps
• Models

– Three major categories: Core Simulation, Components,
Subsystems

• Input / Output
– SCRAMNet, shared memory, discrete, analog, EIA-422, MIL-STD-

1553B, Gigabit Ethernet
• Data Recording

– Global, local, meta data definition
• Hardware

– Computers, I/O cards, cables, racks

ARTEMIS Organization

9

♦ Sync controls timing and scheduling of frames for each
ARTEMIS executable
• ARTEMIS executables may run at different frame rates that are a multiple of Sync

minor frame rate

♦ Maintains hard real-time operation using a timing card
such as IRIG-B or RCIM
• Can also run non-real-time

♦ Creates and controls access to the shared/reflective
memory region for ARTEMIS

♦ Receives and responds to commands from MAESTRO for
both Master and Slave Sync
• MAESTRO passes test configuration and startup commands through Master Sync
• MAESTRO issues Sync commands to control ARTEMIS execution
• Sync responds to MAESTRO with status messages

Timing Overview

10

Sync Architecture

RefMemIRIG

Core 0
Linux

Core 1
Sync

[SimThread]
[SimThread]

…

[Core n]
[SimThread]
[SimThread]

…

…

Core 0
Linux

Core 1
Sync

[SimThread]
[SimThread]

…

[Core n]
[SimThread]
[SimThread]

…

…

Master Slave

RefMem

♦ One Master Sync process runs on the
Master Node

♦ Each additional simulation node runs
the Slave Sync process that is
controlled by Master Sync

♦ Master node controls real time
synchronization via reflective
memory
• Receives timer interrupt from

timing card
♦ Sync Data Coherence

• Data input at beginning of sim
thread’s start cycle

• Data output at end of cycle prior
to sim thread’s next start cycle

11

♦ ARTEMIS is organized into six functional components
• Simulation

– Contains the executive framework
• Timing

– Scheduling, synchronization, global timing source, time stamps
• Models

– Three major categories: Core Simulation, Components,
Subsystems

• Input / Output
– SCRAMNet, shared memory, discrete, analog, EIA-422, MIL-STD-

1553B, Gigabit Ethernet
• Data Recording

– Global, local, meta data definition
• Hardware

– Computers, I/O cards, cables, racks

ARTEMIS Organization

12

♦ Core Simulation
• Flexible and rigid

body equations of
motion and
environment
models

♦ Component
• Digital models

representing the
functionality of
actual Ares
avionics boxes

Models Overview

13

♦ Subsystem
◊ Digital, physics-based models representing the vehicle’s physical

subsystems that are not typically tested in the lab.

♦ ARTEMIS is organized into six functional components
• Simulation

– Contains the executive framework
• Timing

– Scheduling, synchronization, global timing source, time stamps
• Models

– Three major categories: Core Simulation, Components,
Subsystems

• Input / Output
– SCRAMNet, shared memory, discrete, analog, EIA-422, MIL-STD-

1553B, Gigabit Ethernet
• Data Recording

– Global, local, meta data definition
• Hardware

– Computers, I/O cards, cables, racks

ARTEMIS Organization

14

♦ Provides a transparent, consistent architecture for performing I/O for the
ARTEMIS models

♦ Handles simulated device communication between the models via either
shared memory or SCRAMNet reflective memory

♦ Transfers to real or simulated devices must be transparent to the models
♦ Handles the following real devices contained in the Ares I avionics

architecture:
• MIL-STD-1553B, EIA-422, Discrete I/O, Analog Sensors, D/A and A/D, Gigabit

Ethernet

♦ Handles other real devices needed by the simulation system such as:
• GPIB, RCIM II / RCIM III, SCRAMNet GT, IRIG

I/O Layer Overview

15

♦ The I/O Layer consists of:
• A set of common library calls that the ARTEMIS models use for communication

with the I/O Layer
• The I/O Layer process which performs all the I/O with real or simulated

devices
• An XML file describing the configuration of the Ares I avionics rings, simulation

computers, and I/O devices used during a simulation
• A python based GUI that allows a user to build the XML configuration file
• An I/O Layer library:

– Contains the initialization, read, write and close calls for each device the
models control

– Communicates with the I/O Layer process via shared memory semaphores
– Passes unique device information and data from the models to the I/O

Layer process via device structures in shared memory
– The read and write calls communicate directly with the device driver

threads

I/O Layer Overview

16

♦ ARTEMIS is organized into six functional components
• Simulation

– Contains the executive framework
• Timing

– Scheduling, synchronization, global timing source, time stamps
• Models

– Three major categories: Core Simulation, Components,
Subsystems

• Input / Output
– SCRAMNet, shared memory, discrete, analog, EIA-422, MIL-STD-

1553B, Gigabit Ethernet
• Data Recording

– Global, local, meta data definition
• Hardware

– Computers, I/O cards, cables, racks

ARTEMIS Organization

17

♦ Data Recorder supports generic data recording of
multiple types of interfaces:
• SCRAMNet, MIL-STD-1553, Gigabit Ethernet, EIA-422, Discrete

I/O, Cross Channel Data Link (CCDL)
♦ Configured via an XML file
♦ Data is recorded in its raw format

• Each packet/message is recorded with a timestamp
♦ Each interface is recorded in a separate file

• Filenames contain the beginning and ending timestamp for its
corresponding data

♦ Interfaces with the local MAESTRO daemon
♦ Provides periodic archiving capability for early analysis

during long tests

Data Recorder Overview

18

♦ ARTEMIS is organized into six functional components
• Simulation

– Contains the executive framework
• Timing

– Scheduling, synchronization, global timing source, time stamps
• Models

– Three major categories: Core Simulation, Components,
Subsystems

• Input / Output
– SCRAMNet, shared memory, discrete, analog, EIA-422, MIL-STD-

1553B, Gigabit Ethernet
• Data Recording

– Global, local, meta data definition
• Hardware

– Computers, I/O cards, cables, racks

ARTEMIS Organization

19

♦ Concurrent RedHawk real-time
operating system
• Devices verified by vendor to meet

real-time requirements

♦ I/O Cards
• SCRAMNet, MIL-STD-1553, Gigabit

Ethernet, EIA-422, Discrete I/O,
Analog Sensors, D/A and A/D
boards, RCIM, IRIG

♦ The SIL will have flight-like
cables

♦ All simulated components will be
positioned in computer racks
near avionics boxes in each ring

Hardware Overview

20

MAESTRO Introduction
♦ What is MAESTRO?

• MAESTRO stands for Managed Automation Environment for Simulation, Test, and Real-time
Operations.

• In a nutshell, MAESTRO is an automation, configuration, and orchestration software
framework.

♦ Who developed it?

• Developed by ES53 Avionics and Software Ground Systems Test Branch.

• Class D Software.

♦ Why?

• To serve as the lab automation and configuration software for the Integrated Avionics Test
Facilities.

• Allows users to configure real and simulated, execute faults and events, monitor, and analyze
integrated avionics tests.

What MAESTRO does:

• Orchestrate the test (configure, start, stop, clean up).

• Configure, launch, interface to, and monitor ARTEMIS

• Configure lab-specific equipment based on test
configuration.

• Display run-time test and facility data

• Archive test artifacts

• Perform run-time and post-test data analysis

Key Features
♦ Distributed, asynchronous test control

• Distributed : The MAESTRO application runs distributed across the multiple computers
in the lab, allowing it to scale to support multiple lab configurations

♦ Allows for custom user-definable configuration for UUTs

♦ Highly reconfigurable lab supported by XML based configuration management
and user definable node types

♦ Publish/subscribe data distribution including runtime distribution of metadata

♦ Supports Linux and Windows operating systems

♦ Script driven run-time and post test data analysis capabilities

23

MAESTRO typical operating environment

♦ MAESTRO synchronizes the computers involved, configures what is real
or simulated hardware in the loop, runs the test, archives the data, and
shuts down necessary systems.

(MCM)

The Big Picture – Layer View

25

MAESTRO

ARTEMIS

Simulation
Executive

Models

User

Configuration, execution,
display, quick-look analysis,
archiving

Initialization, scheduling,
timing, data sharing

Simulation of missing elements,
subsystems and components.

UUT communication,
recording

I/O Layer

Recorders

UUTs

Units Under Test

Test Case Example

26

Requirement 1
Requirement 2
Requirement 3
Requirement 4

.

.

.

Test Case 1

Test Case 2

Test Case 3

Test Case 4

Test Case 5

Test Case 6

Test Script
Test Configuration
Test Scenario
Faults
Events
Cursory Checks

Test Orchestration
Script in Python

Test Director

• A single test script will cover the majority of test cases
• The test script runs during test execution beginning with the

initialization command through the stop test command.
• Lab configuration, archiving, and post test analysis are

handled outside of the test script.
• MAESTRO implements the SATOCM spec for communication

with emulators.

GSDO
Emulator

MPCV
Emulator

SATOCM

ARTEMIS

Broker,
Services,

Test
Conductor

Node
Test Conductor

GUI

Thrift
Interface

Configuration
Manager

SIL

Test Case – Test Configuration

27

Requirement 1
Requirement 2
Requirement 3
Requirement 4

.

.

.

Test Case 1

Test Case 2

Test Case 3

Test Case 4

Test Case 5

Test Case 6

Test Script
Test Configuration
Test Scenario
Faults
Events
Cursory Checks

Real / Model Selection
ARTEMIS Version
Display Setup

• Real vs simulated flags indicate which executables to
run.

• An ARTEMIS ID indicates which version of ARTEMIS to
execute.

• ARTEMIS executables are mapped to computers.
• Display executables are mapped to computers.

Test Director

MPCV
Emulator

MPCV
Model

FC

TDCU

RI
N

U

PDCUCore Stage

Data Break O
ut Box (DBO

B) /
Physical Layer Sw

itch

Backup Slides

28

ARTEMIS Customers

♦ SDF – Software Development Facilities (4487, 4436)
• SDF1 – Early integration test lab with FSW
• SDF2 – Lab for development and test of unreleased FSW
• SDF3 – Lab used for formal testing of released FSW
• SDF4 – Lab used for formal testing of released FSW

♦ SITF – Software Integration Test Facility (4205)
• SITF-Q - Core stage avionics test – formal qualification

♦ SIL – System Integration Lab (4205)
• Core stage & booster avionics test

♦ TDL – Tester Development Lines (4476)
• SDF & SITF configurations used to develop test cases and support V&V

of ARTEMIS
♦ RINU 6DOF Test (4663)

• HW Testing of RINU avionics using 6DOF platform driven by ARTEMIS

ARTEMIS Customers - Emulators

♦ GSDO – Ground Systems Development and
Operations (KSC)
• SHADE – SLS High Fidelity emulator for Ground Systems

development and testing
♦ MPCV – Multi-purpose Crew Vehicle (JSC, LMCO)

• VTB –MPCV avionics test & development
• ITL - MPCV/ICPS test and development
• MS – Mission Systems

♦ Green Run (SSC)
• SLS & Test Stand models used to support hot-fire testing of

SLS & FSW
♦ Booster Hardware-in-the-Loop (HIL) (4205)

• Booster avionics interfaces to the Booster subsystems and
Core Stage

\n

ARTEMIS Development Lines

♦ Software Development Lab (4476/110A)
• SDF Configuration
• SITF Configuration
• ADSB – Single box configuration

♦ “A” Nodes (4476/200)
• SITF Configuration – Internal use only to test new configurations, HW, OS

updates & Software
• SDF Configuration in development (“S” Nodes, Location TBD)

♦ Emulator Development Lines (4476/113)
• Separate lines for each emulator used to test new updates and configurations

♦ Emulator Test Lines (4476/113)
• Separate lines for each emulator used for debugging delivered configurations

– Used in lieu of on-site debugging
♦ Test Nodes (4476/114)

• Used for testing long runs, misc. debug
♦ Control Room (4476/100)

• Multi-monitor consoles for running all development/test lines to be installed
soon

ARTEMIS Simulation Design
♦ Separate executables for each model

• Allows “plug-in operation” for switching model with LRU hardware
• Allows models to be distributed for faster real-time operation
• Allows models to be hosted on a simulation node located in correct physical location to use correct cable

lengths
♦ Single copy of source code for all simulation configurations

• Hardware interfaces defined by configuration files
• Models (executables) are enabled based on configuration generated by MAESTRO
• Models utilize XML input files to load initial conditions and configuration options

♦ All models utilize the same libraries to allow for ease of incorporation & maintenance
• Real-time control
• Inter-model communication
• Hardware communication
• Input file parsing, data recording and utility functions

♦ Vehicle configuration logic and dynamics engine are generic to support changes in vehicle
architecture

♦ Shared Memory region used to transfer data between models
• Blackboard structure defined to include all data shared between models
• Each model “owns” a particular contiguous section of blackboard
• Infiniband is used to copy blackboard to each machine at start of each frame
• Models update blackboard section at end of each frame

♦ Fault insertion engine can override real-time inputs to models
• C code-based

All-Digital Lab Configuration

FC

TDCU

RI
N

U

PDCUCore Stage

BCPDU

HPUC

IS
C

DARU

Booster
Stages

LCC
Emulator

MPCV
Emulator

MAESTRO

ARTEMIS

Real Time
Display

Config.
Manager

Data
Repository

CoreSim
Flex/Rigid Dynamics
Environments
Aerodynamics

FC

CTC
DACU

PDCU
RINU

CCSE
TDCU

ECU
TCSVC

RS-25
MPS

BCPDU
ISC

DARU
ACU

RGA
HPUC

OIB
FSS

BSM
RSRM

FSTVC

EGSE

AR
TE

M
IS

 I
nf

in
ib

an
d

MAESTRO Ethernet

Emulator SCRAMnet

1553, EIA-422, Ethernet, D/A

1553, EIA-422
Ethernet, D/A

Ethernet

HW
 B

us
se

s

SITF Lab Configuration

FC

TDCU

RI
N

U

PDCUCore Stage

BCPDU

HPUC

IS
C

DARU

Booster
Stages

LCC
Emulator

MPCV
Emulator

MAESTRO

ARTEMIS

Real Time
Display

Config.
Manager

Data
Repository

CoreSim
Flex/Rigid Dynamics
Environments
Aerodynamics

FC

CTC
DACU

PDCU
RINU

CCSE
TDCU

ECU
CSTVC

RS-25
MPS

BCPDU
ISC

DARU
ACU

RGA
HPUC

OIB
FSS

BSM
RSRM

FSTVC

EGSE

AR
TE

M
IS

 I
nf

in
ib

an
d

MAESTRO Ethernet

Emulator SCRAMnet

1553, EIA-422, Ethernet, D/A

1553, EIA-422
Ethernet, D/A

Ethernet

HW
 B

us
se

s

SIL Lab Configuration

FC

TDCU

RI
N

U

PDCUCore Stage

BCPDU

HPUC

IS
C

DARU

Booster
Stages

LCC
Emulator

MPCV
Emulator

MAESTRO

ARTEMIS

Real Time
Display

Config.
Manager

Data
Repository

CoreSim
Flex/Rigid Dynamics
Environments
Aerodynamics

FC

CTC
DACU

PDCU
RINU

CCSE
TDCU

ECU
CSTVC

RS-25
MPS

BCPDU
ISC

DARU
ACU

RGA
HPUC

OIB
FSS

BSM
RSRM

FSTVC

EGSE

AR
TE

M
IS

 I
nf

in
ib

an
d

MAESTRO Ethernet

Emulator SCRAMnet

1553, EIA-422, Ethernet, D/A

1553, EIA-422
Ethernet, D/A

Ethernet

HW
 B

us
se

s

ARTEMIS Software Design
♦ ARTEMIS Composed of 5 Modules

• Simulation
– Base framework – Provides ‘main’ for each model executable
– Input file processing
– Data recording

• Timing
– Interacts with RCIM timing card
– Keeps all executables on each node in lock-step
– Manages Infiniband and blackboard shared memory on each machine

• Input/Output Layer
– Provides common, user-level interface to hardware

• Models
– CoreSim – Dynamics, environments & vehicle configurations
– Subsystems – Models effectors and sensors, interfaces between CoreSim and

Components
– Components – Models avionic/electronic systems

• Data Recorder
– Records all HW bus data, sends data to remote archive

• Hardware
– Computers, I/O cards, cables, racks

Architecture of a Single Model Executable

♦ Each instance of a subsystem or avionics
component is considered a separate
model
• Each model runs in a separate executable to

meet requirements for re-configurability
(i.e. plug-and-play behavior)

♦ Models contain code to simulate
behavior of sensors, effectors, avionics
components & dynamics
• Code for initialization
• Code performed each time step of the

simulation run
• Code to be performed at shutdown

♦ The Executive Main provides standard
set of wrapper function prototypes for
each of these simulation phases
• Models are responsible with populating

these functions with code relevant to the
simulation phase

• Executive calls the wrapper functions,
which then call model code

♦ Executive also provides common set of
utilities for input processing, data
recording, mathematics and threading

2/18/2020 37

Function Calls

Sh
ut

do
w

n

Ru
n

In
it

ExecutiveMain

Ex
ec

ut
iv

e
U

til
s

Shutdown Sched Init

Architecture of a Single Model Executable

♦ SyncLib is responsible for commanding
the executive to call the init, run and
shutdown functions based on clock
timing and user input (SyncCmd)
• Executive makes function call to Sync to get

current command
♦ Executive registers itself with Sync to

gain access to Sync shared memory area
(RegSim)

♦ Models register with Sync a structure
containing all the data to output to
other models, as well as the data
requested to be read in from other
models (RegSimThread)

♦ IOLayerLib provides functions to models
to read and write to simulated or real
hardware devices

♦ IOLayerLib also provides functions to
initialize and safely shutdown devices

2/18/2020 38

Function Calls

Sh
ut

do
w

n

Ru
n

In
it

ExecutiveMain

Ex
ec

ut
iv

e
U

til
s

SyncCmd (init, run, quit)

SyncLib

Re
gS

im
Re

gS
im

Th
re

ad

IO Layer
Lib

IOShutdown
IORead

IOWrite IOInit

Shutdown Sched Init

Single Computer Configuration
♦ Sync Executable is responsible for timing (real-time)

and getting current commands from user interface,
as well as opening up shared memory region

♦ I/O Layer Executable provides communication with
device drivers

♦ On each machine, multiple models may run, but
there will only be one Sync Executable and one I/O
Layer Executable

♦ The Sync & I/O Layer Executables communicate with
the model executables using POSIX shared memory
regions

♦ Sync shared memory region
• Blackboard

– Memory region defined by a group of structures
(one per model).

– Each executable writes output data to an assigned
area

– Other model’s area can be input using Synclib

• Semaphores and data used for commanding
♦ I/O Layer shared memory region

• Buffers populated by model with bus data
intended to be sent to device driver

• Buffers populated by IO Layer executable with
bus data received from device drivers

2/18/2020 39

Sh
ut

do
w

n

Ru
n

In
it

Executive

SyncLib

IO Layer Lib

Sh
ut

do
w

n

Ru
n

In
it

Executive

SyncLib

IO Layer Lib

Sync
Executable

IO Layer
Executable

Shared
Memory
Bus Data

Shared Mem.
Blackboard;
semaphores
and states for
commanding

Multi-Computer Configuration
♦ Each machine has a separate Sync and

I/O Layer Executables.
• Only one machine runs Master Sync

– Interfaces with External Timing card in
addition to functions performed by slave
sync

• All other machines hosting ARTEMIS
executables run slave sync

• Synchronizes shared memory of computer
with all other computers via Infiniband

• Communicates with user interface for
commanding

♦ Hardware avionics boxes may or may
not be present, and can communicate
directly with 1553, Ethernet, 422, etc.

♦ Data Recorders tap off of each bus, as
well as off the Infiniband network
(only for Blackboard data) to capture
and archive data each frame

2/18/2020 40

Infiniband
Blackboard;
Commanding & Timing Semaphores

Master
Sync

IO Layer

Slave
Sync

IO Layer
1553, GbE, EIA-422
Hardware Bus Data

RCIM

Avionics
Boxes

Data
Recorders

Model Code
Executive

Sync
I/O Layer

Sync ShrMem
I/O Layer ShrMem

Sync/Infiniband
HW Buses

Multi-Computer Configuration w/ Emulators

♦ Emulators provide ability to communicate
with external systems not modeled within
ARTEMIS

♦ Emulator Bridge is a standardized interface
used to communicate simulation data
between ARTEMIS & Emulators
• Emulator Bridge is considered a

component of Sync, but runs as
separate executables

• Emulator bridge communicates among
Emulators and ARTEMIS using
SCRAMNet interface with a separate
Blackboard

• ARTEMIS Client Maps Emulator
Blackboard data to ARTEMIS
Blackboard Data

2/18/2020 41

Sync

IOL

Sync

IOL

RCIM

Avionics
Boxes

Data
Rec.

Emulator
Bridge

Emulator
SCRAMNet
Emulator
Blackboard

HW Buses

Infiniband

Model Code
Executive

Sync
I/O Layer

Sync ShrMem
I/O Layer ShrMem

Sync/Infiniband
HW Buses

Multi-Computer Configuration w/ MAESTRO

2/18/2020 42

Sync

IOL

Sync

IOL

RCIM

Avionics
Boxes

Emu
Bridge Emul.

Infiniband

HW Buses

Data
Rec.

MAESTRO

Ethernet
Sim. Phase Commands (to Sync)
Health & Status messages (from Sync)

Blackboard Data
for Display

Displays

Graphics

Sync

BB Reader

bdStudio

Model Code
Executive

Sync
I/O Layer

Sync ShrMem
I/O Layer ShrMem

Ethernet
Emulator BB/SCRAMNet
Sync/Infiniband
HW Buses

Multi-Computer Configuration w/ MAESTRO

♦ MAESTRO Communicates with the Sync executables on each node
to command the simulation state

♦ Sync reports health & status and error messages back to
MAESTRO

♦ In order to drive displays, the BBReader executable is used
alongside other ARTEMIS executables to read the blackboard and
send data to MAESTRO via Ethernet sockets

♦ For the animation, a bdStudio executable is used to read from the
blackboard and send data to the animation tool

♦ BBReader and bdStudio both utilize the ARTEMIS Executive and
must run on a computer with Sync

♦ MAESTRO generates configuration files specifying run details for
use by ARTEMIS and pushes these files to a pre-determined
location

♦ MAESTRO reads console output from each model and filters out
messages intended to be relayed to user

2/18/2020 43

♦ Two Types of Faults
• Overwrite exposed simulation variables in SCRAMNet

– Least expensive to implement
– Limited to exposed simulation variables
– Won’t cover all fault requirements

• Execute an embedded fault in the simulation
– Require additional software development and V&V in models to

simulate fault
– Initiated by tripping fault flag in SCRAMNet
– Need to streamline number of embedded faults

♦ Fault Insertion Mechanism
• Peek and Poke via MAESTRO

– User can trip embedded faults via MAESTRO interface to sync
– Non-Deterministic

• Separate fault insertion executable
– Controlled by sync master
– Provides logical conditions to determine when fault inserted
– Input file driven
– Deterministic

Fault Insertion

44

Core Simulation Models

♦ Stack Dynamics
• Coupled rigid body and flexible body dynamics formulation which properly accounts

for variable mass effects and force following terms
• Supports all nominal and abort configurations
• Input data developed from EV30 LA2 structural models
• Multithreaded partitioned equations to achieve real-time performance with a frame

time under 2ms

♦ Stage Dynamics
• 6 DOF rigid body formulation with vehicle states defined with respect to Constellation

structural frame (fixed point off nose of LAS)
• Supports all nominal and abort configurations

♦Mass Properties
• Propellant mass computed using mass flow rate defined by engine model
• Propellant mass properties computed from structural model mass matrices
• Compute mass properties of each stage from sum of dry structure and propellant
• Mass properties of stack (or combined stages) computed from sum of stages for

current configuration defined by flight phase

45

♦ Structural Properties
• Stage mass and stiffness matrices defined by NASTRAN models
• Family of propellant mass matrices based on stage mass
• Assemble stack mass and stiffness matrices from stage and propellant matrices based on

vehicle configuration
• Update generalized vehicle mass and stiffness matrices each time step for coupled flex body

EOM
• All vehicle node geometry extracted from integrated NASTRAN model

♦ Nozzle Dynamics
• Rigid body formulation uses discrete nozzle EOM driven by vehicle dynamics, TVC actuator

forces, aerodynamic forces, and flex bearing stiffness
• Rigid body formulation also includes Tail-Wag-Dog effects
• Flex body formulation utilizes coupled nozzle dynamics embedded in system Ritz vectors or

modes

♦ Slosh Dynamics
• Rigid body formulation uses discrete slosh masses per tank modeled by spring-mass-damper

systems, Lookup tables for slosh parameters
• Flex body formulation utilizes slosh modes developed from additional effects superimposed

on propellant mass and stiffness matrices

Core Simulation Models

46

♦Atmosphere and Winds
• US76 standard atmosphere model
• 2007 Global Reference Atmospheric Model (GRAM2007)
• 1800 Measured Day-of-Launch Winds
• Ground winds to support pre-launch

♦ Lumped Aerodynamics
• Linear 1-D table lookup and Nonlinear 2-D table lookup for aerodynamic

coefficients for stack and stages (SRB, LAS, etc)

♦Distributed Aerodynamics
• Aerodynamic data mapped to NASTRAN mesh for loads applied to the stack

(primary driver of flex)

♦Gravity
• 3 model options:

– Kepler
– J-2, J-3, & J-4
– Gravity Recovery and Climate Experiment (GRACE)

Core Simulation Models

47

♦Flight Computer (FC)
• Controller algorithm

– Exact representation of DAC2 Ares Controller algorithms (Gain-
scheduled Flex Mitigation Filters + PID)

• Navigation algorithm
– Fundamental Navigation Equations for multiple sensors and rate

gyros
• Guidance algorithm

– Exact representation of DAC2 Ares Guidance algorithms (Open-Loop
Profile for 1st Stage; Closed-Loop Algorithm for US)

• Mission Manager and Event Controller
– Event handler to control flight and vehicle phasing based on flight

time and mission events
♦Booster Control & Power Distribution Unit (BCPDU)

• Passes commands from the flight computer to downstream avionics boxes
• Prototype MIL-STD-1553 interface from FC with TVC commanded rock and tilt current message

♦Sensors
• Medium-fidelity RINU model with gyroscope and accelerometer error terms (bias, noise, scale

factor, misalignments, initial condition errors)

Component Models

48

♦Recovery Control Unit (RCU)
• Commands the BTM, aeroshell jettison, and forward skirt extension jettison on the first stage

during recovery operations

♦Ignition & Staging Controller (ISC)
• Commands the firing of the first stage, BDM, USM, and first stage separation pyros based on

commands from the BCPDU

♦Altitude Sensor Assembly (ASA)
• Pressure sensor that activates first stage recovery system once the SRB falls below a given

altitude

♦Command and Telemetry Computer (CTC)
• Currently relays ground commands to the FC during pre-launch and ascent

♦Rate Gyro Assembly Electronics (RGAE)
• Buffers the RGA outputs for use in the FC for both the first stage and upper stage RGAs

♦Redundant Inertial Navigation Unit Electronics (RINUE)
• Uses ΔV & Δθ from the RINU to estimate vehicle states & other data needed by the flight

software

Component Models

49

♦Combined Control System Electronics (CCSE)
• Partial CCSE model outputs valve commands to support tanking ground ops. Incorporates

previous ReCSE model as well.

♦Roll Control System Electronics (RoCSE)
• Relays the fire commands for the first stage roll control system from the FC to the RoCS

thrusters

♦Upper Stage Engine Control Unit (US ECU)
• Controls the J-2X firing, mixture ratio, and throttle

♦Upper Stage TVC Data & Control Unit (US TVC DCU)
• Converts a commanded set of gimbal angles from the FC into a current value used by the

upper stage TVC

Component Models

50

♦ Reaction Control System (RCS)
• Ideal thrust, general valve dynamics developed but not activated
• Lookup tables for thrust & valve dynamics

♦ Booster Separation Motors (BDM, BTM, Ullage)
• Uses lookup table for thrust, supports delayed firing

♦ Engines
• Lookup table driven, supports separate tables for nominal, startup and

shutdown operations
♦ Thrust Vector Control (US & FS TVC)

• High-fidelity simplex algorithm with models of servo valves, power
spool, and actuator

♦ Main Propulsion System (MPS)
• Simple tanking model
• High fidelity model incorporated using existing ROCETS code

Subsystem Models

51

♦ Hold-Down Post (HDP)
• Uses stiffness and damping matrix to model flexibility of launch

platform
• Spring can only provide force while in compression

♦ Linear Shaped Charges (LSC)
• Model does not provide forces, but sets flags indication whether stage

separation has occurred

♦ Redundant Inertial Navigation Unit (RINU)
• Converts sensed vehicle motion signals into ΔV & Δθ values needed by

the flight software

♦ Rate Gyro Assembly (RGA)
• Senses the vehicle motion and converts to Δθ signals used by the FC

controller

Current Subsystem Models

52

MAESTRO - Components

♦Core Services – Communications framework,
XML Readers, transfer protocols.

♦Test Control – Scripting, command
implementation.

♦Test Monitoring – Run-time data collection,
distribution, and processing.

♦Data Analysis – Run time and Quick-look tools
for recorded data.

♦GUIs – User interfaces.

	Flight Software Workshop�Dec 12-14, 2019
	ARTEMIS Introduction
	Why ARTEMIS?
	ARTEMIS Requirement Drivers
	ARTEMIS Requirements Drivers
	ARTEMIS Organization
	ARTEMIS Organization
	Simulation Overview
	ARTEMIS Organization
	Timing Overview
	Sync Architecture
	ARTEMIS Organization
	Models Overview
	ARTEMIS Organization
	I/O Layer Overview
	I/O Layer Overview
	ARTEMIS Organization
	Data Recorder Overview
	ARTEMIS Organization
	Hardware Overview
	MAESTRO Introduction
	What MAESTRO does:
	Key Features
	MAESTRO typical operating environment
	The Big Picture – Layer View
	Test Case Example
	Test Case – Test Configuration
	Slide Number 28
	ARTEMIS Customers
	ARTEMIS Customers - Emulators
	ARTEMIS Development Lines
	ARTEMIS Simulation Design
	All-Digital Lab Configuration
	SITF Lab Configuration
	SIL Lab Configuration
	ARTEMIS Software Design
	Architecture of a Single Model Executable
	Architecture of a Single Model Executable
	Single Computer Configuration
	Multi-Computer Configuration
	Multi-Computer Configuration w/ Emulators
	Multi-Computer Configuration w/ MAESTRO
	Multi-Computer Configuration w/ MAESTRO
	Fault Insertion
	Core Simulation Models
	Core Simulation Models
	Core Simulation Models
	Component Models
	Component Models
	Component Models
	Subsystem Models
	Current Subsystem Models
	MAESTRO - Components

