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A Body in Space
A black body (perfect emitter and absorber) in space absorbs UV, 
Visible, and Near-IR radiation and emits long-wavelength radiation 
resulting in an equilibrium temperature (1 AU from the sun) of 280 K

If we can create a coating that reflects, instead of absorbs, the shorter wavelengths, 
and still emits in the longer wavelengths, how much can the equilibrium 
temperature of a body in space drop?

Absorbed radiation

Emitted radiation

UV, Visible, Near-IR Mid-IR, Far-IR



A Body in Space
In equilibrium, an object radiates (R) the same power it absorbs (B), so R=B where;

Stefan-Boltzmann Law: 𝑅𝑅 = 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎4 sigma = Stefan-Boltzmann constant 
e = emissivity 
AT = total area of radiating body
T = temperature

AND 
(solar heat source only): 𝐵𝐵 = 𝑝𝑝𝑝𝑝𝜎𝜎𝑝𝑝𝑝𝑝 p = percentage of available power absorbed

I = Irradiant power of the Sun
ACS= cross sectional area of the absorbing body

For a sphere, the total area (radiating surface = 4 π r2) is 4 times the cross sectional area (absorbing surface = π r2), so a 
factor of 1/4 replaces ACS/AT.

Solving for T: 𝜎𝜎 = 4 𝑝𝑝𝑝𝑝
4𝜎𝜎𝜎𝜎

Substituting:
I = 1366 W/m2 (at 1 AU – Irradiance decreases as distance from the sun increases)
sigma = 5.67x10-8 W/(m2 K4)
e = 0.9 (value based on emissivity data of other similar substances and is consistent with test data)
p = 1% (goal value)

Solving yields T = 90 K

Therefore, a spherical body in space, approximately 1 AU from the Sun, coated in a material that absorbs 1% of the suns 
power and has emissivity of 0.9, will come to equilibrium at 90 K (LOX temp), assuming no heat sources other than the 
sun.



Thermal Control Coatings
• Coatings that reflect some wavelengths and emit others are referred to as 

thermal control coatings
• NASA Reference Publication 1121 (1984) “Solar Absorptance and Thermal 

Emittance of Some Common Spacecraft Thermal-Control Coatings”

AZ-93 White Paint
Absorbs 15% Solar Spectrum*

Single layer silver based TCC
Absorbs 10% Solar Spectrum*

Qioptiq quartz on silver TCC
Absorbs 6% Solar Spectrum*

Current State of the Art

*Absorption numbers are based on industry standard reflectance measurements using a
sprectrophotometer, with reference to NIST standard Spectralon



Solar Spectrum

Description Range Solar Power

Ultraviolet 0 – 400 nm 7%

Visible 400 – 700 nm 44%

Near Infrared 700 – 1400 nm 37%

Short wave IR 1400 – 2400 nm 8%

Mid/Long wave IR 2400+ nm 4%

Ranges and percentages are approximate



Scattering White Powder (Y2O3)
• Many different scattering white powders considered
• Yttrium Oxide (Y2O3) reflects UV above 0.235 microns through IR 

up to 8 microns
• This equates to 0.2% solar absorption
• If solar absorption is limited to 0.2%, the equilibrium temperature 

of a body in space drops to 60 K!
• Yttrium Oxide is also hydrophobic and chemically stable.



Cryogenic Thermal Control Coating

• Y2O3 scattering layer 
reflects UV, Visible, and 
Near to Mid-IR radiation

• A thin silver (or other) 
backing will reflect Far-IR 
radiation

• A metallic backing also 
allows for easy application

• Vapor deposition chamber 
5 microns thickness



Funding Sources/Projects/Interest

• Game Changing Development – process development 
and performance testing

• Launch Services Program - Cube sat 
• Materials International Space Station Experiment (MISSE) -

space environment testing
• Northrop Grumman - reflectance testing
• Blue Origin - sample testing capability
• Nuclear Thermal Propulsion – system integration
• United Launch Alliance – spray on coating development
• Launch Services Program - Superconductivity
• NASA Innovative Advanced Concepts (NIAC) – Initial concept 

funding and Solar Surfing



GCD Project Objectives
• Optimization of powder sintering pressure and temperature 

(thermal properties & tile strength)
• Reflectance measurements using industry standard tools and 

techniques
• Absolute performance data using NASA designed deep-space 

simulator
• Application of a metallic backing (silver preferred)
• Engagement of KSC’s Thermal  Protection System Facility expertise 

for large scale fabrication
• Atomic oxygen degradation characterization
• Electromagnetic charging characterization



Fabrication (Tile Samples)
• Compress the yttrium oxide white powder, then sinter it in an 

oven to make a “tile”
• Pressure used in compression and oven temperature impact tile 

strength and these parameters are currently being optimized



Fabrication (Spray-on Coating)
• Dissolve potassium bromide (KBr) in water
• Mix in Yttrium Oxide particles (which will not dissolve in water)
• Spray the desired surface using a paint sprayer
• After drying, the KBr forms sheets that hold the Y2O3 particles in place
• Multiple layer may be applied

This is a very similar process to making white paint, except with the use of a broadband optical material 
(KBr) as the binder in order to avoid UV absorption

Continuing work to enable more uniform application, increase adherence, maximize thickness, and 
minimize flaking



Reflectance Testing
• Jasco V-770 Spectrophotometer

Integrating 
Sphere

Reflected 
light 

collection 
point

Light In

Test Sample



AZ-93 Reflectance Plot
AZ-93 (white paint) – Solar absorption: 15% 
Reflectance plots like this are made measuring the material against the NIST standard 
reference material, Spectralon



CTCC Reflectance Plot
Yttrium Oxide Tile (Y2O3) – Solar absorption: -0.004% over this range
We are not making light… the Yttrium Oxide tiles are performing better than the 
Spectralon reference material!



Spray-on Yttrium Oxide
Reflectance Plot

*The bare 
stainless 
surface was 
cleaned with 
solvent and 
lightly scuffed

*



Deep-Space Simulator
• Reflectance testing shows relative improvement over existing coatings using the 

industry standard testing approach
• The deep-space simulator is intended to provide an absolute measure of absorption
• Deep-space simulated environment testing using a vacuum chamber, cryo-cooler, 

and solar simulator

two-part 
vacuum chamber
with feed-throughsCryomech AL230

cold head (20 K)

black painted test chamber, 
mounted to cold head

Test sample hanging 
from Kevlar thread



Solar Simulator
• Fiber optic quartz light source provides a good 

solar simulation from 255 nm to 2200 nm
• Short wave UV and long wave IR are difficult to 

simulate



Deep-Space Simulator



Testing (Deep-Space Simulator)

Tmax = 107 K, corresponding to 1.5% 
light absorption

• Promising data, but refinement still needed in the test set-up
• MLI blankets have to be undone and re-wrapped for each test
• Fiber must bend to illuminate the sample, and thermally strapped to the cold head each time
• A new vacuum chamber design has recently been completed
• Multiple runs have sample temps ranging from 102 – 125 K (1.2% – 2.7% absorption)

Tmax = 110 K, corresponding to 1.6% 
light absorption



Other Heat Source Examples

Silicon Diode, barrel style, wrapped in foil

Aluminum “tank” with chip style sensor varnished inside

Thick layer of 
black coating to 
absorb long-
wave IR

Kevlar strings

Dark temp sensor wires



New Vacuum Chamber for KSC’s
Deep-Space Simulator 

New Vacuum chamber design will:
- improve repeatability
- minimize time required between testing runs
- eliminate bends in the fiber optic cable
- allow for better chilldown of the fiber
- apply lessons learned to minimize parasitic heat leaks



GRC’s Deep-Space Simulator
Newport LCS-100 Solar Simulator

Vacuum ChamberOptical Set-up
Cryomech PT805

cold head

Test sample 
in holder



GRC’s Deep-Space Simulator
• Promising data, but lacks consistency
• Changes from Run 1 to Run 2:

⁻ Orbital light spectrum filter decreased light intensity from 100 -180 mW/cm2 to 
85-164 mW/cm2 (137 mW/cm2)

⁻ Adjusted sample holder to increase length of Kevlar string
• Modifications to the chamber have been recently completed, testing to follow

Tmax = 90 K, corresponding to 0.67% 
light absorption

Tmax = 135 K, corresponding to 3.8% 
light absorption



In-Space Environment Testing

Location of MISEE on ISS

Y2O3 Sample

A Y2O3 sample is currently 
flying on ISS thanks to 
MSFC’s MISEE 11 panel (as 
of Feb 2019)



Cube Sat for In-space performance 
testing

• The Launch Services Program is 
developing a 3-U cube sat 
through the University of Florida

• The top sample holder will be 
thermally isolated and designed 
to always point away from the 
Earth

• It will hold 4 sample, 2 Y2O3
tiles and 2 Y2O3 tiles painted 
with an AZ-93 overcoat for 
comparisons



Patents/Papers

• Youngquist, Robert C., and Mark A. Nurge. "Cryogenic Selective 
Surfaces." (2016).

• Youngquist, Robert C., and Mark A. Nurge. "Achieving cryogenic 
temperatures in deep space using a coating." Optics letters 41.6 
(2016): 1086-1089.

• Youngquist, Robert, et al. "Cryogenic Selective Surfaces: A Phase 2 
NIAC Project: Mid-Term Continuation Review." (2017).

• Youngquist, Robert C., et al. "Cryogenic Deep Space Thermal Control 
Coating." Journal of Spacecraft and Rockets 55.3 (2018): 622-631.

• Youngquist, Robert C., and Mark A. Nurge. "Radiation reflector and 
emitter." U.S. Patent No. 10,273,024. 30 Apr. 2019.

• Patent application “Method of Fabrication a Rigid Radiation Reflector 
– filed 9/18

• Patent application “Reflective Paint for Cryogenics Applications” –
filed 9/19
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