Efficacy of FTIR Analysis in Determining CO₂ Loading on Diglycolamine

ICES Paper 2018-262

Roger Huang – KBR Wyle/ NASA ARC Mark Silveria – KBR Wyle/ NASA ARC Jessica Kong – KBR Wyle/ NASA ARC Grace Belancik – NASA ARC Darrell Jan – NASA ARC

Outline

- Liquid amine background
- Microgravity adaptation
- FTIR motivation
- Experimental Method
 - pH Desorption
 - FTIR Analysis/ Calibration
- Results
- Discussion

Liquid Amine Background

- Industrial plant gas sweetening (H₂S, CO₂ removal)
- Liquid amine systems used in submarines since the 1950s
 - Monoethanolamine (MEA) scrubbers
 - Maintained CO₂ concentration at 1% of the atmosphere
- Advantages over solid sorbent bed systems
 - Power and volume savings
- Potential usage in human spaceflight
 - JSC evaluation of various liquid amines in FY16

Liquid Amine Background

Typical CO₂ removal plant process diagram

Microgravity Adaptation

Goal: design a liquid amine-based CO₂ capture system that can operate in microgravity

- Contactor designs for adsorbing and desorbing
- Captured liquid flow
- CO₂ mass flux
- Separation of gas and liquid

Microgravity Adaptation

Adsorb vs Degas (regeneration) mechanics for Diglycolamine (DGA)

• Tasks split between JSC and ARC

Focal points for ARC:

- Degas rate
 - Temperature
 - Surface Area
 - Liquid Flowrate (contact time)
 - CO₂ loading
 - H₂O concentration

Degasser Design

Goal: Design a scaled-down v-channel contactor that facilitates characterization of DGA degas mechanics

Glass V-tube

Degasser Design

Continuous flow sampling Pre-heat input DGA Thermocouples Peristaltic Pump Sample Port 1/8" OD hose 1/8" OD hose $\theta \approx 2.3^{\circ}$

DGA sampling batch 3-headed flask

Infrared Lamp $\approx 5.5''$ away from V-tube (directed at the side of the V-tube)

FTIR Motivation

How do we measure CO_2 loading in the DGA?

- Solution pH level
- Viscosity
- Raman Spectroscopy
- Fourier Transform Infrared Spectroscopy (FTIR)
 - MEA CO₂ loading (Einbu, Aslak, et al., 2012)
- pH desorption method (Rogers, Tanya, et al., 2017)
 - "Acid desorption" "Acid Test"
 - 96%-98% CO₂ recovery (Zhou, Shan, et al., 2010)

pH desorption requires ~1mL of solution FTIR can potentially only require ~100µL

FTIR Procedure

Buck Scientific demountable IR window liquid cell

- 4mm ZnSe crystal windows
- 0.015mm sample spacer
- Samples loaded with luer lock gastight syringe
- Entire window disassembled and cleaned with DI water and isopropanol between sample analysis runs

FTIR Procedure

Mattson Galaxy 6020 FTIR using WinFIRST v2.10

- Transmittance collected at 10kHz
- Wavenumbers 400 4000 cm⁻¹
- Resolution = 4

Spectragryph V1.1.0

- Baselines and pre-loaded calibration standards
- Experimental samples normalized on peak at 894 cm⁻¹
 - Peak that remained consistent in all samples of DGA

FTIR Calibration

FTIR Calibration

Calibrate against pH desorption for range of CO₂ % loading on DGA

FTIR Calibration

CO2 % vs 1205-1755 Area

Calibration points for DGA run at various concentrations of water solution (0%, 4%, and 8%)

Initial baseline – pure DGA, 85°C, ~0.4mL/min flowrate, continuous flow sampling, no sweep gas

Modified baseline – pure DGA, 85°C, ~0.8mL/min flowrate, continuous flow sampling, no sweep gas

Discoloration of evaporated (and re-condensed) DGA

Experimental – pure DGA, 105°C, ~0.8mL/min, continuous flow sampling, no sweep gas

Baseline – pure DGA, 85°C, ~0.8mL/min, continuous flow sampling, no sweep gas

V-tube Test Results

Experimental – pure DGA, 85°C, ~0.8mL/min, continuous flow sampling, 400mL/min N₂ sweep gas

V-tube Test Results

Experimental – 35% H₂O + 65% DGA, 85°C, ~0.8mL/min, continuous flow sampling, no sweep

gas

Discussion and Current/Future Work

Moderate success using FTIR spectroscopy to analyze CO₂ % loading on DGA

- Repeatability
- Reducing sampling volume

 $35\% H_2O + 65\% DGA$ solution

- Single pass flow
- Scaling up
- Bubbling
- Re-capturing evaporated H₂O and DGA

Acknowledgements

Many thanks to the team at JSC, especially Tanya Rogers and Giraldo Alvarez, who provided valuable insights and inputs throughout the experimental testing process.

Backup Slides

Microgravity Adaptation

Potential design solution: "V-channel" direct air contactor

Degasser Design

Single-pass flow sampling Pre-heat input DGA Thermocouples Peristaltic Pump Sample Port 1/8" OD hose 1/8" OD hose $\theta \approx 2.3^{\circ}$ Infrared Lamp $\approx 5.5''$ away from V-tube (directed at the side of the V-tube)

DGA sampling batch 3-headed flask

