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Motivation for Study

• Renewed interest in commercial supersonic flight

• Near-term entry into service aircraft

– Business type jet

– 2 – 3 engines

– Fully mixed exhausts

– Jet noise dominant at takeoff

• NASA systems studies supporting ICAO Working Group1/LTO 

subgroup

• Need to quantify our ability to predict absolute jet-noise levels

• Results of this study assist with error bars placed on our ICAO system 

results

• Comparisons are made between prediction models in ANOPP, scale-

model data, and flight data

• 
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Comparisons
• Interest is in EPNL but spectra contributing to EPNL are also 

compared

• Three different datasets explored

– Flight test data

• Did not use a noise certification flight procedure

• Intent is to determine general jet-noise prediction capability

– Spectra obtained from jet-noise models within NASA’s ANOPP

• Stone 1 (1980)

• Stone 2 (2009)

• SAE 876

• Modified SAE 876

– Scale model data acquired in NASA Glenn’s AAPL

• Angles between 70°and 150°can be used to compute EPNL 

that is within 0.5 EPNdB of that computed from all microphones

• 
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Flight and Scale-Model Tests
• Learjet 25 flight test conducted in 2001

– Believed to be jet-noise dominated

– Exhaust conditions for lower power settings of interest for supersonic business jet

• Scale model tests conducted in 

2018 in NASA Glenn’s AAPL facility

• 
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Flight Tests

• Used a Learjet 25 with a CJ610 engine

– CJ610 is a variant of the J85

– EGT read from cockpit gauge during 

pretest conducted in Ohio but not during 

flight test

– EPR recorded during flight test

• Performed with a constant 500 ft flyover

• Right engine at idle

• Conducted at Estrella Sailport

(Phoenix)

• Measurements made with three linear 

arrays

– Left - 6 microphones

– Center (under flight path) - 8 

microphones

– Right – 6 microphones
*Brausch, J. F., “Flight Velocity Influence on Jet Noise of Conical Ejector,

Annular Plug and Segmented Suppressor Nozzles,” NASA CR-120961, 1972.

EPR
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Gear
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1.6 1180 1306* 1194* Up ~0.30

1.8 1257 1402* 1288* Down ~0.23
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Scale-Model Tests
• Conducted in the Aero-Acoustic 

Propulsion Laboratory

• Used 0.31 scale model of Learjet nozzle 

system

• Secondary stream was used to mimic 

secondary flow through NACA scoop 

and vents

• Slight offset in nozzle was replicated

• Measurements made at two azimuthal 

angles

– For centerline flyover array

– For sideline flyover array

• NPR was matched to flyover EPR

• NTR was matched to temperature ratio 

in flyover tests

• Secondary stream NTR = 1.25

• Secondary stream set to low NPRs

NATR

Microphone 

Array

HFJER

Learjet 25 Nozzle

AAPL Facility

Scale-Model 

Nozzle System

ScoopVents

• 
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Scale-Model Data

• 
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Repeatability and Mixing Noise

• No shock associated noise – study only 

focused on mixing noise

• Data repeatability good

• Small tones in one installation did not 

impact EPNLs

• No azimuthal dependency – data from 

multiple runs and two clocking angles 

averaged
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Impact of Secondary Stream

• Spectra for NPRs = 1.05 and 1.10 are similar

• Slight increased levels for NPR = 1.20
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Impact of Shear Layer Correction

• Investigated impact of source distribution assumption in shear layer 

correction

• Source at exit peak at ~150°

• Distributed source peaks at ~140°

• Peak jet-noise level is roughly the same for all source distributions

• Source distribution assumption was found to have little impact on EPNL
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Predictions and Scale Model
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Flight Data

• 
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Spectral Comparisons

• No aircraft GPS information from flight test

• Needed aircraft position information to compare flight data to scale-model 

data and predictions

• Aircraft position determined from tones assuming changes in frequency 

only associated with Doppler shift

• Spectra obtained from data at different microphones were averaged with 

time shift accounting for aircraft flight

103102101 104

Frequency (Hz)

Tones used for 

Doppler shift 

calculation

80 ~-----,--=--=-1~8.----;:5-s-ec- -=--~2~1~s=--=e-=-c--=~23;-_<5~s~ec::n 
70 L----+--ift---~--,----, 
60 L-----=:;:::;~~~~~:t-----71 

$50 
~ 40 L-----+-----~~~ ~r-- ~ 
~ 

~ 30 L-----+-----,---,.~ -y-rr7 

20 L----+--------t--, ~ ltT1 
10 L----+--------t----'WN ~ 
o L-------t-----~-~ ::,---r 

• 



14
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Data Repeatability
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•Hump at ~500 Hz matches 

predicted frequency for tire 

noise from Fink

•Tones around 200 Hz are 

likely cavity tones

•Flight Mach number range 

0.231 – 0.252 

•Differences between runs 

likely associated with 

throttle setting

•Tone removal did not 

eliminate impact of tones
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Predictions and Flight Data Comparisons
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Predictions and Flight Data Comparisons
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•Landing gear was not 

deployed 

•Hump present at 158°and 
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154°and NPR = 1.6

•Hump in spectra at 50°
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Predictions and Flight Data Comparisons
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•Results similar to NPR = 1.8

•Landing deployed

– Apparent cavity tones and tire 

noise present
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Impact of Number of Array Elements
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Effective Perceived Noise Levels
Centerline Array

•NATR DEPNdB decreases 

with increasing EPR

•Flight EPNdB decreases by 

~0.5 EPNdB with tones 

removed

• Increasing temperature in 

SAE model increases EPNdB

by 1.5 dB for each 100 °F

Tones not removed in 

flight data computation
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EPR
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Conclusions

• EPNL from predictions and scale-model data were below that for the 

flight data for all engine EPRs

– SAE model: 2.5 – 3.5 EPNdB

– Stone 2 model: 1 – 2 EPNdB

– Scale-model data: 3 – 5 EPNdB

• Differences between EPNL computed for flight and scale-model or 

ANOPP models are likely due to uncertainty in engine conditions

– An increase in engine temperature of 100°F results in 1 – 2 EPNdB

increase

• Source distribution assumptions in the shear layer corrections for 

scale-model data had slight impact on spectra but not on EPNL

• Flights tests should include multiple microphones for averaging 

spectra to reduce uncertainty

• 


