Jet Noise Prediction Comparisons with
- Scale Model Tests and Learje OVE




Motivation for Study

Renewed interest in commercial supersonic flight

Near-term entry into service aircraft
— Business type jet
— 2 -3 engines
— Fully mixed exhausts

— Jet noise dominant at takeoff

NASA systems studies supporting ICAO Working Groupl/LTO
subgroup

Need to quantify our ability to predict absolute jet-noise levels

Results of this study assist with error bars placed on our ICAO system
results

Comparisons are made between prediction models in ANOPP, scale-
model data, and flight data



Comparisons @

« Interestis in EPNL but spectra contributing to EPNL are also
compared

* Three different datasets explored
— Flight test data
» Did not use a noise certification flight procedure
* Intent is to determine general jet-noise prediction capability
— Spectra obtained from jet-noise models within NASA's ANOPP
« Stone 1 (1980)
« Stone 2 (2009)
« SAE 876
* Modified SAE 876
— Scale model data acquired in NASA Glenn’s AAPL

* Angles between 70° and 150° can be used to compute EPNL
that is within 0.5 EPNdB of that computed from all microphones



Flight and Scale-Model Tests @

* Learjet 25 flight test conducted in 2001
— Believed to be jet-noise dominated

— Exhaust conditions for lower power settings of interest for supersonic business jet
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e Scale model tests conducted in
2018 in NASA Glenn’s AAPL facility



Flight Tests

» Used a Learjet 25 with a CJ610 engine
— CJ610 is a variant of the J85 » L

— EGT read from cockpit gauge during
pretest conducted in Ohio but not during

flight test
— EPR recorded during flight test , _
=) 0
« Performed with a constant 500 ft flyover s00 o T o
. . . 4 e
 Right engine at idle 58
. o yeft
« Conducted at Estrella Sailport C
(Phoenix)
 Measurements made with three linear
arrays Approximate J85 J85
i EPR Jet Temperature | Temperature | Landing Mach #
— Left-6 m|Cr0ph0neS Temperature Engine Flight Test | Gear ac
— Center (under flight path) - 8 R Stand °R_ | (M~0.38) "R
) h 1.6 1180 1306* 1194* Up | ~0.30
micropnones 1.8 1257 1402+ 1288* Down | ~0.23
— Right — 6 microphones 2.0 1374 1505* 1388* Down | ~0.26

*Brausch, J. F., “Flight Velocity Influence on Jet Noise of Conical Ejector,
Annular Plug and Segmented Suppressor Nozzles,” NASA CR-120961, 1972.
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Scale-Model Tests

e Conducted in the Aero-Acoustic
Propulsion Laboratory

» Used 0.31 scale model of Learjet nozzle
system

» Secondary stream was used to mimic
secondary flow through NACA scoop
and vents

« Slight offset in nozzle was replicated
 Measurements made at two azimuthal

Vents Scoop

Learjet 25 Nozzle

angles W \ , .= Microphone
— For centerline flyover array W ol g

— For sideline flyover array I R
« NPR was matched to flyover EPR "

* NTR was matched to temperature ratio
In flyover tests et

« Secondary stream NTR = 1.25 Wi i V Scale-ModeI
- Secondary stream set to low NPR, AAPL FaC|I|ty Nozzle System
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Scale-Model Data



Repeatability and Mixing Noise
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Impact of Secondary Stream

» Spectra for NPRs = 1.05 and 1.10 are similar

« Slight increased levels for NPR = 1.20
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Impact of Shear Layer Correction @’

* Investigated impact of source distribution assumption in shear layer
correction

 Source at exit peak at ~150°

« Distributed source peaks at ~140°

» Peak jet-noise level is roughly the same for all source distributions
 Source distribution assumption was found to have little impact on EPNL
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Predictions and Scale Model
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Flight Data



Spectral Comparisons

* No aircraft GPS information from flight test
* Needed aircraft position information to compare flight data to scale-model

data and predictions

-

« Aircraft position determined from tones assuming changes in frequency
only associated with Doppler shift

« Spectra obtained from data at different microphones were averaged with
time shift accounting for aircratft flight
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Data Repeatability e
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Predictions and Flight Data Comparisons@
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Predictions and Flight Data Comparisons@
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SPL (dB)

SPL (dB)

SPL (dB)

Predictions and Flight Data Comparisons@
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Impact of Number of Array Elements
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Effective Perceived Noise Levels @
Centerline Array

EPNdB Under Flight Data
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Effective Perceived Noise Levels @
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Conclusions @

EPNL from predictions and scale-model data were below that for the
flight data for all engine EPRs

— SAE model; 2.5 - 3.5 EPNdB
— Stone 2 model: 1 — 2 EPNdB
— Scale-model data: 3 -5 EPNdB

Differences between EPNL computed for flight and scale-model or
ANOPP models are likely due to uncertainty in engine conditions

— An increase in engine temperature of 100° F results in 1 — 2 EPNdB
increase

Source distribution assumptions in the shear layer corrections for
scale-model data had slight impact on spectra but not on EPNL

Flights tests should include multiple microphones for averaging
spectra to reduce uncertainty
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