Analysis and Comparison of Surface Roughness Effects on Pressure Data from SLS Wind Tunnel Test

Presented By: Autumn N. Douthitt
Mentor: Nettie H. Roozeboom
NASA Ames Summer 2019 Internship Branch Presentation

Acknowledgements: Dr. Rabindra Mehta, Lara Lash, Thomas Steva (MSFC), NASA PSP Team, Jie Li, and Nick Garbe
Mission Objective

- Necessary to know flow field characteristics of SLS design configurations
- Does paint application affect signal?
- Does sanding of the paint affect signal?

Shoulder of paint around the Kulite

Sanded paint around the Kulite

[Images of SLS and Kulite courtesy of NASA PSP Team] [Moon and Mars images courtesy of Google Images]
Timeline of Events

Configuration 17

<table>
<thead>
<tr>
<th>Day 0 (Dec. 1(^{st}))</th>
<th>Day 1 (Dec. 4(^{th}))</th>
<th>Day 2 (Dec. 5(^{th}))</th>
<th>Day 3 (Dec. 6(^{th}))</th>
</tr>
</thead>
</table>
| • Clean Model | • Epoxy, uPSP Base and Topcoat
 • Test with no sanded Kulites | • Refreshed uPSP Topcoat
 • Test with 10 Sanded Kulites
 • 940, 952, 925, 998, 923, 416, 792, 779, 996, 738 | • No refresh of uPSP
 • Test with 5 sanded Kulites
 • 414, 773, 763, 419, 404 |

<table>
<thead>
<tr>
<th>All Days Tested at Mach</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>0.85</td>
</tr>
<tr>
<td>0.9</td>
</tr>
<tr>
<td>0.95</td>
</tr>
<tr>
<td>1.05</td>
</tr>
<tr>
<td>1.1</td>
</tr>
<tr>
<td>1.2</td>
</tr>
<tr>
<td>1.4</td>
</tr>
</tbody>
</table>

[SLS and Kulite images courtesy of NASA PSP Team]
Kulite Locations on SLS

Table

<table>
<thead>
<tr>
<th>#</th>
<th>Kulite</th>
<th>Zone</th>
<th>X</th>
<th>Phi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>738</td>
<td>13</td>
<td>43.1</td>
<td>283</td>
</tr>
<tr>
<td>2</td>
<td>996</td>
<td>77</td>
<td>53.4</td>
<td>270</td>
</tr>
<tr>
<td>3</td>
<td>404</td>
<td>77</td>
<td>53.4</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>763</td>
<td>77</td>
<td>55.9</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>773</td>
<td>77</td>
<td>58.5</td>
<td>113</td>
</tr>
<tr>
<td>6</td>
<td>779</td>
<td>77</td>
<td>58.5</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>792</td>
<td>78</td>
<td>60.7</td>
<td>225</td>
</tr>
<tr>
<td>8</td>
<td>414</td>
<td>78</td>
<td>61.4</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>416</td>
<td>78</td>
<td>61.4</td>
<td>182</td>
</tr>
<tr>
<td>10</td>
<td>419</td>
<td>79</td>
<td>62.2</td>
<td>93</td>
</tr>
<tr>
<td>11</td>
<td>998</td>
<td>79</td>
<td>65.4</td>
<td>270</td>
</tr>
<tr>
<td>12</td>
<td>925</td>
<td>79</td>
<td>66.6</td>
<td>315</td>
</tr>
<tr>
<td>13</td>
<td>923</td>
<td>79</td>
<td>66.6</td>
<td>239</td>
</tr>
<tr>
<td>14</td>
<td>940</td>
<td>90</td>
<td>69.8</td>
<td>270</td>
</tr>
<tr>
<td>15</td>
<td>952</td>
<td>99</td>
<td>72.4</td>
<td>225</td>
</tr>
</tbody>
</table>

Diagram

- Mach 0.7
- Mach 0.8
- Mach 0.85
- Mach 0.9
- Mach 0.95
- Mach 1.05
- Mach 1.1
- Mach 1.2
- Mach 1.4

[Run Log data courtesy of NASA PSP Team]
Tools for Mission Success

1. Notes, Pictures, and Run Log from Test

2. Reduced Kulite and uPSP Pressure Time History Data

3. Matlab \rightarrow Plot 3D and Modified uPSP Example Code

4. Dots

5. Requirements of SLS Customers

[SLS image courtesy of NASA PSP Team]
Processing the Kulite Data
Locating Kulites on SLS using Dots

• Began with studying documentation taken during Kulite sanding (photos, notes, test run log)
• Using Dots, was able to determine location of these Kulites on SLS model

Kulite names can be featured beside their location

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]
[Kulite images courtesy of NASA PSP]
Data Processing Method for Kulites

• 15 Kulites, 9 Mach Numbers, 4 Days of Testing

Enter Desired Run Number
Enter Desired Sequence #
Enter Desired Kulite

Input working directory

Result is FPL of Kulite at that Mach number and Model Orientation
Comparing the Kulite Data

• Combined the plots for all four days for each Mach number
Results of Sanded Kulite Data
11 DDS Results Along SLS at Mach 0.7, $\alpha=0$ $\beta=0$

Flow

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]
11 DDS Results Along SLS at Mach 0.95, $\alpha=0 \ \beta=0$

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]
11 DDS Results Along SLS at Mach 1.4, $\alpha=0$ $\beta=0$

Flow

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]
Results: Mach 0.7 @ $\alpha=0$, $\beta=0$

K998 KA738 KA996

KA779 K404 KA979

K498 KA925 KA998

KA940 KA763 KA773

K416 K414 K419
Results: Mach 0.95 @ $\alpha=0$, $\beta=0$
Results: Mach 1.4 @ $\alpha=0$, $\beta=0$
Results with Large Differences in FPL, $\alpha=0 \ \beta=0$

- Mach 0.7: 414, 763, 773
- Mach 0.95: 414, 763, 779
- Mach 1.4: 414, 773, 779
11 DDS Results Along SLS at Mach 0.7, \(\alpha=0 \ \beta=4\)
11 DDS Results Along SLS at Mach 0.95, α=0 β=4

Day 0
Day 1
Day 2
Day 3

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]
11 DDS Results Along SLS at Mach 1.4, $\alpha=0$ $\beta=4$

Flow

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]
Results: Mach 0.7 @ $\alpha=0$, $\beta=4$
Results: Mach 0.95 @ $\alpha=0$, $\beta=4$
Results: Mach 1.4 @ $\alpha=0$, $\beta=4$
Results with Large Differences in FPL, $\alpha=0$ $\beta=4$

Mach 0.7

Mach 0.95

Mach 1.4
Processing the uPSP Data
Locating Nodes on SLS using Dots

- SLS is defined by PSP grid ➔ each grid has multiple zones ➔ each zone has nodes
- Selected a 3x3 section of nodes near a sanded Kulite using Dots grid

Each node has an i and j coordinate:
- i coordinate goes around from 1-361 for every line of nodes in the grids for the larger parts of the model
- J=1 at the start of every zone from left to right

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]
Data Processing Method for uPSP

• Converted the 3 x 3 section of chosen nodes into a virtual Kulite

```matlab
% Read HDF5 file
file = '132506_trans.h5';
zone = 13;

obj.X = h5read(file, '/X'); % retrieves all X data for h5 file
obj.Y = h5read(file, '/Y'); % retrieves all Y data for h5 file
obj.Z = h5read(file, '/Z'); % retrieves all Z data for h5 file
obj.GridSizes = h5read(file, '/Grid_Sizes');
jmax = obj.GridSizes(1,zone);
kmax = obj.GridSizes(2,zone);

nodes = 0;
for i = 1:zone-1
    nodes = nodes + (obj.GridSizes(1,i)* obj.GridSizes(2,i));
end
node_start = nodes + 1;
nodes_zone = obj.GridSizes(1,zone)* obj.GridSizes(2,zone);
node_end = node_start + nodes_zone - 1;
numOfNodes = node_end - node_start + 1;
clear nodes;
X = obj.X(node_start:node_end,1);
Y = obj.Y(node_start:node_end,1);
Z = obj.Z(node_start:node_end,1);
dim1 = 176; % j-value or i-value in DOTS
dim2 = 25; % k-value or j-value in DOTS

NZone = [(jmax+1) + dim1];
NZone = [(kmax*(dim2-1)) + dim1];
KuliteNode = node_start + NZone - 1;

KuliteX = obj.X(KuliteNode);
KuliteY = obj.Y(KuliteNode);
KuliteZ = obj.Z(KuliteNode);
```

Specified h5 file and zone of nodes

Extracted h5 file information and Grid Sizes;
“jmax” is max of “i” and “kmax” is max of “j” in Dots program for specified zone

Extracting Node Information:
- `node_start` ➔ first node in zone in relation to all nodes
- `nodes_zone` ➔ number of nodes in specified zone
- `node_end` ➔ last node in zone in relation to all nodes
- `numOfNodes` ➔ `nodes_zone`

Specified (i,j) location of node to obtain node number in specified zone and in relation with all the nodes in Dots program
Data Processing Method for uPSP Cont.

- Extract the Frame x Node Data from h5 file
- Isolate chosen nodes in columns perpendicular to flow for 3 vectors
- Reshape these into 3x1xtime matrices
- Combine the matrices into one 3x3xtime matrix
- Average matrix to create virtual Kulite, now a 1x1xtime matrix
- Reshape into 2D matrix (1xtime)
- Processed uPSP data to obtain Power Spectral Density plot
 - Sampling Rate ➔ 10kHz
 - FFT size ➔ 512
 - Overlap ➔ 0.75
 - Detrended virtual Kulite (although not needed)
 - Normalized by variance of detrended data
- Plotting PSD in semilog fashion
Conclusions Gathered to Help Complete the Mission

• No right or wrong answer
• Changing the roughness of a model will affect the flow
• Positive Note: uPSP not creating tones \Rightarrow not translating to design change
• uPSP surface roughness does affect flow, magnified at areas of high fluctuating pressures (do see offset but consistent across days)

Future Work Towards Mission Accomplishment

• Process uPSP data for same runs
• Prepare for September uPSP demonstration
 • Only sanding in areas of high fluctuation
 • Painting over Kulites \Rightarrow does uPSP damage the Kulite?
Thank You! Any Questions?

Power of Pink!
Results

\(M = 0.7 \)

\(\alpha = 0, \beta = 0 \)
Results
M=0.7 \alpha=0, \beta=0

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]
Results

$M=0.95$

$\alpha=0$, $\beta=0$

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]
Results

$M = 1.4$

$\alpha = 0, \beta = 0$

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]
Results

$M=0.7$

$\alpha=0$, $\beta=4$
Results

$M=0.95$

$\alpha=0$, $\beta=4$

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]
Results

M=1.4

α=0, β=4

[Dots image courtesy of NASA PSP Team and Thomas Steva of MSFC]