

SPACE-CENT: Physiological Monitioring of Fluid Shifts during Orthostatic Tilt

Gary Strangman,

K. Marshall-Goebel, F. Hoffmann, S. Moestl, J. Tank, E.M. Bershad

Motivation Topics

- 1. Quantify fluid re-distribution along the body axis during orthostatic tilt testing.
- 2. How does 60 days of -6° HDT affect this re-distribution?
- 3. Does centrifugation alter the effects of 60-day HDT at -6°?
- 4. Can any of our hemodynamic measures help predict survival time during orthostatic tilt tests?

Experimental Design

Head-to-Toe Hemodynamic Shifts

NINscan System

Tilt Protocol and Predictions

Protocol:

- Tilt up from 0° to +80° for 900s
- If not yet presyncopal, add -10mmHg LBNP every 180 sec until presyncope

Uniform blood distribution

Hemodynamic Metrics – Δ [HbT]

[HbT] Metrics ... Amplitude ([HbT]), Variability (std), and Slope (change over time)

Hemodynamic Metrics – Pulsatility

Pulsatility Metrics ... Amplitude ([HbT]), Variability (std), and Slope (change over time)

Tilt Table Survival Times

Campaign 1

Subject	BDC-5	R+0
А	1550	1154
В	345	262
С	475	311
D	745	195
E	716	118
F	1746	607
G	986	319
н	989	357
J	1533	481
К	1585	1127
L	1375	163
М	1131	369
Mean (SD)	1098 (465)	455 (347)

Campaign 2				
Subject	BDC-5	R+0		
N	117	145	*	
Р	861	453		
Q1	1517	1229		
R1	1402	927		
S1	348	568	*	
т	1237	473		
U	1432	1451	*	
V	379	577	*	
W	1598	784		
Х	1448	1327		
Y	211	77		
Z	1632	764		
Mean (SD)	1015 (592)	731 (440)		

Example 1: Head "DOWN at start"

N=16

Example 2: Head "UP at start"

N=8

Redistribution: Tilt DOWN (80°→0°), [HbT]

Head UPstart vs. DOWNstart, [HbT]

Cerebral Pulsatility

Vasomotor Pulsatility (VP) ... ~0.1 Hz (aka Mayer Waves)

- <u>Start of tilt</u>: No changes
- <u>Middle</u>: cAG and iAG significantly *reduced VP amplitudes* mid-tilt (-1.9 and -2.4 μM, respectively; p<0.05)
- <u>End</u>: *reduced VP variability* at the end of tilt (p<0.05)

Cardiac Pulsatility (CP) ... ~1 Hz

- <u>Middle</u>: significantly *increased CP amplitudes* pre-vs. post-HDT (0.3 μM, p=0.05) and significantly *reduced CP variability* in cAG and iAG subjects (-0.3 μM for both; p<0.05)
- <u>All phases</u>: Significantly *reduced CP amplitude and variability* with increasing **age** during all phases of the tilt test (p<0.05)

Predicting Time Upright

2 Models where Hemodynamics Predicted

Time Upright:		Coef.	Std.Err.	. z	P> z	[0.025	0.975]	
	Intercept	1178.538	146.137	8.065	0.000	892.114	1464.962	
Ducin	MD[T.R+0]	-370.179	91.290	-4.055	0.000	-549.104	-191.254	
Brain	cAG	-197.776	195.417	-1.012	0.312	-580.786	185.235	
[HbT]	iAG	-202.463	199.225	-1.016	0.310	-592.938	188.011	
[]	HBT_brain	7.622	3.039	2.508	0.012	1.666	13.579	
	Group Var	113095.507	245.509					
	=========		=========	=======	======	==========	============	:=

NOTE: UPstart coef=307.356, p=0.08

		Coef.	Std.Err.	Z	P> z	[0.025	0.975]
Chest-level	Intercept MD[T.R+0]	801.378 -481.411	189.087 80.962	4.238 -5.946	0.000 0.000	430.774 -640.094	1171.982 -322.727
Vasomotor	cAG iAG	-133.261 -210 899	188.229 187 090	-0.708	0.479 0.260	-502.184	235.661 155 790
Pulsatility	VPulsatili UPstart	ty 55.903	26.009	2.149	0.032	4.926 5.941	106.881
	Group Var	101078.510	218.256	1.750	0.010	5.911	000000

Predicting Time Upright

ALWAYS Significant Predictors of Time Upright

- Mission Day (i.e., pre vs. post HDT)
- UPstart

NON-Significant Predictors of Time Upright

- iAG, cAG
- Age
- Sex
- Cardiac Pulsatility

Note: Although never significant, iAG & cAG always exhibited large negative coefficients (-100 to -400 sec), suggesting AG tended to <u>reduce</u> time upright, but with quite substantial inter-subject variability.

Discussion

Motivation Questions	Results Summary			
1. Quantify fluid re-	MOSTLY head-to-toe			
distribution along the body	Brain [HbT] loss ~60s before presyncope			
axis during orthostatic tilt testing	Unexpected "up first" in brain [HbT] in ¹ / ₃ of subjects; eliminated at R+0.	55, CH=1 (far)		
2. Effect of 60-day HDT?	Greater and earlier decreases in brain [HbT] on R+0.	9 50 100		
3. Effect of centrifugation?	Reduced VP amplitudes and CP variability			
4. Hemodynamics predicting tilt survival time?	Yes: (1) [HbT] "up first" in brain (2) [HbT] deviation from baseline			

SPACE-CENT Acknowledgements

Harvard Medical School

Karina Marshall-Goebel Quan Zhang Vladimir Ivkovic

Baylor College of Medicine Eric Bershad Jonathan Clark

DLR :envihab

Jens Tank Stefan Moestl Insa Naendrup Antonia Thamm Edwin Mulder DLR Orthostatic Tilt team

Supported by:

NASA grant #NNX17AE04G

Summary of Findings

<u>Head Δ [HbT] mean</u>

+upstart=start/middle/end -MD=middle/end (-sex)=start/middle/end

<u>Head Δ [HbT] std</u>

-iAG=middle (-cAG)=middle (+MD)=middle

Head Δ [HbT] slope +upstart=start

-MD=middle