
In order to support next generation ocean color missions such as PACE, we need to quantitatively understand 

phycobiliprotein (PBP) contributions to the satellite signal. Phycocyanins (PC, absorbance range 610-620 nm) are 

typically associated with freshwater environments and phycoerythrins (PE, absorbance range 540-570 nm) are  

typically associated with marine environments, although there can be significant overlap.  

 

Goals: 

• Implement routine analysis of PBPs that is: reproducible, has a high extraction efficiency, and is 
suitable to being implemented on a large scale.  

 
• Test if one extraction methodology could be applied to samples from all environments 
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Abstract 

Identification and characterization of phytoplankton communities and their physiology is a primary aim of NASA’s PACE satellite mission. The concentration and composition of phytoplankton pigments modulate the spectral 
distribution of light emanating from the ocean, which is measured by ocean color satellites, and thus provide critical information on phytoplankton community composition and physiological parameters. One diagnostic class of pigments 

not routinely well-characterized is the phycobiliproteins (PBPs), and NASA has a requirement to collect and distribute high quality in situ data in support of data product validation activities for ocean color missions. Phycobiliproteins 
are light-harvesting proteins that are the predominant photosynthetic pigments in some classes of phytoplankton including cyanobacteria, such as Synechococcus, Trichodesmium, and Microcystis. With the advance of hyperspectral 

ocean color sensors such as on PACE (expected to launch in late 2022), it is essential that we implement routine analysis of PBPs that satisfies several considerations: reproducible, high extraction efficiency for a variety of 
environments, and Suitable for large scale analysis. Published techniques for PBP analysis vary in recommendations for: collection, extraction, disruption mode, and analysis; evidence suggests the variation in results may depend at least 

in part on the species and even strain(s) of interest. Experiments that tested variations in these parameters have drawn very different conclusions regarding extraction efficiency and reproducibility. Cyanobacteria are more difficult to 
extract than other PBP-containing algae such as cryptophytes, but can be important primary producers. We used a cryptophyte (Rhodomonas salina) and cyanobacterium (Synechococcus sp.) to compare extraction efficiencies of water 

samples concentrated via centrifugation to filtered samples using two different extraction buffers (phosphate and asolectin-CHAPS). Samples were analyzed on a fluorometer configured for phycoerythrin (PE) detection. The results have 
important implications for collection and storage of samples for routine analysis; some previous studies (although not all) have suggested that filtered samples have a much lower extraction efficiency than whole water samples. 

Testing extraction time: 
 

Filtered samples were extracted for either 24 or 48 hours. The 48 hour 
samples underwent an additional extraction cycle (freeze/thaw and 
sonication). There was no significant difference (p>0.05) between results 
for samples extracted for 24 hours compared to those extracted for 48 
hours, although there is some indication Rhodomonas extraction may 
start to degrade after 24 hours (increased standard deviation, decreased 
mean concentration). In preliminary testing, we saw similar results with 
Trichodesmium and a different batch of Rhodomonas (data not shown). 
 

Impact of collection method, storage, and buffer choice: 
 

• There is no significant difference (p>0.05) between storing samples or 
analyzing them immediately, when comparing samples from the same 
collection technique. Therefore the preservation methods employed 
(freezing in liquid nitrogen or immediately centrifuging and adding 
buffer before freezing at -20°C) were effective, as PBPs can start to 
degrade almost immediately upon the death of the cell (Stewart and 
Farmer 1984). 

 

• There is a significant difference (p<0.05) between the extraction 
capabilities of PO4 and A-C buffers, except for frozen Rhodomonas 
samples (visually, there appears to be a difference; the lack of 
significance may result from the small sample size and high variance). 
PO4 buffer had higher extraction efficiency than A-C buffer for 
Rhodomonas; the opposite was true for Synechococcus. These results are 
consistent with what was seen in the extraction time experiment. 

 

• There is a significant difference between samples collected via 
centrifugation and samples collected on filters, with filtered samples 
exhibiting lower extraction efficiency regardless of culture. These results 
are consistent with results seen by Lawrenz et al. (2011). 

     

(Note: when calculating statistics, results from centrifuged Synechococcus samples extract in PO4 and analyzed 
immediately were not included as one sample cracked during extraction). 

Based on these tests, cryptophytes and cyanobacteria need different extraction buffers. Centrifuged samples 

offered better extraction efficiency compared to filtered samples, but this type of sample collection is not practical 

on a large scale. Further research is needed to develop a filtration-based method that offers equivalent extraction. 

We intend to produce standardized protocols for PBP analysis. In order to do that, we must quantify the 

uncertainties of phycobiliprotein analysis and develop methodologies that can be practically implemented on a 

large scale. 

Future work: 

• Grow cultures in larger batches for more replicate samples (statistics limited by small sample size). 

• Test other extraction media, and how long samples remain viable in frozen storage. 

• Test other types of filters for sample collection to improve extraction efficiency. 

• Test procedures with other cultures (Trichodesmium, Prochlorococcus, other Synechococcus strains) and 

natural samples expected to contain PBPs. 
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We tested several methodological variables: 

• collection method-centrifugation, filtration 

• buffer type-100mM phosphate (PO4) and modified asolectin

-CHAPS (A-C)  

•storage-extracted immediately or stored in liquid nitrogen 

The Cultures: 

Rhodomonas salina  

(CCMP 1319, also known as 3C, 

NEPCC76, LB2423, and CS-174)  

—Marine cryptophyte usually found in 

 temperate regions  

Synechococcus sp.  

(CCMP 3074, also known as CC9902)  

—Marine cyanobacteria usually 

 found in coastal areas 

—Part of subcluster 5.1A, which only     

 contains PE 

There is significant variation in 

suggested methodology for collection, 

extraction, and analysis of PBPs in the 

literature. Even among papers 

comparing techniques, different 

conclusions have been drawn regarding 

the best practices. In some instances, 

this is because the researchers have 

different goals (Ex. only interested in 1 

pigment); others are not as easily 

Summary of previous research comparing techniques for quantitative PBP extraction 

Notes: 

• There were three replicates of each treatment. 

• 5 ml buffer was added to each sample. After ultra-

sonication with a microtip, 1 ml buffer was used to rinse 

the tip into the sample. 

• Samples collected by centrifugation were frozen (-20°C) 

after buffer was added, thawed, sonicated, frozen again     

(-20°C), then thawed overnight at -4°C. 

• Filtered samples were sonicated, frozen (-20°C), then 

thawed overnight at -4°C. 

• All filter samples were collected on GF/Fs and flash 

frozen, whether extracted immediately or stored in liquid 

nitrogen for later analysis. 

• We opted to use modified A-C buffer (Zimba 2012) as 

opposed to the original formulation (Viskari and Colyer 

2003), based on preliminary testing. 

• Samples were analyzed on a Turner Designs 10-AU 

fluorometer calibrated and configured for PE analysis. 

• Statistical comparisons were made using 2-tailed t-tests. 
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   Methodology 

Author Collection method Buffer Disruption method 

  Centrifuge Filter PO4 A-C Other  Freeze/Thaw  Sonicate Grind Other 

Stewart & Farmer 1984   X     lysozyme     X   

Wyman 1992 X X X       X X French press 

Viskari and Colyer 2003 X X X X  
lysozyme, 5 

unique buffers X X X 
French press, 

N2 bomb 

Silveira et al. 2007   X X  
4 unique    
buffers       elevated heat 

Zhu et al. 2007 X   X   lysozyme,     X X X   

Lawrenz et al. 2010 X X X     X X X   

Zimba 2012   X X X X    X X     

Horvath et al. 2013 X X X     X X X   

Sobiechowska-Sasim et al. 
2014   X     lysozyme     X   

Yacobi et al. 2015   X X   lysozyme     X   

Thoisan et al. 2017   X X     X X   lyophilization 

 

Horváth H, et.al. Extraction methods for phycocyanin determination in freshwater filamentous cyanobacteria and their application in a shallow lake. Eur J Phycol. 2013; 48(3):278-286. doi:10.1080/09670262.2013.821525 

Lawrenz E, Fedewa EJ, Richardson TL. Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. J Appl Phycol. 2011; 23(5):865-871. doi:10.1007/s10811-010-9600-0 

Silveira, S.T. et.al., Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology. 2007; 98(8):1629-1634. doi: 10.1016/j.biortech.2006.05.050 

Sobiechowska-Sasim M, et al. Quantitative analysis of extracted phycobilin pigments in cyanobacteria—an assessment of spectrophotometric and spectrofluorometric methods. J Appl Phycol. 2014; 26(5):2065-2074.  

Stewart DE, Farmer FH. Extraction, identification, and quantitation of phycobiliprotein pigments from phototrophic plankton. Limnol Oceanogr. 1984; 29(2):392-397. doi:10.4319/lo.1984.29.2.0392 

Thoisen, C., Hansen, B. W. and Nielsen, S. L. A simple and fast method for extraction and quantification of cryptophyte phycoerythrin. Methods X. 2017; 4209–213. doi: 10.1016/J.MEX.2017.06.002 

Viskari PJ, Colyer CL. Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal Biochem. 2003; 319(2):263-271. doi:10.1016/S0003-2697(03)00294-X 

Wyman M. An in vivo method for the estimation of phycoerythrin concentration in marine cyanobacteria (Synechococcus spp.). Limnol Oceanogr. 1992; 37:1300–1306. doi: 10.4319/lo.1992.37.6.1300 

Yacobi YZ, Köhler J, Leunert F, Gitelson A. Phycocyanin-specific absorption coefficient: Eliminating the effect of chlorophylls absorption. Limnol Oceanogr Methods. 2015; 13(4):157-168. doi:10.1002/lom3.10015 

Zhu Y, Chen XB, Wang KB, et al. A simple method for extracting C-phycocyanin from Spirulina platensis using Klebsiella pneumoniae. Appl Microbiol Biotechnol. 2007; 74(1):244-248. doi:10.1007/s00253-006-0636-7 

Zimba P V. An improved phycobilin extraction method. Harmful Algae. 2012; 17(March):35-39. doi:10.1016/j.hal.2012.02.009 


