

A Multi-Physics Study on <u>High-Specific Power</u> Li-O₂ Batteries for Electric Aircraft

Mohit Mehta, Kristian Knudsen, Brian McCloskey, John Lawson Presentation date: 05/30/2019

- 1. Introduction
- 2. Model calibration
- 3. Parametric Study
- 4. Simulation Based Optimization

NASA Strategic Plan for Green Aviation

Green Aviation Battery Requirements

Major requirement is: High Energy Density

Other requirements are **rechargeable**, **safety**, power, recharge time, cost, etc.

Working of a lithium-oxygen battery

Modeling a lithium-oxygen battery

Over-voltage thermodynamic $\eta = \phi_{\rm Li} - \phi - E^0 - V_{\rm discharge}$ electrolyte electrode Li₂O₂ -I (electron current) $\nabla \cdot \left(\sigma_{\text{eff}} \nabla \phi\right) + R_C = aC_d \frac{\partial \left(\phi - \phi_{\text{Li}}\right)}{\partial t}$ -I₁ (electrolyte current) $\nabla \cdot \left(\kappa_{\text{eff}} \nabla \phi_{\text{Li}} + \kappa_{\text{D}} \nabla \ln c_{\text{Li}} \right) - R_{\text{C}} = aC_d \frac{\partial \left(\phi - \phi_{\text{Li}} \right)}{\partial t}$ -I_{Li} (electrolyte diffusion flux) $\frac{\partial \left(\epsilon c_{\mathrm{Li}}\right)}{\partial t} = \nabla \cdot \left(D_{\mathrm{Li,eff}} \nabla c_{\mathrm{Li}}\right) - \frac{1 - t^{+}}{E} R_{C} - \frac{I_{\mathrm{Li}} \cdot \nabla t^{+}}{E}$ $-I_{O_2}(O_2 \text{ diffusion flux})$ $\frac{\partial (\epsilon c_{o_2})}{\partial t} = \nabla \cdot (D_{o_2, \text{eff}} \nabla c_{o_2}) - \frac{R_C}{m_L}$ e (porosity change -from Li₂O₂ deposition) $\frac{\partial \epsilon}{\partial t} = -R_C \frac{M_{\text{discharge}}}{nF\rho_{\text{m,discharge}}}$

Model calibration for simulating high current

Simulating cells for high power cell needs accurate electrolyte properties and current dependent kinetics

Electrochemical mass distribution

Cell mass distribution

Mass distribution separated into solid and liquid phases

All three components of Li-O₂ cell can be optimized to achieve high specific power

Polarization test: The effect on power

Operating at "high" current densities can lead to 25% power loss during 1hr discharge

Polarization test: Oxygen Partial Pressure 2.9 3600s discharge 10 -P_{max} [mW/cm²] 2.8 Vcell [V] Increasing p_{o_2} 8 2.7 6 2.6 4 2.5 0.5 1.5 2 1 2 3 4 0 p_{O2} [atm] -j_{dis} [mA/cm²]

Increasing oxygen partial pressure improves power as well as non-electrochemical mass

Influence of separator on performance

Separator does not contribute to battery performance at high current densities

Oxygen diffusion length determines the optimal cathode thickness

Optimal values for porosity, particle size, and tortuosity depend on discharge current density and discharge time

Influence of electrolyte properties

Requirement for electrolyte properties changes with application needs

Influence of electrolyte properties –cont. 200 $j_{dis} = 0.5 \text{ mA/cm}^2$ 10⁻⁴ p_{O2} = 1100 Torr 0.1 Li⁺ DME p_{O2} = 160 Torr DM Discharge time [mins.] 150 3 mA/cm 10⁻⁵ $D_{02} \ [cm^2/s]$ 100 j_{dis} = 1 mA/cm² [☆]1 mA/cm²☆ 10⁻⁶ 0.5 mA/cm^2 50 TEGDME 10⁻⁷ P13TFSI ✡ P13FSI P14TFSI $= 2 \text{ mA/cm}^2$ **BdIMTFSI** N1223FSI j_{dis} 0 5 10 15 20 0.2 0.4 0.8 0.6 c₀₂ [mM] c_{Li,0} [M]

Diffusion requirements can be relaxed based by changing operating partial pressure and choosing lower salt concentration

Simulation-based optimization

Summary

- To achieve high specific power, both, current density and cell mass needs to be optimized
- Reducing mass of the separator improves specific power without decreasing the power performance
- Optimal cell design changes based on discharge time, discharge current density, and operating conditions
- Electrolytes with high oxygen diffusivity results in cell with high specific power (promoting better oxygen distribution can mitigate this requirement)

Cell optimized for low electrochemical mass

Funding

University of California, Berkeley

NASA

John Lawson

Brian McCloskey

NASA Aeronautics Research Mission Directorate (ARMD) Convergent Aeronautics Solutions (CAS) Project, LiON (Lithium Oxygen batteries for NASA) sub-project