A Path Towards Quantum Advantage
in Training Deep Generative Models
with
Quantum Annealing
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Discovery Innovations Solutions

How to use quantum annealers to provide quantum
advantage on real applications?

* The good:

1. Quantum annealers are competitive with state-of-the-art classical
solvers on natively defined problems

[Mandra, Katzgraber, QST 3; King et al, arXiv:1701.04579;
Hen et al. PRA 92; Albash and Lidar, PRX 8]

* The bad:
2. Relatively small number of available qubits
3. Quasi two-dimensional (spatially local) connectivities

4. Control and thermal errors
[Troyer, Katzgraber: AQC2019 talks;

Albash et al. QST 4]

* The ugly:

1. We still don’t know how to exploit the good to solve useful problems
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Two use cases for guantum annealing

1. Optimization:

- Quantum annealing developed as a quantum heuristic for
optimization

- Well-established suite of tools for benchmarking: time-to-
solution(target) measures, planted solutions...

- Divide-and-conquer and embedding algorithms face large overheads

2. Sampling:
- A more recent application for QA, potential not fully understood

- Benchmarking is more subtle: KL-divergences are expensive to
compute, approximate sampling sufficient for practical applications...

- Focus on machine learning applications and techniques for
‘embeddings’
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Quantum annealers are special purpose devices, exploit
what they do best:

sampling on native connectivity

f,-<f” [;->>[1; |

« Quantum annealers simulate
a transverse field Ising model
Immersed in a thermal bath

. —
[Amin, PRA 92; Marshall et i \/ t<togt, | ;
al., PR Applied 11] : - b
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* The required technology is being developed: advanced annealing
schedules (pauses, fast quenches, reverse anneals) (D-Wave/QEQO)

frozen

frdeze-out

Time-scales (arb. units)

- The use of D-Wave quantum annealers as quantum Boltzmann
samplers recently demonstrated in material simulations

[Harris et al., Science 361; King et al., Nature 560]
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* Boltzmann Machines (BM) approximate data
distributions as thermal states of classical spin-systems

po(z) =e o /7, Zg= Z e~ Fo(2)

V/

Ee(Z) = Zlhl + Z Wlmzlzm7 h7W < {0}

l l<m

- Boltzmann Machines (BM) and QA: a perfect match?

visible latent

. . . unitsz  units z
* Training BM requires Boltzmann sampling:

- State-of-the-art sampling technigues: [Smolensky, "86]

(Persisent) Contrasting Divergence (P)CD

- Difficult to scale to large, more powerful BM [ Hinton, Science 313]

| Employ quantum annealers for faster, more scalable sampling
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« Connectivity is a very important factor

[Dumoulin et al.,
. AAAI Conf, ’14]
- Generative performance of BM on

Chimera graph: disappointin
g p pp g [MNIST 50k
handwritten

digits]
 Rely on technological improvements

- Chimera (D-Wave) -> Pegasus (D-Wave) -> QEO program

- Only quasi two-dimensional connectivities available for the
foreseeable future

« Rely on common embedding techniques

- Sampling quality decreases dramatically, likely not scalable
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[Benedetti et al., QST 3]
« Quantum/classical joint training

- Extract the most suitable features for the quantum device

- Hard-coded specification of the connectivity not required

Generative Adversarial | Variational Autoencoders Invertible Elows
Networks (GAN) (VAE)

[Wilson et al., [Vinci et al., [work in progress]
arXiv:1904.10573] arXiv:1912.02119] prog
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* Implemented a deep convolutional VAE with discrete latent space
- 288-dimensional latent space [Khoshaman, Amin, NIPS 2018]
- Prior is a Chimera-structured (C6) RBM

Model trained end-t d usi | équﬁ%lg!}
* Model trained end-to-end using only : '
samples obtained from the quantum > ¥ ,7 ©7¢5@1 14
annealer BlaC2d1 | ¥b
> L ~
 Successful training validated by estimating i C7179& 'Q) : i 7
the log-likelihood of the model P i Z % Z gr / ]
- Showed improvement from a trivial r v 7 / Z” 2
classical baseline (Bernoulli) } / 8 ; | & ’ f,
- Match performance of model trained P g 73 3 O3~ 4; ,)
with Population Annealing (PA) 7 5 :OLZ;(g 34 A 0}
P
MNIST (dynamic binarization) LL =1
Sampler Chimera Bernoulli [Trained on MNIST]
DW2000Q —82.8+0.2 —83.7+£0.2 [Samples generated with D-Wave 2000Q]
PA —82.8+0.1 —84.2+0.05 [state-of-the-art: LL~-79.5]
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Reliably sample from large RBM, representing complex
multi-modal probability distributions

« Larger RBM

- Model building to improve use of physical connectivities

- Develop denser physical connectivities

- More complex datasets
* Multi-modality

- Latent-space RBM must develop multi-modal distributions
« Sampling reliability

- Reduce control errors for more reliable training
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Efficient compression: latent units are not used if not necessary

Optimization problem: local minima with sub-optimal number of active units

Denser connectivities = exploit more latent units to achieve better LL
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Multimodality in the latent space is not necessary for generative modeling

* RBM can model multimodal distribution, but will they?

- Block Gibbs sampling from trained RBM:

Pegasus RBM

Chimera
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Sampling from latent space BM is potentially challenging for classical
sampling algorithms
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* Summary

- Demonstrated the use of QA as native samplers in training state-of-
the-art deep generative models

- Provided evidence for the possibility of obtaining quantum
advantage within this framework

 Future Directions for QEO

- Develop meaningful metrics for hybrid generative modeling:
understand the limits of classical samplers and performance of
guantum annealers as physical samplers.

- Develop machine learning models for better exploiting quantum
annealers

- Improving sampling and stabilize effective temperatures with
advanced anneal controls.

- Representational power of non-stoquastic Boltzmann machines

- Ground-state sampling with coherent quantum annealing



