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Safe and High Capacity Batteries: 
Important for NASA Missions

• Batteries provide 
– a versatile, reliable, safe and portable energy 

source, and are an essential component of the
power system of virtually all NASA missions

– Electrical energy storage options for NASA Space missions, such as:
• Power during spacecraft eclipses

• Peaking power for high power needs 

• Aeronautics
– Electrified Aircraft (EA)
– Urban Air Mobility (UAM)

• Space
– Moon to Mars and beyond



Desired Battery Properties for NASA Missions

• Safe
• High in specific energy
• Light in weight
• Compact in volume
• Long in shelf life
• Durable in wide temperature ranges and harsh 

environments

• Reliable in meeting mission requirements



State-of-Art (SOA) Li-Ion Battery (LIB)

• LIB Specs: 
– Specific energy: 180-200 Wh/kg
– Specific power: 300 W/kg 
– Cycles: 1000s (excellent)
– Temp range: -20oC to 60oC
– Excellent rechargeability

• Limitations: 
– Maximum of energy density <250 Wh/kg
– Electrolyte flammable and fire hazards



NASA Demands Very High Specific Energy Batteries

Electric Aviation
500 – 750 Wh/kg

• Green aviation – Less noise, 
lower emissions, high 
efficiency

• Hybrid / All-electric aircraft –
Limited by mass of energy 
storage system

• Commercial aviation – Safe, 
reliable, lightweight on-board 
electric auxiliary power unit

Extravehicular Activities 
(Spacesuit power)

>400 Wh/kg
Required to enable untethered 
EVA missions lasting 8 hours 
within strict mass and volume 
limitations. 

•Astronaut life support
•Safety and reliability are 
critical
•100 cycles

Landers and Rovers, 
Robotic missions, In-

space habitats
>500 Wh/kg

Batteries are expected to 
provide sufficient power for life 
support and communications 
systems, and tools including 
video and lighting
• >100 cycles

NASA future mission requirements far exceed the capabilities of SOA Li-ion chemistries

Progress in these areas requires advances in safe, very high energy batteries



Li/S – Potential High Energy Battery Chemistry   

• Lithium (Li) metal: High capacity anode (3860 mAh/g)

• Sulfur (S): high capacity cathode (1670 mAh/g)

• Li/S battery: high theoretical specific energy: 2680 
Wh/kg

• Low cost and availability of sulfur

• Non-toxic

• Environmentally benign



Li/S – Challenges

• Poor intrinsic electronic conductivity of sulfur (S)
– 1 x 10-18 S/cm
– sluggish kinetics and poor power capability

• Polysulfide shuttle (PS) - short cycle life

• Li dendrite growth – safety concern



Li/S – Approaches to Overcome Key Issues

• Improve Electronic Conductivity of Sulfur Cathode
• Carbon (C) conductive additives for C/S composite

– Various carbons
– Holey graphene (developed from NASA Langley)

・ Seleniu(Se)/Selenium compounds (SeSx)
– as active materials and higher electronic conductivity 

• Reduce/Eliminate Polysulfide Shuttling (PS)
• Porous carbon to confine S in the pore
• Surface coating on separator to block PS migration
• Solid state electrolyte to eliminate PS

• Improve Safety by Developing Safe Electrolytes
・ Non-flammable electrolyte -->eliminating fire hazard
• Solid polymer composite electrolyte --> improving safety/PS
• Solid state electrolytes (sulfide-based, oxide-based….) 

-->addressing safety and PS issues



Hybrid Sulfur Cathode: Active Components

Component
Electronic 

Conductivity
(S/cm)

Theoretical 
Capacity
(mAh/g)

S

Se

SeS2

1 x 10-18

1 x 10-5

1675

678

1123

Introduction of Se or Se compound in S cathode:
• both active material and better electronic conductivity
• improve cathode overall electronic conductivity
• ratio of S vs. Se to be optimized to maximize the energy and power densities  



Hybrid Sulfur Cathode: 
Holey Graphene (HG) as Host

Advantages of Holey graphene:

• Highly conductive
• Ultralight weight
• Easy ion transport through the holes --> fast kinetics
• Dry-press (solvent-free) fabrication

HG S/Se Cathode Mixture HG-S/Se hybrid cathode



S/Se Hybrid Cathode: Impact of Se   

Cathode w/ and w/o Se on Initial Cell Impedance
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S/Se Hybrid Cathode: Impact of Se  

Initial Discharge Voltage Profile of Cathode w/ and w/o Se 
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Sulfur Cathode: Impact of Holey Graphene  
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Sulfur Cathode: Impact of Holey Graphene  

Initial Discharge Voltage Profile of Cathode 
w/ and w/o Addition of Holey Graphene
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Hybrid Cathode: S/Se or S/SeS2 vs. S  
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S/Se Hybrid Cathode: Cyclic Voltammetry  
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Solid Polymer Composite Electrolyte

• Polymer as host matrix, incorporating ceramic 
solid state electrolyte and Li salt

• Nonflammable, free-standing and flexible 
thin film

• Ionic conductivity: 1.2 x 10-3 S/cm  



Solid Polymer Composite Electrolyte: 
Various Current Densities at Li Symmetric Cells 
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Polarization Voltage vs. Current Density
(Li/Li Symmetric Cell)
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Overall polarization voltage is low by the current, indicating polymer 
electrolyte/Li metal interface is well mitigated. 



Summary

• Addition of Se or Se compound to S reduces impedance and 
improves sulfur utilization

• Addition of holey graphene improves cathode electrical 
conductivity and the initial voltage discharge profile

• Nonflammable solid polymer composite electrolyte 
• Freestanding and flexible thin film
• High ionic conductivity at RT
• Capability to take high current density, indication Li 

metal/polymer electrolyte interface is stabilized/mitigated 
• Solid polymer nanocomposite electrolyte is an alternative and 

promising approach to enable Li metal cycling safely



Current Under Investigation/Next Steps
• Optimize the cathode formation with component and compositions

• sulfur 
• selenium/selenium compounds
• Robust conductive matrix with carbons/holey graphene

• Solid polymer composite electrolytes/solid state electrolytes (SSE)
• Further Ionic conductivity improvement
• SSE/Li metal and SSE/cathode interfacial impedance  

• Optimization for the design of cathode and solid state electrolyte to maximize 
the energy density with practical electrode loading, scale up the fabrication, 
and reduction of production cost need to be addressed in the future 
development

• Leverage the results from our research partners into our project:
• Argonne National Lab (ANL) for S/Se/holey graphene formulation 

optimization
• Pacific Northwest National Lab (PNNL) for sulfide-based solid-state 

electrolyte 
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Thank you!

Any Questions?
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