

Administered by Universities Space Research Association

FOXSI Sounding rocket flights and Solar microflare observations

P. S. Athiray

Universities Space Research Association NASA Marshall Space Flight Center

5th Asia Pacific Solar Physics Meeting Pune, 5 Feb 2020

Outline

- Overview of FOXSI sounding rocket experiment
- Successful Flight campaigns and coordinated FOXSI-2 microflare observations
- Temperature response functions for FOXSI-2
- Combined Differential Emission Measure (DEM) analysis to determine the amount of plasma in the line of sight that emits the radiation as a function of temperature
- Estimates of thermal energy
- Summary

High-energy aspects of the Sun beyond RHESSI

Lingering questions...

Where and how does particle acceleration occur? What is the role of small-scale energy release in heating coronal plasmas? How quiet is the Sun in HXRs? Need for... Better sensitivity Increased imaging dynamic range Fine time resolution

Focusing Optics X-ray Solar Imager (FOXSI)

First solar dedicated Hard X-ray (HXR) telescope with direct focusing optics

- 1. Photons are collected on a small volume for high Signal to Noise
- 2. Point spread function falls steeply, providing improved dynamic range.

Main Goal of FOXSI: Demonstrate use of focusing optics for observing the Sun in hard x-rays

FOXSI sounding rocket experiment

FOXSI sounding rocket experiment

- Replicated Ni optics
- Wolter-I shape
- Nested sets of 7 or 10
- FWHM ~5"

X-ray optic modules: Nested shells of grazing incidence optics NASAMarshall Space FlightCenter

Krucker et al, SPIE, 2013 Christe et al, 2015 Buitrago-Casas et al, 2017

5th APSPM, Pune, 2/5/20

FOXSI sounding rocket experiment

Energy range : 4 to 20 keV

FOXSI sounding rocket: past campaigns

FOXSI sounding rocket: past campaigns

FOXSI-1 (2012) First focused image of the solar HXR

Krucker et al, 2014 Ishikawa et al, 2014

5th APSPM, Pune, 2/5/20

FOXSI-2 Dec'11, 2014

Major upgrades: Additional optic shells, CdTe detectors

White Sands Missile Range

Ishikawa et al, Nature Astronomy 2017 Athiray et al, ApJ (in revision) Vievering et al, in prep

nature astronomy

Solar microflares with FOXSI-2 rocket

Observations during second flight ~(6.5mins)

- Two solar microflares
- Coordinated observations : Hinode/XRT, SDO/AIA, IRIS, VLA

5th APSPM, Pune, 2/5/20

 FOXSI allows us to image an order of magnitude fainter microflares than observed by solar X-ray instruments

- Brightening in EUV, SXRs and HXRs clearly suggest a multi-thermal plasma
- Unique dataset suitable for "Differential Emission Measure analysis"

Temperature response function

- AIA & XRT Standard solar soft routines
- FOXSI-2
 - Instrument response : Optics effective area, Detectors spectral response matrix, Thermal blankets
 - **2. Synthetic Solar spectrum** at different isothermal temperatures (1 to 30 MK)
 - **3. Temperature response** is created by folding the synthetic spectra through instrument response to get the expected counts

- FOXSI is sensitive to temperatures > 5 MK
- Good overlap in temperature sensitivity for all the instruments

Note: Pixel sizes are different for each instrument

CU

ounts

10⁻²⁸

10⁻³⁰Ŭ

Hinode-XRT DEM inversion

- Forward fitting using
 - non-linear least squares
- Monte Carlo simulations to emulate errors

Combined DEM analysis : EM loci curves

& XRT alone

5th APSPM, Pune, 2/5/20

Comparison of flaring emission vs quiescent emission

- Background emission peaks at 2–4 MK
- Microflares have excess emission above 5 MK

Thermal energy estimates

		Thermal energy (x 10 ²⁸ erg) Multi-thermal plasma	Thermal energy (x 10 ²⁸ erg) Isothermal plasma
Microflare-1	Target A	5.1	1.4
	Target B	4.9	1.5
	Target C	5.1	1.2
Microflare-2	Target J	1.6	1.0

Multi-thermal DEM provides a more comprehensive E_{th} estimates than isothermal approximation

- RHESSI microflares : $10^{26} 10^{30}$ erg (Hannah et al., 2008)
- NuSTAR microflares : $10^{27} 10^{28}$ erg (Wright et al., 2017)

Summary

- We produced DEMs for two sub-A class microflares jointly observed by FOXSI-2, XRT, and AIA
- Coordinated FOXSI-2 observations are one of the few definitive measurements of the plasma temperature distribution above 5MK in microflares
- These microflares have significant emission above 5 MK
- Multi-thermal DEM analysis provides a more comprehensive thermal energy estimates than isothermal approximation
- Small scale energy releases are important to consider for coronal heating

Acknowledgement : FOXSI was funded by NASA's Low Cost Access to the Space program, grant NNX11AB75G.

• Thank you

Complexity in a FOXSI microflare

Flight Data Analysis

Instrument response:

- No major nondiagonal contributions
- Convolve response with gaussian probability distribution account for finite energy resolution

Note finer pixel a size for CdTe

Spectral modeling of CdTe data shows results that are **consistent with Si data.**

FOXSI-2 First Microflare

(optically thin thermal bremsstrahlung model)

5th APSPM, Pune, 2/5/20

Vievering et al 2019 (Thesis) (In preparation)

FOXSI-3 upgrades

Two new CdTe detectors → increase efficiency at high energies JAXA/ISAS and Kavli IPMU

Ishikawaet al, 2016 Furukawaet al, 2019

5th APSPN

Two collimators →reduce the ghost ray background TORAY

Buitrago-Casas, SPE, 2017

PhoEnIX

Soft X-ray **photon-counting** detector →Expand energy range *NAOJ and Nagoya University*

Narukageet al, SPE, 2017

Reducing the ghost ray background

Reducing the ghost ray background

Lab measurement of the ghost ray background

- Point spread function of a FOXSI7-shell module at the *Stray Light Facility* at *Marshall Space Flight Center*.
- X-ray source at 100 meters from the optics
- Source is 30 arcmin off axis

Ray-tracing simulation of ghost rays

- → Match the lab measurements History of each simulated ray is tracked
- → Information on the origin of the ghost rays

5th APSPM, Pune, 2/5/20