

The Aerosol, Clouds, Convection, and Precipitation Mission Study: Observing System Simulation Experiments for Multi-angle Polarimeters

Patricia Castellanos

February 2020

Peter Colarco, Reed Espinosa, Arlindo da Silva, Ed Nowottnick, Vickie Moran, Sharon Burton, John Yorks, and the ACCP Mission Study Team

Outline

- Global Modeling and Assimilation Office (Who am I?)
- Observing System Simulation Experiments (OSSEs)
- The Aerosol Clouds, Convection, and Precipitation (ACCP) Mission Study

(61

Global Modeling and Assimilation Office (GMAO)

- GMAO IS NASA's Earth System Modeling and Analysis group
- Responsible for development of the GEOS (Goddard Earth Observing) Model

GEOS APPLICATIONS

Weather Analysis and Prediction

Subseasonal-to-Seasonal (S2S) and Decadal Prediction

Multi-decadal Reanalysis (MERRA-2)

National Climate Assessment

Observing System Simulation Experiments (OSSEs)

GEOS Model Architecture

- GEOS is a hierarchy of ESMF components
 - An infrastructure for building GEOS applications
- The MAPL layer interface to ESMF provides an abstraction of software issues including:
 - Generic Initialize/Finalize/Run
 - Simplified hierarchy (creation of child components)
 - IO Layers (Asynchronous file server output)
 - Regridding transforms (grids and tiles)
 - Profiling (Performance and Memory)
 - Input (ExtData) / Output (History)
- Architecture permits flexibility
 - NWP configuration
 - S2S configuration (seasonal, w/coupled ocean)
 - CCM configuration (advanced chemistry)
 - CF configuration (full chemistry NRT forecasting)
 - NR configuration (high resolution for OSSEs)
 - CTM configuration (offline met fields)

All these configurations use the same core model components

GEOS Analysis System Brings Together the Earth Observing System

Field Mission Support

https://fluid.nccs.nasa.gov/weather

- CAROb (Cloud Aerosol Rain Observatory) Thru Sept 30
- OCO-2 (Orbiting Carbon Observatory)
- **MOSAIC** (Arctic Climate Study)
- CAMP2EX (Cloud Aerosol Monsoon Web support only) to Oct. 31

GEOS Model Architecture

- GEOS is a hierarchy of ESMF components
 - An infrastructure for building GEOS applications
- The MAPL layer interface to ESMF provides an abstraction of software issues including:
 - Generic Initialize/Finalize/Run
 - Simplified hierarchy (creation of child components)
 - IO Layers (Asynchronous file server output)
 - Regridding transforms (grids and tiles)
 - Profiling (Performance and Memory)
 - Input (ExtData) / Output (History)
- Architecture permits flexibility
 - NWP configuration
 - S2S configuration (seasonal, w/coupled ocean)
 - CCM configuration (advanced chemistry)
 - CF configuration (full chemistry NRT forecasting)
 - NR configuration (high resolution for OSSEs)
 - CTM configuration (offline met fields)

All these configurations use the same core model components

GEOS Aerosol Assimilation and Forecast

GMAO Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

0.3

2.0

0.1

1.0

0.5

Dust Aerosol Optical Depth (550 nm

Sea Salt Aerosol Optical Depth (550 nm)

0.0

GEOS-CF: Full Chemistry NRT Forecast

O.S.S.E

- Observing System
- Simulation
- Experiment
- **Traditionally:** OSSEs evaluate potential impact of new observations on a weather forecast (Hoffman and Atlas, 2016; BAMS)
- Fundamentally: OSSEs quantify information in a future observing system

Model-based OSSE

A framework for numerical experimentation in which observables are simulated from fields generated by an earth system model, including a *parameterized* description of the observational error characteristics.

Simulations are performed in support of an experimental goal.

The "E" in OSSE

The Validation Imperitive

- As with any simulation, OSSE results apply to new instruments only to the degree they have been validated with existing legacy instruments.
- OSSE credibility is first determined by carefully comparing a variety of statistics that can be computed in both the real and OSSE simulated contexts.

OSSEs need to be validated as a <u>System</u>

Elements of an OSSE System

GEOS Global 7 km Nature Run (G5NR)

- G5NR is a non-hydrostatic free-rrunning simulation
- 7 km resolution
- 72 layers
- 30 min timestep
- 1.5 years
- Includes GOCART aerosols, O₃, CO, and CO₂

G5NR Validation

Compared to long-term datasets

- Monthly mean observations
- Reanalysis: MERRA & MERRAero
- Multi-model Statistics: e.g. AeroCom

Elements of an OSSE System

GEOS Instrument Simulator

a) Actual RGB composite

b) Simulated RGB composite

- Detailed radiative transfer calculation in the presence of clouds, aerosols, ice, etc.
- Apply instrument characteristics
- Create Simulated Observables:
 - top of the atmosphere polarized radiances
 - backscatter
 - etc.

Wind et al., 2013 and 2016

(7

AOD OSSE For Smoke over Brazil

Simulated MODIS Granule

Simulated Comparison of Retrieved AOD and Model Ground Truth

Wind et al., 2013 and 2016

GEOS Instrument Simulator

(61

Decadal Survey for Earth science and applications from space

US science community (National Research Council - NRC) **provides** longterm **guidance for NASA**'s Science Mission Directorate (SMD)

- NRC identifies and prioritizes
- leading-edge scientific questions and
- · observations and
- funds required to answer them
- in the **Decadal Survey** (DS) for Earth science and applications from space.

https://science.nasa.gov/earthscience/decadal-surveys

Thriving on Our Changing Planet

A Decadal Strategy for Earth Observation from Space

THE IMPORTANCE OF EARTH INFORMATION

Earth-observing satellites provide critical information about our planet. This information supports a broad range of societal needs and enables the scientific discovery required to meet those needs, making us all healthier, safer, and more efficient.

PROTECTING OUR HEALTH

6.5 million 🦳

premature deaths from air pollution around the world every year

Earth-observing satellites track the concentration of harmful pollutants across the country, providing air quality data for rural areas without ground-based monitoring systems and measuring the effects of air quality regulations.

50% of the world's population is at risk from malaria.

Satellite observations of temperature, vegetation, and rainfall help predict the spread of mosquito-borne illnesses like malaria, Zika, and West Nile Virus.

KEEPING US SECURE

The estimated value of NASA and NOAA information services to the U.S. Navy's operational effectiveness is **\$2 billion** per year.

The U.S. Navy and other U.S. defense agencies partner with NASA and NOAA to use satellite data, to access operational services, and to leverage their scientific progress.

MITIGATING NATURAL DISASTERS

Extreme weather and fires have cost the federal governmentmore than \$350 billion over the past decade.

Satellite measurements play a critical role in tracking the paths of hurricanes and wildfires so that we can warn populations at risk, assess the damages, and avoid future costs.

ENSURING RESOURCE AVAILABILITY

Advanced technology, including many types of Earth information, will unlock up to \$1.6 trillion in economic savings for energy generation and use by 2035.

Satellite observations can also help ensure water availability, which is particularly important to the 20% of the world now living in areas of water scarcity.

Designated Program Elements

Make-up and distribution of aerosols and clouds

Trends in water stored on land

Evolving characteristics of terrestrial vegetation and aquatic ecosystems

Changes in glaciers and ice sheets

Alterations to surface characteristics and landscapes

Impacts of changing cloud cover and precipitation

ESAS maximum

cost

CATE Cap

\$800M

CATE Cap

\$800M

Est Cap

\$300M

CATE Cap

\$650M

Est Cap

\$500M

Designated Observables Proposed Budgets

National Academies of Sciences, Engineering, and Medicine. 2018. *Thriving on Our Changing Planet:* A Decadal Strategy for Earth Observation from Space. Washington, DC: The National Academies Press. https://doi.org.10.17226/24938.

Multi-Angle Polarimeters

High Spectral Resolution Lidar (HSRL)

ESAS maximum

cost

CATE Cap

\$800M

CATE Cap

\$800M

Est Cap

\$300M

CATE Cap

\$650M

Est Cap

\$500M

Designated Observables Proposed Budgets

National Academies of Sciences, Engineering, and Medicine. 2018. *Thriving on Our Changing Planet:* A Decadal Strategy for Earth Observation from Space. Washington, DC: The National Academies Press. https://doi.org.10.17226/24938.

I. Cloud Nucleation

Science Links Beteween A & CCP

II. Aerosol Removal and Redistribution

Precipitation removes aerosols and convection and storms loft and redistribute aerosols

Aerosols are a fundamental and enabling component to the formation of clouds and precipitation.

ACCP Study Team

(61

ACCP Science Objectives

Low Cloud Feedback
 High Cloud Feedback
 Convective Storm Systems
 Cold Cloud & Precipitation
 Aerosol Attribution and Air Quality
 Aerosol Processing, Removal and Redistribution
 Aerosol Direct Effect and Absorption
 Aerosol Indirect Effect

Δ

A-CCP Science and Applications Traceability Matrix

SATM Traces Objectives to Geophysical Variables (GVs) to be Measured

CCP	4	СЬ	Objectives	4	Ъ	0	DR	Litility Score	Geophysical Variables (1 of 2)		Qualifiers			
A+(1	Ŭ	Objectives		1 ⁸	Ö	P A	otinty score	Minimum	Enhanced				
			O5 <u>Aerosol Attribution and Air Quality</u>	V				4.2	Aerosol Extinction (Total & Non-Spherical)		VIS & NIR Profile			
			properties in the PBL and free troposphere to improve process understanding, estimates of speciation, aerosol emissions and predictions of near-surface particulate concentrations.	V		s	(√)	5.0	Aerosol Optical Depth	UV to SWIR Column, PBL				
				v				4.4	Aerosol Absorption Optical Depth		UV & VIS Column, PBL			
	- 833		Enhanced: Characterize changes in vertical profiles of optical and microphysical properties over space and time in terms of 3D transport, spatially resolved emission sources and residual production and loss terms.	V				4.4	Aerosol Fine Mode Optical	Depth	Column, PBL			
				V			(√)	3.6	Aerosol Real Index of Refraction		Column, PBL			
				V				4.8	Aerosol Non-Spherical AOD Fraction		Column, PBL			
	888			V				4.2	Aerosol Extinction to Backs	osol Extinction to Backscatter Ratio				
	Approach (1 of 2)							4.8	Aerosol-Cloud Feature Mas	k				
General Approach							(√)	N/A	Planetary Boundary Layer Height					
 a) Use ACCP measurements to estimate aerosol speciation using the following approaches: 							٧	N/A	Environmental Temperatu	re	Profile			
	 Optimal estimation algorithm using as prior aerosol state from an assimilation system that incorporates the aerosol PoR Empirical aerosol typing based on clustering of aerosol optical properties Inverse calculations used to assess impact on emissions, and through revised emissions impact on forecasts of near-surface particulate concentrations Model sensitivity studies, validated by ACCP data, used to gain insight into process parameterizations. Complement and where possible expand on existing climate data records. Examine inter-annual variability of aerosol emissions, optical properties and impact on global AQ. Role of Models – primary tool to integrate observations, test understanding & examine impacts and feedbacks. 						٧	N/A	Environmental Humidity		Profile			
							Approach (2 of 2)							
d) c) d) Rd e>							 Role of Sub-orbital – cal/val variable retrievals, validate process interpretation, advance process understanding with enhanced property measurement. Linking of optical to chemical aerosol properties. New and Improved a) Significant improvements of key aerosol variables (vertically/spectrally resolved aerosol absorption and extinction, fine mode fraction over land, etc.) b) Improved global emissions and near surface aerosol characterization, with benefits for AQ analysis and forecasts. 							
											2			

SATM Specifies GV Uncertainty & Resolution

	Consolidated	Colonad		Desired	l Capal	oility			Everyplas of Observables	Enabled Apps	
Geo	physical Variables	Science Objectives	Damas	l la conto inter		Sca	les	_	Notes		
	(4 of 17)	•	Range	Uncertainty	ХҮ	Z	Т	Swath	Notes		
Minimum Enhanced		IMPORTANT: Desired Capabilities and Observables are							preliminary. Click here for additional information.		
ANC.z	Aerosol Number Concentration Profile	O8	10-1000 cm ⁻³	50%	1 km					2, 3, 5	
					2 km			100 km	Multi-angle radiance (UV,VIS), multi-angle DOLP -		
AOD. Aerosol Optical Depth (Column and PBL)		O3, O5, O6, O7, O8	0.03 - 4	±0.02±0.05*A OT	1 km		I	300 km	Multispectral radiance UV (aerosol absorption) & VIS (AOD, fine mode aerosol over water) - SWIR (surface properties and cirrus screening) Swath refers to column; Nadir for PBL 07: column only 08: PBL only	1, 3, 4, 5, 7 (12, 13, 14 for inferenc e of PM from AOD)	
APM25 Aerosol PM2.5 Concentration (surface)		O5	20-150 μg/m³	+/-20-25%						12, 13, 14	
ARIR. Aerosol Real Index of Refraction (Column and PBL)		05, 06,07	1.33–1.7	±0.025	5 km <mark>1 km</mark>		I				
		01, 04, 07	0.0 - 1.0	0.1	200 m	N/A	I , M	Nadir	PoR'ARIAHI etc. VIIRS		
ACF	Areal Cloud fraction	O8 0.0 - 1.0	00-10	0.1	100 m* 200 m [#]	N/A	I	Nadir*	* Lidar # Polarimeter		
			0.0 1.0				, M	100 km#			
										171	

Architecture Segment Libraries

- Other Library Components
 - Spacecraft buses
 - Launch vehicles
 - Ground systems
 - Mission operations
 - Suborbital campaigns
 - Science team

Global Modeling and	Assimilation Office
gmao.gsfc.nasa.gov	

GMAO

Radars	Radiometers	Lidars	Polarimeters	Spectrometers	
W, Ka, Ku, scanning, Doppler	11, 19, 24, 37, 89,		14 channels, 5 angles		
W, Ka, scanning, Doppler	166, 183	532 <u>bs</u> , 1064 <u>bs</u>	14 channels, 5-9		
W, Ka, nadir, Doppler	24, 31, 55, 89, 166,	532 bs, 1064 bs	angres	LWIR, 3 channels	
W, Ka, nadir, Ka Doppler	183 19. 24. 34	355 HSRL, 532 HSRL	Hyperspectral, 1 angle		
W, Ka, nadir, no Doppler	118, 183	532 bs, 1064 bs	Hyperspectral, 5 angles	hyperspectral	
Ka, Ku, scanning, Ku Doppler	87, 164, 174, 178, 181	532 HSRL, 1064 bs	10 channels, 60	LWUV/VIS/NIR/SWIR, hyperspectral	
Ka, Ku, scanning, no Doppler	118, 183, 240, 310, 380, 660, 880	355 HSRL, 532 HSRL,	angles		
W, scanning, Doppler	883	1064 <u>bs</u>	11 channels, 60 angles		
W, nadir, no Doppler	183	355 HSRL, 532 <u>bs</u> , 1064 <u>bs</u>	12 channels, 60	LWIR/FIR, 8 channels	
Ka, nadir, Doppler	670	1064 <u>bs</u>	angles		
ka, scanning, no Doppler	220, 680 GHz/ 8.6, 11, 12 microns	532 bs. 1064 bs	15 channels, 60 angles	LWIR=Longwave infrared LWUV=Longwave ultraviolet VIS=visible NIR=near IR	
Ka, nadir, no Doppler	91, 118, 183, 205		9 channels, 255		
Ku, nadir, Doppler		bs=backscatter	angles		
Ku, scanning, no Doppler	Radiometer channels in GHz	HSRL=High Spectral Resolution Lidar	Channels in VIS, VNIR, SWIR	SWIR=Shortwave IR FIR=Far IR	

Preliminary Architecture Costing

Architecture costs include EVERYTHING for the lifetime of the mission:

- Instrument
 - Research and Development
 - Integration
 - Cal/Val
- Spacecraft
- Launch Vehicle
- Ground Segment
- All people/labor
- 30% Reserves

(CIV

Architecture 8G

GPM Orbit: Tropics & mid latitude coverage with diurnal cycle, complements and extends capabilities of GPM

• Coupled cloud and precipitation profiling (including extremes) in

context of GPM swath

- Coincident convective dynamics
- Improved capability for snowfall mapping
- Diurnal information on biomass burning aerosols from major source regions and on major pollution hotspots

Polar Orbit: Global coverage, higher fidelity aerosol measurements

- Critical for cloud feedbacks, high latitudes
- Nadir-only active data on convective storms, cold clouds & precip
- Measurement of thin ice clouds
- Vertically-resolved aerosol microphysics and speciation
- Better insight into aerosol processes & impacts on radiation
- Enhanced spatial and temporal sampling with two satellites
- Global measurements with diurnal information at mid and lower latitudes

Global Model in High if idelity factors of measurements on polar satellite anchors algorithms on GPM-orbit satellite

OSSE Framework

GRASP algorithm structure

Polarimeter Simulated Measurements and Fits

GINAO Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

Uncertainty Estimates for Architectue 8G

Scoring the Science Benefits of Architectures

Similar to approach outlined on *Continuity of NASA Earth Observations from Space* report (NAS 2015) Quality: degree to which measurements provide the desired geophysical variable. OSSEs inform the quality assessment.

(61

Science Is Only One Part of the Overall Value Assesment

VF Baseball Cards

- Developing new satellite missions takes a large multi-disciplinary group of people
- It's a lot of work!
- NASA is trying to use OSSE frameworks to quantitatively evaluate science benefits of new mission concepts
 - GMAO provides high resolution nature runs and instrument simulations to support mission studies
- The lidar + polarimeter architecture concept is promising, and preliminary assessments show that it meets several GV target uncertainties
- This is all a work in progress...stay tuned
- If any of this sounds interesting, you should consider working with us!

Summer Internship Opportunities at NASA

Internships (NIAMS) https://intern.nasa.gov

- Fulltime (40 hr/wk)
- Paid
 - High School: \$3.7K for 6 weeks
 - Under Grad: \$7.3K for 10 weeks
 - Grad: \$9K for 10 weeks
- No vacation (federal holidays only)
- Requirements
 - Full-time enrolled student
 - 3.0 GPA
- College start dates can depend on academic schedule
- Part-time internships during academic year are now available at GSFC
- Application

(61

- Students apply to individual projects, and mentors select from students who apply to their posted research opportunities
- You can apply to more than one project with only one application
- Summer 2020 Deadline is March 8

Summer Internship Opportunities at NASA

- ARC
 - 88 summer projects posted
 - Examples
 - Optical Sensing for Planetary Exploration
 - Development of Chem/Bio Sensors for Space Application
 - Airborne Remote Sensing of Particles
 - Urban Air Transport Research and Development
- GSFC (including GISS)
 - 280 summer projects posted
 - Examples
 - Spanish Language Journalism, Multimedia, and Social Media
 - Falling Snow Estimates from Ground Based Sensors
 - Cybersecurity
 - Flexible Cloud Masks from Space-borne Lidar

NASA Graduate Fellowships

Science Mission Directorate—"FINESST"

- Awards about 100 Fellowships a year (funds will double in FY20)
- Applications go through NSPIRES
- Deadline in February

Office of STEM Engagement—"NASA OSE Fellowship Activity 2020"

- Awards about 10 Fellowships a year
- Requires yearly 10-week research experience at a NASA center each year of fellowship
- All funding is for students who attend a minority serving institutions

Both

- Fellowship supports cost of graduate education for up-to-3 years; each call has a different funding cap
- Applicants write a research proposal
- Proposal reviewed externally

My Tips

- How does your project contribute to NASA's goals, and use NASA assets?
- Tell a good story and "sell" proposals aren't just papers written in the future tense!