
Robotic Specialization in Autonomous Robotic
Structural Assembly

Borbala Bernus, Greenfield Trinh, Christine Gregg,
Olivia Formoso, Kenneth Cheung

Coded Structures Laboratory
NASA Ames Research Center

Moffett Field, CA
kenny@nasa.gov

Abstract—Robotic in-space assembly of large space structures
is a long-term NASA goal to reduce launch costs and enable
larger scale missions. Recently, researchers have proposed using
discrete lattice building blocks and co-designed robots to build
high-performance, scalable primary structure for various on-
orbit and surface applications. These robots would locomote
on the lattice and work in teams to build and reconfigure
building-blocks into functional structure. However, the most
reliable and efficient robotic system architecture, characterized
by the number of different robotic ’species’ and the allocation
of functionality between species, is an open question. To address
this problem, we decompose the robotic building-block assembly
task into functional primitives and, in simulation, study the per-
formance of the the variety of possible resulting architectures.
For a set consisting of five process types (move self, move block,
move friend, align bock, fasten block), we describe a method
of feature space exploration and ranking based on energy and
reliability cost functions. The solution space is enumerated,
filtered for unique solutions, and evaluated against energy and
reliability cost functions for various simulated build sizes. We
find that a 2 species system, dividing the five mentioned process
types between one unit cell transport robot and one fastening
robot, results in the lowest energy cost system, at some cost to
reliability. This system enables fastening functionality to occupy
the build front while reducing the need for that functional mass
to travel back and forth from a feed station. Because the details
of a robot design affect the weighting and final allocation of
functionality, a sensitivity analysis was conducted to evaluate the
effect of changing mass allocations on architecture performance.
Future systems with additional functionalities such as repair,
inspection, and others may use this process to analyze and
determine alternative robot architectures.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. BACKGROUND . 1
3. METHODOLOGY . 2
4. RESULTS . 5
5. DISCUSSION . 8
6. CONCLUSION . 8
APPENDICES . 8
A. WEIGHTING DISTRIBUTION . 8
ACKNOWLEDGMENTS . 9
REFERENCES . 9
BIOGRAPHY . 10

U.S. Government work not protected by U.S. copyright

1. INTRODUCTION
Low-density lattices are appealing as primary structure for a
wide variety of applications such as spacecraft [1], aircraft,
and ground infrastructure. Recent work has shown that
such structures can be constructed from efficiently manufac-
tured building blocks by relatively simple mobile robots [2].
Especially for space applications, this structure and robot
system has the potential for reconfigurability, scalabity, and
efficiency that could reduce launch energy, enhance mission
adaptability, and provide long term system life-cycle benefits.
In order to design such systems, we wish to describe a
method for dividing functional primitives of a building block
assembly system into individual robot types and assessing
various architectures and their effect on the energy cost and
reliability of the system.

In this paper, we define the functional primitives and assess
all possible enumerations to determine an optimal configu-
ration. To achieve this, we develop an energy cost function
based on rearrangement cost of the robot mass and a reliabil-
ity cost function based on degrees of freedom of the robot. A
brief overview of in-space assembly and building-block based
assembly is presented, followed by the study methodology
and results. A discussion of the findings and lessons learned
are presented.

2. BACKGROUND
In-space assembly allows space structures to bypass volume
limitations of launch vehicle capacity and enables the con-
struction of large-scale space infrastructure such as habitats,
solar arrays, and large-aperture instrumentation. Legacy
examples of in-space assemblies relied on EVA and the
dexterity of human operators to construct example trusses and
the ISS [3]. Due to hazards associated with EVA, current
systems seek to utilize robotic operators, human-controlled
or fully autonomous, to assemble and additively manufacture
space structures [4] [5] [6].

Robotic assembly technologies enable more efficient and cost
effective systems. They are particularly suited for repetitive,
well-structured tasks and can operate in environments that
are dangerous for humans. Distributed robot systems are
a major area of robotics research [7] seeking to determine
how teams of robots can work together to accomplish joint
tasks, enabling task parallelization and enhanced function-
ality beyond single robots. These teams can range from
homogeneous swarm robots [8] to heterogeneous robot sys-
tems with specialized robots for each task [9], they can also
have centralized or decentralized control [10]. In the field of
robotic construction, there has been much work in assembling
truss type structures [11][12] and bricks [13]. Challenges and

1

current research include coordinating and localizing multiple
robots [14] with enough precision to reliably complete tasks.

Recent advances in architected materials have shown that
ultra-light structures high performance structures can be
produced that exceed the specific stiffness and strength of
traditional stochastic cellular solids [15]. Such structures can
be discretely assembled from building blocks that may be
manufactured from state of the art materials [16] and highly
efficient manufacturing techniques such as injection molding
[17]. These structures can be assembled and reconfigured
into different mission profiles as needed [18], potentially
reducing overall mission mass. These building blocks have
been robotically assembled by both mobile [2] and gantry
type assemblers [19][20], and optimization of unit cell ge-
ometries for ease of robotic assembly has been studied [21].
The periodic nature of the structure is well suited to robotic
assembly, and mobile robots that locomote on the structure,
termed relative robots, can use this repetition for metrology
and increased reliability [2].

Though single examples of relative robot discrete assembly
systems exist, prior art has not identified a methodology for
determining the optimal robotic system architecture for a
given application. Before designing a robotic system, which
could contain one or more types of robots, a designer must
know the functional requirements of each robot based on
overall system requirements. But in such a system, it is not
always obvious which robots should carry which functional-
ity. For example, is it more efficient to have a single robot
type that can move, place, and connect build material, or
should multiple robot types each specialize in one or more
tasks? While prior art suggests robotic assembly of discrete
building blocks is a scalable assembly solution, how system
functionality should be split between robot types for optimal
efficiency and reliability is an open question.

3. METHODOLOGY
In a distributed robotic assembly system, the functional tasks
the system must perform may be separated into different
types of robots, or species, to optimize overall efficiency,
performance, and cost. In this exercise, we consider a
system of one or more species of robots performing tasks that
enable the system to manage the supply of assembly materials
across the structure and perform fastening tasks. A robot
system architecture can therefore be defined as a system of
n tasks or operations that must be divided among k robot
types. In this study, we enumerate the full solution space
of possible architectures and selected feasible solutions. We
then compare the remaining architectures using cost functions
developed to represent relative system energy efficiency and
reliability. The result of this analysis will offer insight into the
advantages, disadvantages and risks of each architecture. The
end goal of this study is to identify an optimal distribution of
n-functionalities into k-types of robots. This methodology is
intended to serve as an example for current and future dis-
tributed robotic assembly system designers to make informed
design decisions.

The assembly materials are cubic unit cells termed voxels
that may be assembled 3-dimensionally in a simple cubic
tiling pattern, orthogonal to each face. In this study, the unit
cells are 1’x1’x1’ in dimension. Assumptions and design
approximations to be made are for robots designed at this
scale. Unit cells at scales of magnitude much larger or smaller
may result in different robotic designs assumptions, partic-

ularly for mass estimates, but should not affect the validity
of the methodology. In this initial work, we focus on a one
dimensional build case with a single material depot. Though
unlikely in application, this case represents one of several
possible worst-case build scenarios, especially if system relia-
bility and energy consumption is limited by robot locomotion.
Extension of this methodology to 2D and 3D cases, important
worst-case scenarios for gravity environments and bolting
dominated energy consumption, is straightforward and left to
future investigation.

Solution Space Definition

Functional Primitives—The functional primitives of a robotic
system are the most basic abstracted tasks that a system must
perform to achieve prescribed goals and requirements. In
this robotic assembly system, the functional primitives are
derived from the system need to manage assembly material,
or voxels, across the structure and join each voxel to the
existing structure (generically termed ’bolting’ in this study).
Stated another way, voxels must move from a material depot
to the evolving build front and be bolted to existing structures.

This results in a set of 5 basic functional primitives for an
autonomous assembly system, defined in Table 1. Robots
must be able to move voxels to the build front (PMv) and
attach those new unit cells to existing structure (PV b). To
accomplish this, with a few exceptions discussed later, robots
will need to be able to move themselves (PMs) or be moved
by other robots. By including the ability to move another
robot (a ’friend’)(PMf), a robot species can lack self-
locomotion and rely on other robots for movement necessary
to fulfill system requirements. The alignment and placement
of components (PV a) in this system is also critical to
its success. The alignment of a robot-structure interface
is assumed to be included into the PMs primitive, and the
robot-robot interface is assumed to be included in the PMf
primitive. The reason why the PV a primitive (voxel-voxel
interface) is considered separately is because it can be paired
with either the PMv or the PV b functional primitives.

Table 1. List of Functional Primitives

Primitive Definition
Move Self (PMs) Functionality of robot to

move itself across a lattice
Move Voxel (PMv) Functionality of robot to

move a voxel to an adjacent
cell

Move Friend (PMf) Functionality of robot to
move another robot to an ad-
jacent cell

Align/ Place Voxel Pair (PV a) Functionality of robot to
align a voxel in a position
to be joined to an existing
structure

Bolt Voxel Pair (PV b) Functionality of robot to join
a voxel to the existing struc-
ture

.

Enumeration—The number of possible system architectures
can be bounded by the Stirling partition number S(n, k),
which gives us the number of ways to partition a set of n
objects into k non-empty subsets. The full design space is

2

given as the Bell number series Bn. In a system with 5
functional primitives, the Sterling partition number gives us
a distribution as shown in Table 2, with a total of 52 unique
solutions.

Table 2. Number of Possible Architectures

Species of Robots Number of Architectures
1 1
2 15
3 25
4 10
5 1

Solution Space Pruning—Not every solution enumerated by
the Sterling partition number yields a meaningful, distinct
solution. A filtering criteria is used to reduce possible
candidates for further evaluation and comparison. Archi-
tectures with robot species that do not provide meaningful
functionality by themselves are not considered. For example,
robots with just a PMs functionality do not enable fulfillment
of system requirements and would need to be paired with a
PMf , PV a, or PV b primitive. This reduces the solution space
to 5 distinct and viable architectures.

We also consider two special cases that include empty and du-
plicated subsets. There is an instance when including empty
subsets where removing the PMs primitive still enables the
architecture to satisfy the system requirements. This gives us
an architecture with a robot of {PMv + PMf + PV b + PV a}
functionality, which we call a ’bucket brigade’, or ’train’
architecture. In this architecture, the robots have the ability to
pass voxels as well as robots to an adjacent cell, which allow
flow of assembly material to the build area. We also consider
the case of duplicate functionality for the PMs function.
In this case, the architecture {PMs + PMv} + {PMs +
PV b + PV a} also satisfies system requirements. The PMf
function is removed in this architecture due to redundancy
for locomotion. The final 7 distinct architectures that satisfied
basic system requirements are shown in Table 3.

Simulation and Analysis

We compared architectures by simulating one-dimensional
builds of 100 voxels and evaluating performance based on
application-specific system metrics. Since our application
prioritizes efficiency and reliability, we define the cost func-
tions as abstracted, proxy representations for the energy cost
and reliability of the system, dependent on mass, degrees of
freedom, and functionality distribution. Detailed formulation
of each cost function is described below.

Assumptions—The goal of this study is to establish perfor-
mance trends of architectures independent from a particu-
lar robot design. However, the evaluation of metrics such
as energy cost have a strong, inescapable dependence on
mass and degrees of freedom, which are necessarily robot
design specific. To address this, we established assump-
tions and simplifications regarding abstract robot designs,
grounding mass estimates where possible on prior relative
robot prototypes and examples [2]. A sensitivity analysis
is included in our analysis to evaluate the robustness of the
study’s conclusions to variation in these assumptions. For all
mass estimates, simulations were conducted that evaluated a
nominal, minimum, and maximum estimated value.

The robots considered here are understood to be relative
robots, meaning that they operate and locomote on the struc-
ture, occupying one or more unit cells. All robots are as-
sumed to occupy two unit cells (based on inch-worm bipedal
robot prior art [2], but extend into an adjacent cell when
taking a step. We wish to reiterate here that the term ’step’
was inherited from prior art, but should be understood as a
generalized term for moving from one voxel to another. A
robot needs to return to the start location to pick up additional
assembly material (a moving depot was not considered in this
evaluation). For this 1D case, bolting was assumed to only
need to secure one face for each additional voxel. Extension
of this work to 3D would require that an additional rotational
capacity of the bolting function since two or three faces would
need to be bolted per voxel addition.

Energy Cost Function—The energy cost function is formu-
lated as a proxy measurement of the work/energy required
to construct a 1D simulated discrete building block structure.
It can be thought of as a “functionality rearrangement cost,”
where moving functionalities (mass) longer distances results
in a higher cost. In a zero-gravity environment, this energy
cost represents the acceleration/ deceleration requirements
(i.e. going from rest to rest) associated with moving mass.

Each functional primitive is composed of two or more basic
component mechanisms shown in Table 4. To determine
the associated mass, each basic component mechanism was
assigned a nominal, upper, and lower bound mass allocation
defined in Table 5. These bounds and nominal values were
intended to encompass the range of mass allocations esti-
mated from prototyping and prior art. Unique among these
primitive formulations is the ’move friend’ mass allocation.
This formulation accounts for the varying additional mass
required in order to be able to transport ’friends’ of different
mass. A percentage weight of the friend was therefore
used. This was taken as 0.25 nominal based on prototyping
experience and was varied from 0.25 to 0.7 in the sensitivity
analysis. A unique ’move friend’ allocation was calculated
for each architecture, since the component functionality of
the ’friend’ robot necessarily changed across architectures.
Extended rationale supporting each mass estimate can be
found in Appendix A.

After assignment of primitive weightings, the energy cost
was calculated as the summation of the energy cost to place
each sequential voxel in construction of a beam of length b.
Every time a functional primitive moved, its mass allocation
was added to the final energy cost. The energy cost metric
was determined using the pseudocode provided in Algorithm
1. This formulation assumed an arbitrary seed of voxels
with the structure that is built from the seeded location. It
was assumed that no step is required to place the 1st voxel.
Thus, a (x-1) term appears throughout the formulas presented.
The final removal of the robots from the build structure was
handled as a one off occurrence.

In the formulation of Algorithm 1, numeric values are in-
tended to only be used for comparison between architectures.
Therefore, a mass has not been allocated to the actual voxel
itself. The mass movement of the voxel will be the same
for all architectures because no architectures have been con-
sidered which result in redundant voxel transfers. In this
formulation the focus has been on the movement of mass
required. Therefore, the additional mass associated with the
stiffness and strength required to move a ’friend’ has been
included, and this allocation varies based on the type of
’friend’ that needs to be moved. When a stepping robot is

3

Table 3. Selected Architectures

Arch. Num. # of Species Functionality Notes
1 1 {PMs + PMv + PV a + PV b} ’Omnibot’
2 2 {PMs + PMv + PMf + PV a}+ {PV b} -
3 2 {PMs + PMv + PMf}+ {PV b + PV a} -
4 3 {PMs + PMf}+ {PMv + PV a}+ {PV b} -
5 3 {PMs + PMf}+ {PMv}+ {PV b + PV a} -
6 1 {PMv + PMf + PV b + PV a} Special Case - ’Bucket Brigade/Train’
7 2 {PMs + PMv}+ {PMs + PV b + PV a} Special Case - ’Self Moving Bolter’

Table 4. Mechanisms Mass Contributions for Functional Primitives

Primitive Mass Mass Contribution Notes
Move Self (MMs) Mstep + 2 ∗Mgrip This breakdown can be generalized

to represent many possible locomo-
tion implementations.

Move Voxel (MMv) Mgrip

Move Friend (MMf1) Mgrip + 0.25 ∗ (2 ∗Mgrip +Mbolt) Arch. 2 and 4 have been simplified
to use the same PMf allocation,
moving a robot with only PV b func-
tionality.

Move Friend (MMf2) Mgrip+0.25∗ (2∗Mgrip+Mbolt+Mplacement) Arch. 3 and 5 have been simplified
to use the same PMf allocation,
moving a robot with only PV b &
PV a functionality.

Move Friend (MMf3) Mgrip + 0.25 ∗ (2 ∗ (MMv +MV b +MV a)) Arch. 6 PMf allocation, moving an
Arch. 6 robot (estimated mass).

Align/ Place Voxel Pair
(MV a)

Mplacement

Bolt Voxel Pair (MV b) 2 ∗Mgrip +Mbolt Gripping functionality is assumed
to be required to hold on to the
voxel face in some way to enable
bolting to occur.

Table 5. Mechanism Mass Allocations

Name Description Nominal Min Max
Mstep Mass of locomotion mechanism 1 0.5 1.5
Mgrip Mass of components for face gripper mechanism 0.5 0.25 0.75
Mplacement Mass of voxel placement mechanism 0.2 0.1 1
Mbolt Mass of bolting mechanism 1 1 1.5

Table 6. Mechanism Degree of Freedom Contribution for Functional Primitives

Movements associated with
Functional Primitive

Formulation Notes

Move Self (NMs) 2* (Nstep + 2 ∗Ngrip) One step is considered as two movements
i.e. actuation of a motor.

Move Voxel (NMv) 2* Npass + 2 ∗Ngrip

Move Friend (NMf) NMv Same movements considered for moving a
friend as to move a voxel.

Align/ Place Voxel Pair (NV a) Nplacement

Bolt Voxel Pair (NV b) 2* (Nbolt +Ngrip) Bolting requires two movements to bolt
and retract mechanism.

4

Algorithm 1 Algorithm to estimate an energy cost metric

Input: Number of voxels in string (b)
Output: Energy cost for selected architecture to build

structure of length (b)
Define Variables:
Earchitecture ← The energy cost to place the xth voxel

and return the stepping robot to the depot to pick up the next
voxel.

ER ← A one off energy allocation for the final removal
cost for all robots to be removed from the structure.

Etotal ← Energy cost to lay all voxels and remove robots
from structure.

1: Initialize Esum = 0
2: for StringLength = 1, 2, ..., . . . , b do
3: if Architecture 1 - ’Omnibot’ then
4: E1 = (x−1)∗2∗(MMs+MMv+MV a+MV b)
5: E1R = 0
6: end if
7: if Architecture 2 then
8: E2 = (x − 1) ∗ 2 ∗ (MMs + MMv + MMf1 +

MV a) +MV b
9: E2R = b ∗MV b
10: end if
11: if Architecture 3 then
12: E3 = (x − 1) ∗ 2 ∗ (MMs +MMv +MMf2) +

(MV b +MV a)
13: E3R = b ∗ (MV a +MV b)
14: end if
15: if Architecture 4 then
16: E4 = (x− 1) ∗ 2 ∗ ((MMs +MMf1)+ (MMv +

MV a)) +MV b
17: E4R = b ∗MV b
18: end if
19: if Architecture 5 then
20: E5 = (x − 1) ∗ 2 ∗ (MMs +MMf2 +MMv) +

MV b +MV a
21: E5R = b ∗ (MV a +MV b)
22: end if
23: if Architecture 6 - ’Train’ then
24: E6 = (x− 1) ∗ (MMv +MMf3 +MV b +MV a)
25: E6R = b ∗ (b+1)/2 ∗ (MMv +MMf3 +MV b +

MV a)
26: end if
27: if Architecture 7 - ”Moveable Bolter” then
28: E7 = (x − 1) ∗ 2 ∗ (MMs + MMv) + (MV a +

MV b +MMs)
29: E7R = b ∗ (MV a +MV b +MMs)
30: end if
31: Esum = Earchitecture + Esum
32: end for
33: Return Etotal = Esum + ER for selected architecture

Table 7. Mechanism Degrees of Freedom Allocations

Name Description DOF (nom) Min Max
Nstep DOF of locomotion mechanism 4 2 6
Ngrip DOF of components for face gripper mechanism 1 1 4
Nplacement DOF of voxel placement mechanism 1 0 3
Nbolt DOF of bolting mechanism 1 1 8
Npass/Nmove DOF of mechanism to pass voxel or friend 1 1 1

carrying a ’friend’ in addition to its functional ability, there
will be an additional energy/power requirement. This energy
cost was considered to be incorporated into the ’friends’
mass allocation and therefore the stepping robot energy cost
allocation makes no difference between if it is or is not
carrying a ’friend’. If this study is repeated with more
detailed mass allocation reference data, the energy associated
with additional power requirement when a ’friend’ is being
carried could be decoupled from the ’friend’ mass allocation,
but this granularity is beyond the scope of this initial study.

Reliability Cost Function—The number of movements is used
as a proxy measurement of reliability since it can be related
to number of motor start/stop operations. In addition, each
movement provides the potential for damage or failure of a
mechanism. Therefore, fewer movements are expected to
result in a more reliable system. For the purpose of evaluating
the number of motions/movements required to complete a
build, one movement was defined as the actuation of one
degree of freedom.

One stepping motion was based on an inch-worm type robot
[2] from relative robot prior art and includes the motions:
un-grip with front foot, move front foot, grip front foot, un-
grip back foot, move back foot, grip back foot. Though

a generalized, non-robot specific configuration is preferred,
this inch-worm robot example has been used as a means to
provide a baseline expectation of the number of movements.
The reliability cost function formulation was similar to the
energy cost function and is detailed in Algorithm 2. The
contribution of movements from each mechanism to the
functional primitives are shown in Table 6. The number of
movements allocated to each mechanism can be seen in Table
7, with additional details in Appendix A. Only the DOF to
actuate the self moving functional primitive is multiplied by
the number of voxel units moved. The bolting, alignment,
voxel movement and move friend primitives were then added
once per voxel placement. A removal cost function that
represents the final removal of all robots from the structure
was also incorporated .

4. RESULTS
This section presents the results of the energy cost and
reliability metric compared between the 7 architectures. A
sensitivity analysis is also presented to help determine the
significance of each input on the system.

5

Algorithm 2 Algorithm to calculate reliability cost function
Input: Number of voxels in string (b)
Output: Total reliability cost for a selected architecture

to build structure of length b
Define Variables:
Narchitecture ← The number of movements to place the

xth voxel and return the stepping robot to the depot to pick
up the next voxel.

NR← A one off allocation for the number of movements
required to remove all robots from the structure.

Ntotal ← Total movements to lay all voxels and remove
robots from structure.

1: Initialize Nsum = 0
2: for StringLength = 1, 2, ..., . . . , b do
3: if Architecture 1 - ’Omnibot’ then
4: N1 = (x−1)∗2∗(NMs)+2∗NMv+NV a+NV b
5: N1R = 0
6: end if
7: if Architecture 2,3 then
8: N23 = (x− 1) ∗ 2 ∗ (NMs)+ 2 ∗NMv +NMf +

NV a +NV b
9: N23R = b ∗NMf
10: end if
11: if Architecture 4 then
12: N4 = (x− 1) ∗ 2 ∗ (NMs +NMf)+ (2 ∗NMv +

NV a) + (NV b)
13: N4R = 2 ∗ b ∗NMf
14: end if
15: if Architecture 5 then
16: N5 = (x − 1) ∗ 2 ∗ (NMs +NMf) + (NMv) +

(NV b +NV a)
17: N5R = 2 ∗ b ∗NMf
18: end if
19: if Architecture 6 - ’Train’ then
20: N6 = (x− 1) ∗ (NMv +NMf) +NV b +NV a

21: N6R = b ∗ (b+ 1)/2 ∗NMf
22: end if
23: if Architecture 7 - ’Self Moving Bolter’ then
24: N7 = (x − 1) ∗ 2 ∗ (NMs) + NMv + (NV a +

NV b +NMs)
25: N7R = b ∗NMs
26: end if
27: Nsum = Narchitecture + Nsum
28: end for
29: Return: Ntotal = Nsum + NR for selected Architecture

Energy Cost—The energy costs of the selected architectures
are shown in Figure 1. The cost of each is shown at 100
voxel structural build length, but relative costs between ar-
chitectures are stable at build levels above 10 voxels. The
results indicate that Architecture 7, the ’Self Moving Bolter’
solution, results in the lowest energy cost. The reduction in
required energy cost is about 50% of Arch 1, the ’Omnibot’
solution where one robot carries all of the system functional-
ity. The design space of the robots as shown by the error bars
is greatly affected by the variation mass allocations of various
components, but do show relative trends.

Reliability Cost— The results in Figure 2 show that if the
passing motion between robots in Architecture 6 is efficient
(modelled as 1 DOF in this analysis), this should reduce the
overall number of movements, though at the cost of an ever
increasing mass to orbit as build size increases. Architectures
2 & 3 (which have the same formulation for number of move-

Figure 1. Energy cost of selected architectures with
structure length of 100 voxels. The bars represent the

energy cost function value based on the nominal
functional primitive mass allocations. The error bars
show the range based on the minimum and maximum

functional primitive mass allocations.

Figure 2. Number of movements of selected
architectures with structure length of 100 voxels, based
on the nominal functional primitive degree of freedom

allocations. The error bars show the range based on the
minimum and maximum functional primitive degree of

freedom allocations.

ments) have a higher number of movements than Architecture
6, which requires fewer stepping motions and has the best
reliability. These results indicate a strong dependence on
the number of degrees of freedom required to conduct grip
and un-grip actions during an inchworm type robot stepping
motion. In the nominal formulation, The ’Omnibot’ (Arch.
1) and ’Self Moving Bolter’ (Arch. 7) have similar values
to Architectures 2 & 3. However, inspecting the lower
bounds of these architectures shows that as the robots are
simplified in regards to the DOF, the benefit of an ’Omnibot’
or ’Moveable Bolter’ robot compared to other architectures
is reduced. Architectures 4 & 5 have the highest number of
movements because they 3 robot species that add complexity

6

Figure 3. Energy cost (relative units) for a 100 voxel build. The bars represent the energy cost metric based on the
nominal functional primitive mass allocations with a 25% friend mass allocation in MMf . The error bars show the

range based on the minimum and maximum mass allocations.

Figure 4. Energy cost (relative units) for a 100 voxel build. The bars represent the energy cost metric based on the
nominal functional primitive mass allocations with a 70% friend mass allocation in MMf . The error bars show the

range based on the minimum and maximum mass allocations.

to operations by requiring many moves to rearrange voxels
and robot friends.

Sensitivity Analysis—A sensitivity analysis was performed by
varying the mass distribution of the MMf primitive at 25%
and 70% of the mass of a robot friend while holding the other
mass allocations at their nominal value.

The effect of this change can be seen in Figures 3 and 4. The
mass allocation required to move a friend shows the greatest
impact on the overall uncertainty of the energy cost metric for

Architectures 2-5.

The uncertainty in the gripping mass allocation is one of the
greatest contributors to the overall uncertainty of the energy
cost metric. This is expected, as for the purpose of this
study the method of ’gripping’ has been left open in order
to encompass a greater set of robot designs. Defining the
gripping mechanism in order to reduce the range between the
minimum and maximum bound would have the greatest im-
pact on reducing the overall variation in cost (represented by
error bars). This also suggests that from a design perspective,

7

minimizing the gripping mechanism mass should have a large
impact on system energy efficiency.

5. DISCUSSION
Architecture 7, the ’Self Moving Bolter’ architecture, ap-
pears to have the lowest energy cost, with average reliability
performance. This architecture saves energy by avoiding
carrying the weight of bolting and aligning/placing functions
to and from the material depot. In contrast, the ’Omnibot’
architecture requires twice as much energy since it carries
the mass of all functionalities on every depot stop. Though
not captured in our study since only a single ’Omnibot’ robot
would be used, in an application with tolerance for higher
energy consumption, this architecture could represent a more
resilient system by incorporating duplicate robots.

Architectures 2-5 also enable energy savings by keeping the
bolting functionality at the build front, but do so by leveraging
the PMf primitive. These architectures depend heavily on
reducing the weight of additional hardware needed to enable
the PMf functions. The PMf primitive has the potential
to increase the mass allocation of the PMs primitive due to
higher motor requirements. From the sensitivity study in
Figures 3 and 4, one can see that changing the MMf mass
allocation can affect the overall performance of an architec-
ture. Increasing the mass of the PMf functionality negates
energy costs savings of leaving functionality at the build
front and brings energy cost up to par with an ’Omnibot’.
The PMf primitive would be more beneficial in a mission
scenario where a robot needs to perform a higher number of
specialized tasks that could be developed as ’friend’ modules.
For example, a single robot design with just the PMs and
PMf primitives could be used to drop off and place sensing,
actuation, or structural reinforcement modules for long-term
use.

Architecture 6, or the ’bucket brigade/train’ architecture,
requires the robot to be able to have the ability to both pass
a voxel or friend to an adjacent cell. This architecture has
an advantage of efficiently transporting assembly material to
the build front, but that advantage is negated when adding the
cost needed for robots to return to the start location. There
is also a much higher overall mass requirement to be able to
sustain this system. This architecture may be more useful and
efficient as a long term/permanent supply line that works in
conjunction with other assembly robots to assemble a larger
structure.

In Figures 3 and 4, the error bars show the range that each
mechanism can have on the energy cost outcome. This is
interesting because it can help identify which mechanisms
contribute the most to the overall energy cost. It can be
seen that the effects of reducing the mass of the gripping
mechanisms greatly reduce the total energy cost, where as
reducing the mass of the bolting mechanism would give a
smaller benefit. It should be noted that in each of these
graphs, Architecture 7 remains the lowest energy cost. In
general, to minimize energy, the mass sensitivity analysis
supports the intuition that robots that must move back and
forth many times should minimize their functionality, while
robots which don’t need to move back and forth as many
times can afford the mass associated with more functionality.

6. CONCLUSION
Large-scale, robust robotic assembly of space structures is a
paradigm shifting capability that has the potential to decrease
launch mass, increase mission flexibility, and enable larger
scale space missions and infrastructure. Discrete lattice build-
ing blocks and relative mobile robots offer an efficient and
robust strategy towards this goal. This work laid theoretical
groundwork for understanding the most efficient and robust
system architecture for a relative robot and discrete lattice
assembly system. Using representative energy and reliability
cost functions, we simulated one dimensional builds to evalu-
ate several system architectures that split robotic capabilities
between one or more robot types. Results showed that a 2
species robot assembly system will result in the lowest energy
cost to build a structure, specifically one that divides the
tasks of material movement and material joining. This system
enables fastening functionality to occupy the build front while
reducing the need for that functional mass to travel back and
forth from a feed station. The most reliable architecture was
the ’train’ architecture, but at the cost of significantly higher
overall system mass. The next most reliable architectures
were the 2 species architectures. Sensitivity analysis was
conducted to show the effect of changing mass assumptions
and allocations on system performance. This can can guide
system developers as more detailed mass allocations associ-
ated with specific robot designs become available. This work
provides ground work to be expanded into a 3D case, which
will incorporate path planning elements and more detailed
simulations.

APPENDICES

A. WEIGHTING DISTRIBUTION
Mechanism Mass

This section provides rationale on allocation of mechanism
mass nominal and min/max values.

• Mstep - Due to the large variation in locomotion techniques
that can be implemented, a +/-50% variation is stated.
• Mgrip - This includes mass of robot-structure interface
material on which the gripper is mounted. It is considered
to add approximately half of the locomotion mass. This is
linked to take account for the load on the interface due to the
weight of the robot.
• Mplacement - Nominal value is estimated. Depending on
the accuracy of placement/ alignment required, this value can
vary considerably. Torque required to actuate mechanism can
vary significantly depending on the mechanism placement.
• Mbolt - Potentially significant torques are required to per-
form this action, therefore this metric is considered to add
similar mass to that of locomotion and is not considered to be
dependant on the mass of the robot.

Mechanism DOF

This section provides rationale on allocation of mechanism
DOF nominal and min/max values.

• Nstep - The nominal degrees of freedom are based on
an inch-worm walker type robot design [2]. 3 knuckle
type movements have been included plus one rotation stage.
Locomotion can vary from a 1 DOF rolling robot to a full 6
DOF robot.
• Ngrip - The nominal value assumes that each robot can grip
onto a voxel face using 1 DOF. This could also be distributed;
a limit of 4 actuators is considered.

8

• Nplacement - One DOF is assumed sufficient in a hinge
type application, however can be up to a 3 DOF robotic arm.
This mechanism can also be incorporated into the locomotion
system, so a minimum of 0 is considered for that case.
• Nbolt - It is assumed that each face can be bolted using one
central actuator to move 4 bolters. At the opposite extreme,
one actuator could be needed on each of the four corners of
a face, from each side of the face. This would results in 8
actuators.
• Npass/Nmove - One DOF is assumed to be used to pass a
voxel between robots.

ACKNOWLEDGMENTS
The authors thank the NASA STMD Game Changing De-
velopment (GCD) Program for supporting the Automated
Reconfigurable Mission Adaptive Digital Assembly Systems
(ARMADAS) Project. We also thank Megan Ochalek, Ben-
net Caraher, Raymond Jow, Rina Zhang, and Miriam Lennig
for critical discussions.

REFERENCES
[1] B. Jenett, C. Gregg, D. Cellucci, and K. Cheung, “De-

sign of multifunctional hierarchical space structures,” in
2017 IEEE Aerospace Conference. IEEE, 2017, pp.
1–10.

[2] B. Jenett and K. Cheung, “Bill-e: Robotic platform
for locomotion and manipulation of lightweight space
structures,” in 25th AIAA/AHS Adaptive Structures Con-
ference, 2017, p. 1876.

[3] I. Bekey, “Space construction results: The
EASE/ACCESS flight experiment,” Acta Astronautica,
vol. 17, no. 9, pp. 987–996, 1988.

[4] W. R. Doggett, J. Dorsey, J. Teter, D. Paddock,
T. Jones, E. E. Komendera, L. Bowman, C. Taylor,
and M. Mikulas, “Persistent Assets in Zero-G
and on Planetary Surfaces: Enabled by Modular
Technology and Robotic Operations,” 2018 AIAA
SPACE and Astronautics Forum and Exposition, no.
September, pp. 1–33, 2018. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/6.2018-5305

[5] R. P. Hoyt, “Spiderfab: An architecture for self-
fabricating space systems,” in AIAA Space 2013 con-
ference and exposition, 2013, p. 5509.

[6] S. Patane, E. R. Joyce, M. P. Snyder, and P. Shestople,
“Archinaut: In-space manufacturing and assembly for
next-generation space habitats,” in AIAA SPACE and
astronautics forum and exposition, 2017, p. 5227.

[7] L. E. Parker, “Multiple mobile robot systems,” Springer
Handbook of Robotics, pp. 921–941, 2008.

[8] M. Rubenstein, A. Cornejo, and R. Nagpal, “Pro-
grammable self-assembly in a thousand-robot swarm,”
Science, vol. 345, pp. 795–799, 2014.

[9] R. Simmons, S. Singh, D. Hershberger, J. Ramos, and
T. Smith, “First results in the coordination of heteroge-
neous robots for large-scale assembly,” in Experimental
Robotics VII. Springer, 2001, pp. 323–332.

[10] A. Costa, B. Jenett, N. Gershenfeld, K. Cheung, and
I. Kostitsyna, “Algorithmic Approaches to Reconfig-
urable Assembly Systems,” 2019.

[11] N. Melenbrink and J. Werfel, “Local force cues for

strength and stability in a distributed robotic construc-
tion system,” Swarm Intelligence, vol. 12, no. 2, pp.
129–153, 2018.

[12] F. Nigl, S. Li, J. E. Blum, and H. Lipson, “Structure-
reconfiguring robots: Autonomous truss reconfiguration
and manipulation,” IEEE Robotics & Automation Mag-
azine, vol. 20, no. 3, pp. 60–71, 2013.

[13] K. H. Petersen, R. Nagpal, and J. K. Werfel, “Termes:
An autonomous robotic system for three-dimensional
collective construction,” Robotics: science and systems
VII, 2011.

[14] J. D. Sweeney, H. Li, R. A. Grupen, and K. Ra-
mamritham, “Scalability and schedulability in large,
coordinated, distributed robot systems,” in 2003 IEEE
International Conference on Robotics and Automation
(Cat. No. 03CH37422), vol. 3. IEEE, 2003, pp. 4074–
4079.

[15] L. Montemayor, V. Chernow, and J. R. Greer, “Materials
by design: Using architecture in material design to reach
new property spaces,” MRS Bulletin, vol. 40, no. 12,
2015.

[16] K. C. Cheung and N. Gershenfeld,
“Reversibly assembled cellular composite
materials,” Science, vol. 341, no. September,
pp. 1219–1221, 2013. [Online]. Available:
http://www.sciencemag.org/cgi/doi/10.1126/science.1240889

[17] C. E. Gregg, J. H. Kim, and K. C. Cheung, “Ultra-light
and scalable composite lattice materials,” Advanced
Engineering Materials, vol. 1800213, pp. 1–6, 2018.

[18] B. Jenett, D. Cellucci, C. Gregg, and K. Cheung,
“Meso-scale digital materials: modular, reconfigurable,
lattice-based structures,” in ASME 2016 11th Interna-
tional Manufacturing Science and Engineering Con-
ference. American Society of Mechanical Engineers
Digital Collection, 2016.

[19] G. Trinh, G. Copplestone, M. O’Connor, S. Hu,
S. Nowak, K. Cheung, B. Jenett, and D. Cellucci,
“Robotically assembled aerospace structures: Digital
material assembly using a gantry-type assembler,” IEEE
Aerospace Conference Proceedings, pp. 1–7, 2017.

[20] W. Langford, A. Ghassaei, and N. Gershenfeld, “Auto-
mated assembly of electronic digital materials,” ASME
2016 11th International Manufacturing Science and
Engineering Conference, MSEC 2016, vol. 2, pp. 1–10,
2016.

[21] M. Ochalek, B. Jenett, O. Formoso, C. Gregg, G. Trinh,
and K. Cheung, “Geometry systems for lattice-based re-
configurable space structures,” in 2019 IEEE Aerospace
Conference. IEEE, 2019, pp. 1–10.

9

BIOGRAPHY[

Borbala Bernus received her B.Eng de-
gree in Mechanical & Space Engineer-
ing and B.S. degree from the University
of Queensland in 2008. She worked
as a Senior Mechanical Engineer as a
CPEng, and is currently completing an
aerospace masters at KTH Royal Insti-
tute of Technology. She recently in-
terned at the Coded Structures Lab at
NASA Ames Research Center and aims

to conduct research in environmentally sustainable aerospace
solutions.

Greenfield Trinh is a research engineer
in the Coded Structures Lab at NASA
Ames Research Center. His current re-
search activities include automated as-
sembly of digital material structures
and robotics. He received his B.S. in
Physics from UC Riverside and M.S. in
Aerospace Engineering from San Jose
State University.

Christine Gregg received her Ph.D.
from the Department of Mechanical En-
gineering at UC Berkeley, where she
was a NASA Space Technology Research
Fellow. Her thesis focused on digital
lattice structures and lattice fracture me-
chanics. She works in the ARC Coded
Structures Laboratory (CSL).

Olivia Formoso received her B.S. de-
gree in Chemical Engineering from the
University of Florida in 2016. Currently,
she is a research engineer at the Coded
Structures Lab at NASA Ames Research
Center and is pursuing her M.S. in Me-
chanical Engineering at San Jose State
University. Her research is focused on
digital material structures and robotics.

Kenneth Cheung received his Ph.D.
from the Center for Bits and Atoms at the
Massachusetts Institute of Technology.
He helps to run the ARC Coded Struc-
tures Laboratory (CSL), which conducts
research on the application of building
block based materials and algorithms
to aeronautical and space systems. As
a member of the NASA ARC Intelligent
Systems Division and affiliate of the of-

fice of the Center Chief Technologist, he serves as a technical
lead on advanced materials and manufacturing.

10

