
Application of sparse identification of nonlinear
dynamics for physics-informed learning

Matteo Corbetta
SGT Inc., NASA Ames Research Center

Moffett Field, CA 94035
matteo.corbetta@nasa.gov

Abstract—Advances in machine learning and deep neural net-
works has enabled complex engineering tasks like image recog-
nition, anomaly detection, regression, and multi-objective opti-
mization, to name but a few. The complexity of the algorithm
architecture, e.g., the number of hidden layers in a deep neural
network, typically grows with the complexity of the problems
they are required to solve, leaving little room for interpreting
(or explaining) the path that results in a specific solution. This
drawback is particularly relevant for autonomous aerospace
and aviation systems, where certifications require a complete
understanding of the algorithm behavior in all possible scenar-
ios. Including physics knowledge in such data-driven tools may
improve the interpretability of the algorithms, thus enhancing
model validation against events with low probability but rele-
vant for system certification. Such events include, for example,
spacecraft or aircraft sub-system failures, for which data may
not be available in the training phase. This paper investigates
a recent physics-informed learning algorithm for identification
of system dynamics, and shows how the governing equations of
a system can be extracted from data using sparse regression.
The learned relationships can be utilized as a surrogate model
which, unlike typical data-driven surrogate models, relies on
the learned underlying dynamics of the system rather than
large number of fitting parameters. The work shows that the
algorithm can reconstruct the differential equations underlying
the observed dynamics using a single trajectory when no uncer-
tainty is involved. However, the training set size must increase
when dealing with stochastic systems, e.g., nonlinear dynamics
with random initial conditions.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. SUMMARY OF SPARSE REGRESSION FOR SYS-

TEM IDENTIFICATION . 2
3. APPLICATION . 3
4. CONCLUSIONS . 5
ACKNOWLEDGMENTS . 7
REFERENCES . 7
BIOGRAPHY . 7

1. INTRODUCTION
Machine learning is revolutionizing several branches of sci-
ence and engineering. It has enhanced the capability to
analyze and interpret data [1], perceive external environment
through sensors, image processing [2], enable compressed
representations of complex systems [3], and many others.
As tasks became more complex, so the complexity of the
machine learning solutions utilized to accomplish them. The
results are complex algorithms capable of grinding large

978-1-7281-2734-7/20/$31.00 c©2020 IEEE
U.S. Government work not protected by U.S. copyright

amount of data and producing outstanding results. This
comes with costs. First, the obvious need of data. Large
amount of data to train deep networks are not always avail-
able. In the optimal case, training sets should span the domain
expected to be observed after the algorithm deployment,
but this condition too may be prohibitive for a variety of
scenarios. Second, the complexity of the tasks drive up the
number of parameters to be learned during training, which
means risk of overfitting and reduced generalization, thus
requiring even more data to avoid the latter. Then, the lack
of interpretability of such complex algorithms has raised
concerns in recent years. Those concerns are driven by the
need to trust a machine decision, and even more importantly,
to understand the reasoning behind it [4]. Consequently, the
risk-adverse aerospace and aeronautical domains are slower
than others in embracing advanced machine learning and arti-
ficial intelligence. Systems have to be certified by regulators,
and besides some recent efforts [5], methodologies have not
been consolidated yet. The algorithms should be capable of
handling scenarios not observed during the training phase, for
example, sensor signals representative of sub-system failures.
In addition, it is unclear how to handle the stochastic or
probabilistic nature of some algorithms. Those produces
different results at different runs because the solutions reflect
a local minimum of the objective function, thus hindering
deployment in safety-critical areas.

The need for interpretable algorithms lead torwards new
research areas like explainable AI [4], interpretable machine
learning [6], as well as physics-informed learning. Some re-
cent works on physics-informed learning attempted at solving
physics problems, described by sets of differential equations,
by adopting machine learning algorithms. In those cases,
the cost functions were opportunely modified by introducing
physical constraints and symmetries that lead to solutions
conforming to the underlying phenomenon [7] [8]. Other
works focused on the discovery of governing equations of
dynamical systems from data [9], which has some potential
advantages. It would intrinsically enhance extrapolation and
generalization. If an algorithm were capable of identifying
the links between the observed quantities through physical re-
lationships, it could be applied to other specimens of the same
system with no or minimal tuning. Physical relationships
would also help extrapolating the system behavior outside of
the training domain. Aerospace and aeronautics would bene-
fit of this last property, since a variety of scenarios, especially
related to anomalies, component and sub-system failures,
may have no data available for training and/or validation.

This paper was inspired by the work of Brunton et al. [9],
where sparse regression was proposed as a tool to learn
governing equations of dynamical systems from data. This
paper explores the approach by applying it to two dynamical
systems, a modified Van der Pol oscillator, where a nonlinear-
ity was added in the zero-order term (i.e., stiffness term), and

1

a first order, three-dimensional system with random initial
conditions on two of the three dimensions. The paper shows
the application of the algorithm to those two case studies,
with some qualitative but critical analysis. Sparse regression
appears to require very limited amount of data when com-
pared to typical machine learning methods. However, the
3D stochastic system required considerably mode data than
the modified Van der Pol oscillator to learn the relationships
between the quantities of interest. Finally the paper discusses
some aspects related to the application and deployment on
real systems.

2. SUMMARY OF SPARSE REGRESSION FOR
SYSTEM IDENTIFICATION

This section summarizes the algorithm utilized in this work,
originally proposed in [9]. The notation utilized in this
section and throughout the manuscript is the following. Low-
ercase letters, e.g., x, indicate scalar quantities and bold
lowercase letters, e.g., x, indicates vectors. Matrices are de-
fined through bold, capital letters, e.g., X , while parenthesis
stress the dependency in functions and vector functions, e.g.,
f(·). Time dependencies, e.g., x(t), are emphasized when
necessary.

The algorithm proposed in [9], called sparse identification of
nonlinear dynamics (SINDy), aims at estimating the structure
of a potentially highly-nonlinear differential equation,

ẋ(t) = f (x(t)) ,

where x(t) ∈ IRn×1 is the n-dimensional state vector at
time t, and f(·) : IRn×1 → IRn×1 is a n-dimensional state
mapping function. The goal is to estimate the actual form of
the function f(·), using data.

As the authors stressed in the original paper, the assumption
allowing the algorithm to converge to the solution is that
only a few elements compose function f(·), making it sparse
in the space of possible functions [9]. Sparsity balances
model complexity and accuracy, and the method weights the
regression by the number of non-zero elements. The goal of
SINDy can be defined through a `1-regularized regression:

ξk = arg min
ξ̂k

||Ẋ − ξ̂kΘ (X) ||2 + λ ||ξ̂k||1 , (1)

where all elements are described hereafter.

MatrixX ∈ IRm×n is composed of m snapshots of the state
vector at different time steps, as in Eq. (2), where subscripts
1, 2, · · · , n indicates the elements within the n-dimensional
state vector, and ti indicates the i-th time step.

state dimension−−−−−−−−−−−→

X(t) =

 . . .
x1(ti) x2(ti) . . . xn(ti)

. . .

ytime
(2)

The snapshot of the state derivatives, Ẋ , follows the same
structure. It can be approximated by differentiation of the
elements in X , although some filtering may be required to
remove noise-driven oscillations [9]. Matrix Θ(X) repre-
sents one of the key novelties of the method. It is a candidate
function library, where each column represents a potential

candidate for the elements in f(·) to be discovered. The
selection of functions to populate the library is arbitrary
and may be composed of polynomial terms, trigonometric
functions, etc., [9], Eq. (3).

Θ (X) =


1 X Xp2 . . . sinX cosX . . .

.


(3)

Matrix Θ(X) is constructed by stacking together, column by
column, candidate nonlinear functions of X . For example,
element 1 is a column-vector of ones, element X is already
defined in (2), elementXp2 is the matrix containing the set of
all quadratic polynomial functions of the state vector x, and
is constructed as follows:

Xp2 (t) =


x2
1(t1) x1 x2(t1) . . . x2

2(t1) · · · x2
n(t1)

x2
1(t2) x1 x2(t2) . . . x2

2(t2) · · · x2
n(t2)

...
... . . .

...
x2
1(tm) x1 x2(tm) . . . x2

2(tm) · · · x2
n(tm)

 .

The superscript p2 has been used to define the set of quadratic
polynomial functions, and should not be confused with, for
example, ”x to the power of p2”. Similarly, Xp3 defines the
set of cubic polynomial functions, and so on.

Vector ξ collects the coefficients of the candidate functions in
Θ(X), and is the objective of the minimization. The number
of vectors equals the dimension of the state vector, n, so
k = 1, . . . , n. Since only a few of the candidate functions
are expected to have an effect on the system dynamics, all
vectors ξ are expected to be sparse. Symbols || · ||2 and || · ||1
indicates norm-2 and norm-1, respectively, while λ is a scalar
multiplier. Element λ ||ξ̂k||1 is the regularization term, which
penalizes coefficients different from 0 in a linear fashion. It is
the actual promoter of sparsity in the minimization problem.

Once all sparse vectors ξk have been estimated (see following
subsection), they can be collected in the sparse matrix Ξ,

Ξ =

[
. . .

ξ1 ξ2 . . . ξn
. . .

]
,

so that the system dynamics can be computed as in Eq. (4).

Ẋ(t) = Θ(X(t))Ξ (4)

Solution of sparse regression

Equation (1) poses the estimation problem in the same terms
of the LASSO (least absolute shrinkage and selection op-
erator), [10]. However, [9] suggests the use of sequential
thresholded least square, which will be also used to produce
the graphs in this paper. While the LASSO solution requires
convex optimization algorithms or the solution by least angle
regression [11], sequential thresholded least square imposes
sparsity by ”manually” setting all coefficients smaller than
λ to 0 in an iterative fashion. The two methods produced
very similar results in many of the tested cases. However,
the results from the LASSO were not reported for the sake
of brevity, since do not add intuition to the discussion. The
sequential thresholded least square from [9] is summarized
by the Python code in Table 12. The result is the sparse

2A Matlab version of the code can be found in the supporting material of the
original paper from Brunton et al.

2

Table 1. Sequential thresholded least square in Python.
The linear equation is solved using the QR

decomposition.

import numpy as np

def linearEqSolver(A, b):
Q, R = np.linalg.qr(A)
p = np.dot(Q.T, b)
return np.dot(np.linalg.inv(R), p)

Xi = linearEqSolver(Theta, dxdt) # Initialize Xi values
for iteration in range(niter):

smallCoeff = abs(Xi) < lmbd # get coeff < lambda
Xi[smallCoeff] = 0.0 # set them to 0
for dim in range(ndim): # regress over large coeffs

bigCoeff = np.logical not(smallCoeff[:, dim]).reshape((-1,))
Theta tmp = Theta[:, bigCoeff]
dxdt tmp = dxdt[:, dim]
Xi[bigCoeff, dim] = linearEqSolver(Theta tmp, dxdt tmp)

matrix Ξ collecting the coefficients of the candidate functions
in Θ(X). If, as expected, the dynamic of the system is sparse
with respect to the space of possible functions, most of the
elements in Ξ will be zero. Otherwise, Ξ will be a full matrix,
suggesting the solution is not sparse.

The number of iterations (niter in Table 1) is not defined here.
Several trials showed that a few iterations (from a couple up
to 5 or 10) were sufficient to estimate the dynamics of the
two systems presented in Section 3. Performance appears
independent on the number of iterations in those test cases. If
the algorithm was not capable of identifying the correct dy-
namics after a few iterations, then it never converged. Adding
more iterations did not improve the selection capability. This
behavior may not hold for larger systems (large n).

3. APPLICATION
This section presents the application of the SINDy algorithm
to two nonlinear systems. All results and graphics reproduced
here were generated using Python 3.6 [12], libraries NumPy
and SciPy [13], and matplotlib [14].

Modified Van der Pol Oscillator

This subsection shows the application of SINDy to the Van
der Pol oscillator equation [15], modified by an extra non-
linear term and perturbed by sinusoidal excitation. The
nonlinear dynamics is defined by the scalar second-order
differential equation:

ẍ− c

m
(1− x2)ẋ+ x

(
k

m
+
knl
m
x2
)

=
1

m
F (t) . (5)

The element (1 − x2) in the second term on the left-hand
side distinguish the Van der Pol oscillator from the standard
linear oscillator, and the term knl x

2 has been added here to
introduce further non-linearity. Mass-normalized parameters
c/m, k/m, and knl/m are positive scalar quantities, while
F (t) is the sinusoidal excitation. The values utilized in this
simulation are reported in Table 2. Since Eq. (5) is a second-
order differential equation, it has been transformed into a
state-space formulation, i.e., x = [x, ẋ]T . The dynamic
was integrated using Euler’s forward method with time step

Table 2. Parameters of the modified Van der Pol
oscillator and initial conditions for the simulation.

Parameters Values
c/m 0.16
k/m 0.25
knl/m 1.25

F0 = 200 N
F (t) = F0 sin (2πft+ φ) f = 0.2 Hz

φ = 0 rad
Initial conditions
x(t = 0) 2.75 m

ẋ(t = 0) 0 m/s

0 20 40 60 80 100
time, s

40

30

20

10

0

10

20

30

40

ac
ce

le
ra

tio
n,

 m
/s

2

noisy, = 2.0
filtered

2.0 2.5 3.0 3.5 4.0

Figure 1. Acceleration signal corrupted by r ∼ N (0, 2)
and filtered.

size ∆t = 1e − 3 s, and results were used as input data for
SINDy. The acceleration was corrupted by Gaussian noise
with standard deviation σ = 2.0 to replicate possible noise
from acceleration measurements, Figure 1.

In this mechanical case study, the solution through SINDy
requires availability of position, velocity and acceleration.
The full kinematic profile may not be available in experimen-
tal settings where kinematics is measured through sensors.
Numerical differentiation and subsequent filtering may help
overcoming the problem, as already suggested in [9]. The use
of two sensors, e.g., displacement transducers and accelerom-
eters, could potentially help the algorithm, thus requiring only
one numerical differentiation.

Figure 2 shows position and velocity of the modified forced
Van der Pol oscillator in time domain. A phase plot is also
shown to appreciate the nonlinear dynamics. The 3D plot
shows the state variables as time passes by, where the first
half of the simulation was used as training data (blue line).
The dynamics learned from the SINDy algorithm (dashed
green line) is then compared against the second half of the
simulation (orange line) for validation.

The dynamics learned through SINDy is reported in Table

3

x, m 3210123

x, m/s
64202468

tim
e,

 s

0

20

40

60

80

train
val
SINDy

x, m

x,
 m

/s
phase plot

Figure 2. Dynamics of the modified forced Van der Pol
oscillator learned through SINDy.

Table 3. Sparse vector ξ2 from SINDy.

Θ-column ξ2 Reference Error, %
1 0.0 0 -
x -0.24938066 -0.25 0.25
ẋ 0.15618899 0.16 2.38
x2 0.0 0.0 -
xẋ 0.0 0.0 -
ẋ2 0.0 0.0 -
x3 -1.25049414 -1.25 0.04
x2ẋ -0.15509556 -0.16 3.0
xẋ2 0.0 0.0 -
ẋ3 0.0 0.0 -
F (t) 0.05003716 0.05 0.07

3 (vector ξ1, because of the state-space formulation, is all
0 except for the velocity term ẋ equal to 1). The candidate
function library was built using sets of polynomials up to the
third order, so using the matrix Θ(X) presented in Eq. (3) up
to the element Xp3 , and adding, as last column, the forcing
F (t). Similar results were obtained by increasing the size of
the candidate function library as well as adding trigonometric
functions; all estimates of the non-necessary coefficients were
null. Adding the external forcing is fundamental. If F (t)
were not included, then SINDy would try to link, erroneously,
the effect of F (t) to the other columns in Θ.

The regularization parameter λ is the sparsity promoter.
Small λ would cause the resulting matrix Ξ not to be sparse,
and large λ would force excessive sparsity, with the limit
case ξk = 0 ∀ k = 1, ..., n. A (sub-)optimal λ can be
selected in a typical machine learning fashion, by splitting the
available kinematic profile in training and validation. First,
select an initial λ. A segment of the kinematic profile is
then used to train the algorithm by imposing the selected λ
as regularizer, and the remaining segment of the kinematic
profile is simulated through SINDy, Eq. (4). The error
between the SINDy-replicated kinematics and validation data
is then used as metric to assess the goodness of the selected

0.0 0.2 0.4 0.6 0.8 1.0
, -

102

103

104

105

106

sq
ua

re
d

su
m

 o
f r

es
id

ua
ls,

 -

best

Figure 3. Selection of regularized parameters through
AIC based on squared sum of residuals. The dashed-gray
line represents the error in the limit case ξ = 0, attained

when λ is too high.

λ. The procedure can be repeated sweeping through a set
of possible λ values. In the proposed example, 28 values
between 0 and 1 were used to define the set of possible λ,
[0, 1e-5, 2e-5, ..., 0.001, 0.002, ..., 0.1, 0.2, ..., 1]. The best
λ was selected using the Akaike information criterion (AIC)
computed over the squared sum of residuals, as in [16]:

ε =

m∑
i=1

(x(ti)− xSINDy(ti))
2

AICγ = m log
ε

m
+ 2γ ,

where m is the number of datapoints in the validation set
(similarly to the notation in the previous section,m represents
the number of data points over time) and γ is the number of
non-zero parameters in the SINDy model. In this instance,
the squared sum of residuals was computed using the position
profile only. The resulting AICγ is the value corresponding to
γ non-zero parameters, and the model with the lowest AIC is
selected as the best performing. Figure 3 shows the resulting
sum of squared residuals and the best regularization value
chosen with AIC, λ = 0.02 (the results shown in Fig. 2 were
generated with such λ).

Nonlinear system with random initial conditions

This subsection shows the application of SINDy to the
stochastic system:

dy1
dt

= y1y3,

dy2
dt

= −y2y3,

dy3
dt

= −y21 + y22 .

(6)

The initial conditions are: y1(0) = 1, y2(0) = 0.1u, and
y3(0) = 0, where u ∼ U [−1, 1]. The system was first uti-
lized in [17] to test deep-residual recurrent neural networks.
SINDy is not capable of learning the correct dynamics using

4

a single trajectory because of the random initial condition of
y2. The result is intuitive, since the random initial condition
drives trajectory y2 on either positive or negative side of the
set of real numbers and that changes at every run (see Fig.
4 discussed below). The algorithm is obviously incapable of
understanding the true dynamic with a single trajectory. The
addition of several trajectories to the dataset helps identifying
the correct sparse coefficients. The latter can be performed
by simply row-stacking all trajectories together. Therefore,
the number of rows of matrix X (Eq. (2)) will increase
with the number of sample trajectories. In this example,
n = 3 and the number of sample points in time domain is
m, so X ∈ IRm×3. By stacking T trajectories together, the
dimension of X becomes Tm × 3. All other dimensions of
the matrices required by SINDy will follow accordingly.

To test the effect of randomness on the system identification
capabilities, a number of trajectories y(t) were simulated for
20 seconds using ∆t = 0.05 s. The derivatives dy/dt were
computed by numerical differentiation and adding Gaussian
noise with σ = 0.2. Figure 4 and 5 show the system
simulation unrolled in time domain, and a 3D plot, where
time is represented by colors (from blue to red). If only
one of those trajectories were fed into SINDy, the resulting
vectors ξk were not sparse. Several values of λ, ranging
from 1e − 3 up to the order of 1e3, were tested in a trial and
error fashion, but none of them produced reasonably accurate
results. Instead, by using multiple sample trajectories, the
correct sparse vectors were identified even by varying λ.
Figure 6 shows the result after training SINDy using 200
sample trajectories and λ = 0.5 (dot-dashed red line), against
the results after training with a single trajectory (dashed
orange line, also with λ = 0.5). The thick dark gray curve
was left out of the training and used as validation. The
structure of the function learned with a single curve produces
a trajectory that becomes unstable after a couple of iterations,
falling outside of the range of values, while adding multiple
sample paths during training allows SINDy to successfully
reconstruct Eq. (6) with the following non-zero elements:

y1 y3 = 0.996069 ,

y2 y3 = −0.994354 ,

y21 = −0.997278 , y22 = 0.99549 ,

where each row refers to the first, second and third equation,
respectively.

The introduction of multiple trajectories in the dataset ap-
pears to be robust to more randomness. The original initial
conditions were modified by adding y3(0) = u, where u
is again a random realization from the uniform distribution
with range [-1,1] (different from the realization for y2(0)).
Figure 7 shows the system dynamics unrolled in time, while
Figure 8 shows a 3D representation. In this case, the
number of sample trajectories used for training had to be
increased to 400 to correctly capture the system dynamic and
so to provide accurate sparse vectors ξ. The regularization
parameter λ was kept to 0.5. Nonetheless, the estimation of a
(sub-)optimal λ as done in the previous example would help
the regression problem and a lower number of trajectories
may be required. Figure 9 shows the SINDy results using
400 samples, compared against a reference validation curve
and the results using a single curve for training. The outcome
corroborates what was observed in the previous case study
with one random initial condition only.

0

1

2

y 1
, -

2

0

2

y 2
, -

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time, s

2

0

2

y 3
, -

Figure 4. 1500 sample trajectories y(t) unrolled in time
domain. For clarity, only a subset of all the trajectories

has been shown.

y1, -
0.0

0.5

1.0

y2, -
1

0

1

y3, -

1

0

1

dy1
dt = y1y3
dy2
dt = y2y3
dy3
dt = y2

1 + y2
2

y1(0) = 1
y2(0) [0.1, 0.1]
y3(0) = 0

0

20

time, s

Figure 5. 3D representation of the system dynamics. For
clarity, only a subset of all the trajectories has been

shown.

4. CONCLUSIONS
This work proposed a qualitative analysis of the SINDy
algorithms in two test scenarios, where nonlinear dynamical
systems served as reference. From the short analysis pre-
sented here, a number of advantages and drawbacks arise
from the use of SINDy.

Sparsity enables simultaneous model selection and parameter
identification, which helps generating parsimonious models
(with low number of parameters and functions) when the true
dynamics of the system is unknown. SINDy produces models
based on candidate functions of the state variables, so it
paves the way to easy interpretation, and may also aid causal
inference. This is a clear advantage when comparing SINDy
against other machine learning techniques, were the param-
eters utilized for regression lose (completely or partially)
physical meaning. The computational cost appears to be low,

5

0

1

2
y 1

, -
SINDy - 1 SINDy - T val

2

0

2

y 2
, -

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time, s

2

0

2

y 3
, -

Figure 6. System identification using a single curve and
200 random trajectories. For clarity, only a subset of all

the trajectories has been shown.

0

1

2

y 1
, -

2

0

2

y 2
, -

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time, s

2

0

2

y 3
, -

Figure 7. 1500 sample trajectories y(t) unrolled in time
domain, with the additional random initial condition
y3(0) = u. For clarity, only a subset of all the

trajectories has been shown.

at least for the low-dimension problems shown in this paper.
Moreover, the algorithm allows the straightforward stacking
of multiple sample trajectories in the dataset of snapshots
X , thus enhancing the regression capability for stochastic
systems.

A number of issues emerged by the implementation of the
algorithm. The primary concern is the candidate functions
library Θ(X). If one of the snapshots of the true functions
is missing from the library, then the algorithm will try to
associate the effect of that missing term to the columns in
Θ(X). As a result, the coefficient vectors ξk might be in-
correct or not sparse, failing to identify the correct dynamics.
In those cases, the extrapolation capabilities of SINDy using
Eq. (4) can be extremely poor. Further improvements of the
methodology are likely to be required for real applications,

y1, -
0

1

2

y2, -

2

0

2

y3, -

2

0

2

dy1
dt = y1y3
dy2
dt = y2y3
dy3
dt = y2

1 + y2
2

y1(0) = 1
y2(0) [0.1, 0.1]
y3(0) [1, 1]

0

20

time, s

Figure 8. 3D representation of system dynamics with the
additional random initial condition y3(0) = u. For
clarity, only a subset of all the trajectories has been

shown.

0

1

2
y 1

, -
SINDy - 1 SINDy - T val

2

0

2

y 2
, -

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time, s

2

0

2

y 3
, -

Figure 9. System identification with y3(0) = u, using a
single curve and 400 random trajectories. For clarity,
only a subset of all the trajectories has been shown.

because when the true dynamic of the system is unknown, it
is not efficient, nor sound, to select a huge set of candidate
functions in the library hoping to include the correct one.
Such a problem does not apply to the simple cases shown
here, where the dimension of the state variable was either 2
or 3 and the elements constituting the differential equations
were fairly simple.

Systems subjects to exogenous forces may be identified eas-
ily, provided that external forcing is measured and embedded
in the candidate function library. On the other hand, systems
with feedback correction loops, e.g., K(x − xdes), pose
a problem. If the control system is simple enough that
feedback correction can be split, andKx andK(xdes) can be
embedded in the function library (for example in proportional
or proportional-derivative control), then SINDy still works.

6

Otherwise, it would become impossible to disambiguate the
effect of the feedback control from the un-controlled system
dynamic [9].

The outcome from this qualitative analysis may change when
testing SINDy in high-dimensional spaces. If the system
dynamic is described by a combination of non-rational and
rational functions, the sequential thresholded least square
should be modified by first constructing the library Θ(X)
in a specific fashion, and then compute the null space of the
new library, as proposed in [18]. The sampling frequency has
not been discussed here, but it can also pose challenges. If
measurements of the system state variables were coarse, i.e.
low sampling rate, the algorithm might not converge to the
correct sparse vectors.

Uncertainty quantification is also relevant for this type of
algorithms, and Bayesian alternative could be explored. As
a matter of fact, Park and Casella proposed, in 2008, the
Bayesian LASSO, [19], which is based on Gibbs sampling
and could be implemented to solve Eq. (1). However,
several attempts have been carried out to apply the Bayesian
LASSO to the case studies proposed here, and none of them
was successful. Specifically, the target non-zero elements
were underestimated (closer to 0 than they should be), and
the target zero elements were overestimated (larger than 0).
Although the cause of those unsuccessful results was not
identified, the use of Bayesian methods in sparse regression
problems is still a matter of discussion.

ACKNOWLEDGMENTS
This work was supported by the System-Wide Safety (SWS)
project under the Airspace Operations and Safety Program
within the NASA Aeronautics Research Mission Directorate
(ARMD).

REFERENCES
[1] S. Ekins, A. C. Puhl, K. M. Zorn, T. R. Lane, D. P.

Russo, J. J. Klein, A. J. Hickey, and A. M. Clark, “Ex-
ploiting machine learning for end-to-end drug discovery
and development,” Nature materials, vol. 18, no. 5, p.
435, 2019.

[2] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic
routing between capsules,” in Advances in neural infor-
mation processing systems, 2017, pp. 3856–3866.

[3] S. L. Brunton and J. N. Kutz, Data-driven science and
engineering: Machine learning, dynamical systems,
and control. Cambridge University Press, 2019.

[4] D. Gunning, “Explainable artificial intelligence (xai),”
Defense Advanced Research Projects Agency (DARPA),
nd Web, vol. 2, 2017.

[5] C. Wilkinson, J. Lynch, R. Bharadwaj, and K. Wood-
ham, “Verification of adaptive systems,” 2016, fAA
Technical Report.

[6] F. Doshi-Velez and B. Kim, “Towards a rigorous sci-
ence of interpretable machine learning,” arXiv preprint
arXiv:1702.08608, 2017.

[7] A. Karpatne, W. Watkins, J. Read, and V. Kumar,
“Physics-guided neural networks (pgnn): An appli-
cation in lake temperature modeling,” arXiv preprint
arXiv:1710.11431, 2017.

[8] M. Raissi, P. Perdikaris, and G. E. Karniadakis,

“Physics informed deep learning (part i): Data-driven
solutions of nonlinear partial differential equations,”
arXiv preprint arXiv:1711.10561, 2017.

[9] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discov-
ering governing equations from data by sparse identifi-
cation of nonlinear dynamical systems,” Proceedings of
the National Academy of Sciences, vol. 113, no. 15, pp.
3932–3937, 2016.

[10] R. Tibshirani, “Regression shrinkage and selection via
the lasso,” Journal of the Royal Statistical Society:
Series B (Methodological), vol. 58, no. 1, pp. 267–288,
1996.

[11] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al.,
“Least angle regression,” The Annals of statistics,
vol. 32, no. 2, pp. 407–499, 2004.

[12] G. v. Rossum, “Python tutorial, technical report cs-
r9526,” in Centrum voor Wiskunde en Informatica
(CWI), Amsterdam, 1995.

[13] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open
source scientific tools for Python,” 2001. [Online].
Available: ”http://www.scipy.org/”

[14] J. D. Hunter, “Matplotlib: A 2d graphics environment,”
Computing In Science & Engineering, vol. 9, no. 3, pp.
90–95, 2007.

[15] B. Van der Pol, “A theory of the amplitude of free and
forced triode vibrations, radio rev. 1 (1920) 701-710,
754-762; selected scientific papers, vol. i,” 1960.

[16] N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L.
Proctor, “Model selection for dynamical systems via
sparse regression and information criteria,” Proceedings
of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 473, no. 2204, p. 20170009,
2017.

[17] J. N. Kani and A. H. Elsheikh, “Dr-rnn: A deep residual
recurrent neural network for model reduction,” arXiv
preprint arXiv:1709.00939, 2017.

[18] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N.
Kutz, “Inferring biological networks by sparse iden-
tification of nonlinear dynamics,” IEEE Transactions
on Molecular, Biological and Multi-Scale Communica-
tions, vol. 2, no. 1, pp. 52–63, 2016.

[19] T. Park and G. Casella, “The bayesian lasso,” Journal of
the American Statistical Association, vol. 103, no. 482,
pp. 681–686, 2008.

BIOGRAPHY[

Matteo Corbetta is a Research Engi-
neer with SGT Inc. at NASA Ames Re-
search Center, CA, where he is investi-
gating uncertainty quantification meth-
ods, model-based and data-driven algo-
rithms for diagnostics and prognostics
applied to autonomous systems. Prior to
joining NASA, he worked as R&D Con-
dition Monitoring Systems Engineer at
Siemens Wind Power, Denmark, and as

Post-Doctoral Researcher and Teaching Assistant at Politec-
nico di Milano, Italy, where he received Ph.D., MSc. and BSc.
in Mechanical Engineering. His research interests include
stochastic processes, algorithms for uncertainty quantifica-
tion, machine learning, and system health management. He

7

"http://www.scipy.org/"

is member of AIAA, IEEE, and member of the Editorial Board
of the PHM Society.

8

	Introduction
	Summary of sparse regression for system identification
	Application
	Conclusions
	Acknowledgments
	References
	Biography

