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Abstract—Rapid increase of UAV operation in the next decade
in areas of on-demand delivery, medical transportation services,
law enforcement, traffic surveillance and several others pose
potential risks to the low altitude airspace above densely pop-
ulated areas. Safety assessment of airspace demands the need
for novel UAV traffic management frameworks for regulation
and tracking of vehicles. Particularly for low-altitude UAV
operations, quality of GPS measurements feeding into the UAV
is often compromised by loss of communication link caused by
presence of trees or tall buildings in proximity to the UAV flight
path. Inaccurate GPS locations may yield to unreliable mon-
itoring and inaccurate prognosis of remaining battery life and
other safety metrics which rely on future expected trajectory
of the UAV. This work therefore proposes a generalized trajec-
tory monitoring and prediction methodology for autonomous
UAVs using in-time GPS measurements. Firstly, a 4D smooth
trajectory generation technique from a series of waypoint loca-
tions with associated expected times-of-arrival based on B-spline
curves is presented. Initial uncertainty in the vehicle’s expected
cruise velocity is propagated through the trajectory to compute
confidence intervals along the entire flight trajectory using error
interval propagation approach. Further, the generated planned
trajectory is considered as the prior knowledge which is updated
during its flight with incoming GPS measurements in order
to estimate its current location and corresponding kinematic
profiles. The estimation of the vehicle position is defined in
a state-space representation such that the position at a future
time step is derived from position and velocity at current time
step and expected velocity at the future time step. A linear
Bayesian filtering algorithm is employed to efficiently refine
position estimation from noisy GPS measurements and update
the confidence intervals. Further, a dynamic re-planning strat-
egy is implemented to incorporate unexpected detour or delay
scenarios. Finally, critical challenges related to uncertainty
quantification in trajectory prognosis for autonomous vehicles
are identified, and potential solutions are discussed at the end
of the paper. The entire monitoring framework is demonstrated
on real UAV flight experiments conducted at the NASA Langley
Research Center.
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1. INTRODUCTION
Emerging technology surrounding unmanned aerial vehi-
cles (UAVs) has broadened industrial applications which
include, but not limited to, on-demand delivery, medical
transportation, precision farming, weather monitoring and
traffic surveillance. As a result, density of UAV operations
in low-altitude airspace is expected to grow tremendously
in the upcoming decades, changing the future of aerospace
[1], [2]. Owing to the complexity and risk associated with
such massive UAV operations, a holistic and in-time safety
assessment of the airspace has become a critical area of
research. An un-monitored UAV can not only result in
economic loss in the event of a crash but also poses threat
to lives and property on ground.

Criticality of state awareness and monitoring for commercial
manned aircraft has been identified and implemented widely
over the past years ensuring high safety associated with them.
Designing of Traffic Collision Avoidance System (TCAS)
[3] and the Terrain Awareness Warning System (TAWS) [4]
have been powerful risk-mitigation technologies. Besides,
operational mitigation performed by ’human pilots’ and ’air
traffic controllers’ based on warnings and alerts issued by
real-time safety monitoring tools [5], [6], [7] have played
critical role in the exemplary safety record in recent years.
However, challenges involving safety assessment of small
autonomous UAVs are substantially different from manned
aircrafts. Firstly, size, weight and cost constraints restrict
installation of heavy and expensive on-board computing sys-
tems or hardware for large-bandwidth communications with
the ground station, thus limiting the ability to perform self-
diagnosis and prognosis. Such constraints limit the size
and life of batteries that can be carried by these vehicles.
Further, according to current FAA standards, most operations
involving small UAVs are expected to occur within 400 feet
from ground. As a consequence of low altitude, external
disturbances such as wind gusts or turbulence may have
stronger effects on UAVs than they have been traditionally
studied for larger commercial aircrafts, even potentially ac-
celerating discharge rates from their batteries. Besides, wind
tunnel effects caused by buildings or other obstacles in urban
environment may jeopardize vehicle stability and are even
harder to predict.

For ensuring safe operations in the low-altitude airspace and
integrating with the general aviation, there is a consensus
in between government and industries that UAVs should be
equipped with in-time safety and situational aware (SSA)
technologies [8]. NASA’s Aeronautics Research Mission
Directorate describes a strategic plan for investigating and
advancing in-time safety assurance capabilities [9] by inte-
grating information from multiple sources. Information may
be (1) vehicle specific such as battery state-of-charge, compo-
nent’s health status, (2) third-party sources such as weather,
obstacles and terrain information or (3) from UAV Traffic
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Management (UTM) on entire airspace status consisting of
multiple UAVs and their mission objectives. As a pre-flight
check, UAV first needs to connect to a ’licensed’ ground
control system (GCS) to ’request’ its planned flight path or
flight region. If the risks associated with the planned flight
which includes monitoring as well as forecast information
are found acceptable, the GCS approves the ’request’ and the
UAV is set to fly. However, discrepancies may occur during
flight such as component failure, degraded position estimates
or external turbulences causing unplanned delay, hovering or
deviation from its planned path. Such discrepancies should
be estimated and communicated by the monitoring system to
the GCS or UTM in-time to avoid detrimental consequences.

With the goal of achieving in-flight monitoring capabilities,
this paper presents a study on in-time estimation of 4D trajec-
tories of small UAVs flying in autonomous mode. The work
is based on a state-of-the-art B-spline trajectory generation
algorithm in which uncertainty is quantified in terms of vari-
ations in its planned cruise speed. Further uncertainty in the
estimated position is updated using Bayes filtering based on
the quality of position measurements available from on-board
navigation system. The approach can assist in-time tracking
of UAVs particularly under degraded position measurements.
Uncertainty in predicted trajectory due to poor quality of
GPS measures directly improves computation of other related
safety metrics such as future power consumption profile or
proximity to obstacles.

2. UAV HEALTH MONITORING FRAMEWORK
In-time monitoring of UAVs can be achieved via a simulation
model of the UAV flight that is executed on the ground
station, or in the cloud, with RF communication link with the
real UAV in operation. The model parameters are initialized
utilizing available pre-flight information and then updated by
additional data as the flight progresses. In order to achieve
a comprehensive SSA, the data sources should include (a)
On-board navigation sensors (Eg: LIDAR, GPS, IMU) (b)
On-board diagnostic sensors (Eg: battery power usage moni-
tors, temperature and pressure sensors, vibration sensors) (c)
External data sources (Eg: city plan maps, localized wind
information, weather forecasts, crowd density maps, terrain
maps).

Figure 1. Overall simulation framework: safety monitoring
of UAV airspace.

The simulation framework, as depicted in Figure 1, be-
gins with the flight plan or a set of waypoints that the
UAV has to traverse through in 4-dimensional coordinates
lat, lon, alt, eta where lat, lon, alt represents the geograph-

ical location of each waypoint in geodetic coordinate system
of latitude φ, longitude λ and altitude ζ, with eta representing
the expected time-of-arrival at each of them. Before gen-
erating and tracking the UAV trajectory, an important step
is converting the reference frames of simulation. Although,
weather cells and obstacle locations are mostly defined in
geodetic frames based on assumption of earth’s shape as the
WGS84 ellipsoid, proximity of vehicle(s) from obstacle(s)
can be easily interpreted within a Cartesian reference frame
in terms of linear distances. Hence, a reference frame conver-
sion approach is implemented to convert geodetic coordinates
to Cartesian frame which is then sent as an input to the tra-
jectory generation algorithm. In order to convert the geodetic
units to a local Cartesian frame, the waypoint positions are
first converted to an Earth-Center-Earth Fixed (ECEF) frame
according to Eq. (1). In Eq. (4), the values of the equatorial
and polar radius of the earth are defined as a = 6378137 m
and b = 6356752.314245 m, respectively.

X = (N + ζ) cosφ cosλ

Y = (N + ζ) cosφ sinλ

Z =
(
ζ + (1− e2)N

)
sinφ

(1)

where,
N =

a√
1− e2 sin2 φ

, (2)

e =
√
f(2− f) (3)

f =
a− b
a

(4)

Keeping the first waypoint location (X0, Y0, Z0) fixed in
the ECEF coordinates, the relative distances of every other
waypoint from the first waypoint is then computed according
to Eq. (5).

∆X = X −X0

∆Y = Y − Y0

∆Z = Z − Z0

(5)

Finally, considering the first waypoint as the origin of the
local cartesian frame (0, 0, 0), the cooordinates for every
other waypoint in the cartesian frame are computed according
to (6), where φ0 and λ0 indicate the latitude and longitude of
first waypoint in geodetic frame.

x = −∆X sinλ0 + ∆Y cosλ0

y = −∆X cosλ0 sinφ0 −∆Y sinφ0 sinλ0 + ∆Z cosφ0

z = ∆X cosφ0 cosλ0 + ∆Y cosφ0 sinλ0 + ∆Z sinφ0

(6)

Once the waypoint coordinates are obtained in the local
ENU frame, the next step in the simulation model is to
generate kinematic smooth trajectory traversing through each
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waypoint along with the associated confidence bounds. At
each time-instant, the expected location of the UAV should be
updated with measurements from on-board navigation units,
thereby refining prediction of the future trajectory as well as
the uncertainty bounds. It is imperative to update planned
trajectory with in-time measurements since the subsequent
safety metrics such as future power consumption or proximity
to dynamic obstacles depend heavily on the accuracy of the
predicted trajectory. For example, in the event of off-nominal
conditions such as presence of sudden wind gusts or dynamic
obstacles, when the UAV deviates from its planned course,
safety associated with the remaining trajectory are directly
affected including the future power consumption profile or
risk to non-participating crowd. The confidence bounds
associated with the prediction should also be realistic and
based on quality of navigation measurements in order to
improve the SSA for a UAV. This paper, therefore, focuses on
the trajectory generation, in-time estimation and prediction
algorithms based on a pre-defined flight plan and in-time GPS
measurements for a UAV, as explained in Section 3 followed
by results in Section 4. The same approach can be extended
to an airspace consisting of multiple UAVs to compute the
overall safety of the UAV airspace.

The following steps of the health monitoring framework
includes computation of safety metrics utilizing both on-
board health diagnostic information and external data. UAV
health diagnostics further include fault identification strate-
gies based on available data sources. Safety metrics may
include proximity from static or dynamic obstacles [10], RUL
of battery SOC [11] or risk to non-participating crowd [12].
Details of such safety assessment is beyond the scope of
this paper. Interested readers are encouraged to follow the
relevant literature.

3. UAV TRAJECTORY TRACKING
The trajectory tracking approach proposed in this work
grounds on three key elements: (i) a NURBS-based trajectory
generation algorithm to estimate the UAV kinematic profile
over the entire trajectory, (ii) the quantification of uncertainty
affecting the arrival times over the trajectory, and (iii) in-time
tracking of the vehicle location through Bayesian filtering of
on-board measures and the corresponding kinematic model.

NURBS Trajectory Generation

In order to achieve kinematic smooth trajectories representa-
tive of the true, desired trajectory of the vehicle, non-uniform
rational B-splines (NURBS) have been implemented in this
work. NURBS are parametric composite curves applied in
several robotic applications owing to their desirable proper-
ties of convex hull and maintaining continuity up to the k− 1
derivative for a curve of degree k [13], [14], [15]. The final
trajectory passes in a convex turn close to every way-point
instead of crossing exactly through them, thereby avoiding
a complete stop at the way-point locations and maintaining
energy-efficiency. Besides, clamped NURBS curves [15]
generates a trajectory starting and ending at exact way-point
locations, representative of take-off and landing ports.

Given a set of n + 1 way-points, a NURBS curve is a
piecewise curve described by parameter u ∈ IR≥0 : 0 ≤
u ≤ n − k + 2, defined according to Eq. (7). This
implies that the final curve can be assumed to be composed
of n − k + 1 sections where each section of the curve
{[0, 1], [1, 2], ..., [(n − k + 1), (n − k + 2)]} is of degree k.
Figure 2 (a) depicts a NURBS curve generated from n = 7

Figure 2. Schematic of NURBS trajectory generation based
on example way-points P1 − P7

way-points with desired degree of k = 3, thereby comprising
7− 3 + 1 = 5 sections denoted by {C1, C2, C3, C4, C5}.

Each segment of the NURBS curve is composed by a
weighted contribution from each way-point defined according
to a basis function Ni,k(u) which is computed for ith way-
point and kth degree. The NURBS basis function is described
in Eqs. (8a) and (8b).

x(u) =

∑n
i=0 hiNi,k(u)xi∑n
i=0 hiNi,k(u)

, 0 ≤ u ≤ n− k + 2 (7)

Ni,k(u) =
(u− ti)Ni,k−1(u)

ti+k−1 − ti
+

(ti+k − u)Ni+1,k−1(u)

ti+k − ti+1

(8a)

Ni,1(u) =

{
1 if ti ≤ u ≤ ti+1

0 otherwise (8b)

For example, in Figure 2, the degree k was set to 3, hence
way-points P1, P2, and P3 defines the curve segment C1,
way-points P2, P3 and P4 defines the curve segment C2 and
and so on for the remaining segments C3 − C5. Finally,
the weight hi associated with each way-point controls the
distance of curve from that way-point. The term t, known
as the knot vector, is defined in Eq.(9) such that it identifies
the way-points that contribute to each segment of the NURBS
curve via the basis function.

ti =

0 if i ≤ k
i− k + 1 if k ≤ i ≤ n
n− k + 2 if i ≥ n

(9)

One of the other advantages of using NURBS is that no in-
flight parameters are required for generating the trajectory.
Both the position and velocity profile of planned trajectory
can be obtained using the global locations and expected time
of arrival (ETA) at the way-points, which makes this approach
applicable for multiple UAVs.

The distance of the resultant curve from each way-point can
be controlled by their relative weights. Increasing weights of
one way-point ensures that the curve passes close to that way-
point but pulls it away from the other way-points. Hence, a
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curve passing close to every way-point following sharp turns,
similar to a rotor-type UAV flight, could not be achieved by
the existing NURBS algorithm. This drawback was solved in
one of the previous studies [16] by adding pseudo way-points
associated with lower weights in between two consecutive
true way-points. The smoothness of the trajectory as well
as distance of curve from each way-point could therefore
be adjusted by regulating the weights of the true way-points
relative to that of the pseudo way-points. Details of the
approach are described in [16]. By assigning and varying the
weights, the shape of the resultant curve, particularly at the
turns, can be adjusted, as shown in Figure 3 (a).

0 20 40 60 80 100 120

Time

20

30

40

50

60

70

80

P
os

iti
on

 in
 x

 d
ir.

Lower weights at waypoints
Higher weights at waypoints
Waypoints

35 40 45
46

48

50

(a)

0 20 40 60 80 100 120

Time

-0.5

0

0.5

1

1.5

V
el

oc
ity

 in
 x

 d
ir.

Lower weights at waypoints
Higher weights at waypoints

(b)

Figure 3. NURBS trajectory from simulated way-points
with higher and lower weights of pseudo points (a), and

respective velocity profiles (b).

Uncertainty Quantification in Planned Trajectory

The NURBS trajectory generated from a set of way-points
is based on a constant velocity profile, exhibiting non-zero
accelerations only at the way-points where movement di-
rection changes. However, uncertainty in external variables
( e.g., an un-modeled wind field) or performance of the
autopilot system may produce delays in the flight execution
by causing fluctuations of the vehicle’s cruise speed, which
eventually lead to different arrival times. This section shows
how the uncertainty affecting the times of arrival (TAs) can
be estimated by modeling uncertainty in the expected cruise
speed. The approach enables the computation of the TA
confidence intervals over the entire trajectory profile.

Uncertainty affecting the cruise velocity is modeled us-
ing Gaussian independent random variables with covariance
Σv = I3 [σ2

v,x, σ
2
v,y, σ

2
v,z]

T ∈ IR3×3, where I3 is a 3 × 3
identity matrix. The speed profile uncertainty is then prop-
agated through the trajectory using error intervals [17]. The
errors affecting the cruise speed along the three directions are
assumed to be independent and identically distributed. The
outcome is a 4D NURBS trajectory that includes confidence
boundaries of the vehicle locations based on the input cruise
speed uncertainty. Assuming negligible acceleration, the
kinematic relationship between position and time becomes
∆t = ∆pv, where ∆t is the time necessary to reach the
next way-point, also defined differential time, ∆p is the
distance between two consecutive way-points, and v is the
cruise velocity. The differential TA at way-point k can be
represented by Eq. (10), where ∆ta,k, is the maximum of the
three differential TAs computed along x, y, and z direction.

∆ta,k = max {∆ta,xk
,∆ta,yk ,∆ta,zk} , (10)

Based on the assumption of normal distribution of the cruise
velocity, the uncertainty in the differential TA, can be com-
puted according to error intervals [17] as denoted in Eqs.
(11)- (12).

σ2
tj,k

,

{
∆ta,k

2 σ2
vj,k

v̄2j,k
∀ v̄j,k ∈ v̄k : v̄j,k 6= 0

0 otherwise
(11)

σ2
tk

, max
j∈{x,y,z}

{
σ2
tj,k

}
(12)

The variance of the TA at every way-point is equal to the
cumulative sum of variances σ2

ti ,∀ i ≤ k.

σ2
ta,k

=

k∑
i=1

σ2
ti . (13)

Once Eqs. (11), (12) and (13) are applied to all way-points,
the flight plan information is intrinsically enhanced by a
Gaussian probability density function (pdf) describing the TA
at all way-points:

ta,k ∼ N
(
t̄a,k, σ

2
ta,k

)
, (14)

where t̄a,k is the expected value of the time of arrival, or ETA,
at way-point k.

The methodology can be easily adjusted to deal with air-
speed and wind speed uncertainty, under the assumption of
stationary wind field, i.e, when ∂w(x, y, z, t)/∂t ≈ 0. In that
case, the variance affecting wind speed adds to the variance
of the cruise airspeed, owing to the relationship between
airspeed, ground speed, and wind speed, vg = va +w. The
hypothesis of stationary wind profile may be valid for short
flights (typical of small UAV for, e.g., delivery of goods), but
cannot be directly applied to longer flights where the wind
field cannot be considered as stationary.

Once the probability distributions of TAs at every way-point
are calculated, the computation of the uncertainty bounds
for the entire trajectory is carried out by using the NURBS
algorithm three times. First the expected, i.e., ”average”
trajectory, computed with the ETAs, and then two trajectories

4



computed using the upper and lower bounds of the TAs, as in
Eq. (15), as depicted in Figures 4.

P+(t) = NURBS(P , t+a )

P−(t) = NURBS(P , t−a )
(15)

The TA vectors t+a , t−a are defined as follows,

t+a = [t̄a,0, t̄a,1 + σta,1, . . . , t̄a,K + σta,K ] ,

t−a = [t̄a,0, t̄a,1 − σta,1, . . . , t̄a,K − σta,K ] .

The matrix P ∈ IRK×3 collects theK way-points in x, y, and
z directions column-wise, and NURBS(·) has been used to
define the NURBS algorithm, which returns the 4D trajectory
profile, with corresponding time derivatives, from the input
way-points P and TAs ta. The resulting profile is P(t),
which contains the entire trajectory kinematic profile, and
where the superscript + and − indicate the upper and lower
intervals.

Variance in the cruise velocity introduces uncertainty in the
time that the UAV takes to fly from one way-point to the other.
Such uncertainties at every position introduces cumulative
delay throughout the flight, which is further increased when
ETA is computed for the later way-points. Hence as observed
from the Figures 4 (a) , the uncertainty bounds are higher
towards the end of the trajectory than at the beginning.
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Figure 4. Simulated NURBS trajectory with uncertainty
bounds due to variance in cruise velocity (a) position profile

and (b)velocity profiles.

Trajectory Estimation using Kalman Filtering

Next, the trajectory profile is converted to a discrete time-
state space model and Bayes filtering is implemented to adjust
the mean and variance of the UAV position based on the on-
board navigation measurements and their covariance matri-
ces. The procedure for computing position estimates along
x-direction from NURBS trajectory by incorporating quality
of in-time measurements are described in the following steps.
The same method is extended to generate position estimates
along the other directions.

1. Initialization: The NURBS trajectory defined in Eq. (7),
together with the uncertainty on the time of arrival from Eq.
(14), define the prior PDF of the position estimates at time
t = 0 s and velocity estimates at time t = 0 and t = 1 s. The
standard deviation for each of the prior PDFs are obtained
from the uncertainty bounds computed acording to Eqs. (15),
such as

σd,t=t0 = max(P+(t = t0)−P(t = t0),

P−(t = t0)−P(t = t0)) ,

while priors of position and velocity are defined as in Eq.
(18).

dp0 ∼ N
(
Pt=t0 , σ

2
d,t=t0

)
(16)

vp0 ∼ N
(
Vt=t0 , σ

2
v,t=t0

)
(17)

vp1 ∼ N
(
Vt=t1 , σ

2
v,t=t1

)
(18)

2. Model Prediction: In order to generate the state-space
model for trajectory update, uniform acceleration profile is
assumed for time interval in between two time-stamps or in
between two consecutive measurements.If navigation mea-
surements are received from the UAV at frequency of 1 Hz,
the position PDF d1 at the next time-stamp can be computed
according to the laws of uniformly accelerated motion, as
stated in Eq. (20).

dt = dpt−1 + vpt−1δt+
1

2
at−1t δt

2 (19)

= dpt−1 + vpt−1t+
1

2
(vpt − v

p
t−1)δt (20)

Hence, the position can be interpreted as a function of po-
sition at the previous time step and parameters θt−1:t =
(vt−1, v

p
t ). It should be noted that in this work, unlike typical

state-space models defined in previous works [18], the state
at a time step, depends not only on the previous time states
but also on parameters at the current time step which are pre-
computed from the NURBS trajectory. The velocity value
vpt obtained from the NURBS velocity profile is a necessary
input to the model, since this is the parameter that drives
the estimated trajectory towards the planned path dictated by
the way-points. In previous works [18], the position of a
moving object at a current time step is computed by adding
the product of velocity and time interval to the position
computed at previous time-step, under the assumption of
constant velocity for the entire flight. This is particularly not
valid for short UAV flights, since the velocity with which
an autonomous UAV flies depends on several factors such
as distance between two way-points, wind velocity, obstacle
proximities and other mission objectives. For such cases,
assuming constant velocity profile for entire UAV operations
may yield inaccurate estimation and prediction of the future
trajectory.
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The implementation of the model follows a Kalman filter
formulation as in Eq. (21), which can also be retrieved
from many Engineering text books [19]. The terms in Eq.
(21) are: the state vector x = [dx, dy, dz, vx, vy, vz]

T ,
containing the three positions d and velocities v in the three
Cartesian directions. The input vector containing the planned
velocity at the next time step, uk−1 = [vpx,k, v

p
y,k, v

p
z,k]T .

A position error term e used to correct any bias that may
be introduced by initial conditions or external disturbances,
ek−1 = [ex,k−1, ey,k−1, ez,k−1]T . The latter can be seen as
control term proportional to the error between planned and
observed position.

x̂k|k−1 = A x̂k−1|k−1 +Buk−1 + E ek−1

Pk|k−1 = APk−1|k−1A
T +Q

(21)

In this formulation, the state matrix A, input matrix B, and
error-correction matrix E become:

A = 0.5

[
03 I3
03 03

]

B = 0.5

[
I3
03

]

E = kp

[
I3
03

]
where kp is a constant analogous to the proportional control
gain, while 03 and I3 are an all-zero matrix and the identity
matrix, both of dimensions 3 × 3. The constant 0.5 in matri-
ces A and B comes from the approximation of uniformly-
accelerated motion where acceleration is computed as the
average between speed at two subsequent time steps (see
Eq. (20)). Matrices P and Q are the convariance matrix of
the state vector P , and the model noise covariance matrix
Q. Their dimension is 6 × 6, following the system state
vector. They are both diagonal matrices where each diagonal
element represents the variance of the model error in that
particular dimension. As obvious from Eq. (21), the filter
needs the initialization of both system state vector xk−1|k−1

and covariance matrix Pk−1|k−1.

3. Updating: Once the prior of the system state x̂k|k−1 and its
covariance matrix Pk|k−1 have been computed, the updating
is performed following the Kalman filter procedure, Eq. (22).

ỹk = mk −H x̂k|k−1

Sk = H Pk|k−1H
T + Σmeas

Kk = Pk|k−1H
T S−1

k

x̂k|k = x̂k|k−1 +Kk ỹk

Pk|k = (I −KkH)Pk|k−1

(22)

The three position measurements are collected in vector m.
Matrix H represents the measurement model, while Σmeas
represents the covariance of the measures. Matrix K repre-
sents the Kalman gain, and the last two rows of Eq. (22)
are the posterior estimates of state and covariance matrix.
It should be noticed that when both position and velocity
are observed, the dimension of all matrices should change
accordingly.

Trajectory Prediction

After computing the posterior estimate of the system state,
composed of state vector x̂k|k and covariance matrixPk|k, the
prediction of the remaining trajectory involves the propaga-
tion of the state vector through the model, which corresponds
to the prediction step of Kalman filtering, Eq. (21). It is a
step-by-step simulation of the model following the desired
trajectory represented by the NURBS velocity values v·,k in
the input vector u, and the error-correction term E e.

On the other hand, the propagation of uncertainty through
the covariance matrix Pk|k cannot directly follow Eq. (21).
If Pk|k−1 is computed with Eq. (21) over a number of
time steps, the covariance terms increase indiscriminately,
thus producing large variance values not representative of the
real uncertainty. The reason is that the effect of the UAV
controller, which keeps the vehicle close to the pre-defined
track, is not accounted for when using the second row of Eq.
(21).

At this stage of the work, the posterior covariance obtained
from Pk|k is kept constant throughout the remaining path the
UAV has to execute. In this way, the confidence intervals of
the UAV location remain constant when the UAV is moving
at constant speed, while they increase when there’s a change
in direction, which implies a change in the velocity vector,
as shown in Section 4. where the approach is applied to
experimental flight data.

4. RESULTS ON REAL DATA FROM UAV
FLIGHT EXPERIMENTS

The proposed method of trajectory generation using in-time
position measurements is demonstrated on an experimental
flight executed by a DJI S1000 octocopter at NASA Langley
Research Center, as shown in Figure 5 (a). The vehicle
was equipped with Pixhawk autopilot hardware (http://
pixhawk.org/) and commanded with Ardupilot software
(http://ardupilot.org/).

Figure 5 (b) represents the flight plan consisting of a series of
17 waypoints with total flight time of approximately 380 sec-
onds. The measured position of the UAV during flight, which
was estimated from on-board navigation units, are plotted in
the same Figures. These measured values were utilized in
a playback mode to validate the proposed state-space model
and compare the predicted position profile with uncertainty
bounds against experimental observations. In this exper-
iment, the measurements used by the Pixhawk controller
comprised of a filtered estimate of the two navigation devices
in the UAV: the global position system (GPS) that uses satel-
lite information and the on-board inertial measurement unit
(IMU) which computes the vehicle’s acceleration [20]. Thus,
the kinematic measurements that ground station receives is a
filtered estimate of GPS location with IMU measurements in
which the covariance of the filtered estimate is representative
of the measurement noise. An example of data quality in
terms of covariance of estimated position is available in the
MAVLink data under: Global POS INT COV (https:
//mavlink.io/en/messages/common.html).

At first, the position and velocity profile along the lati-
tude dimension is generated using the NURBS algorithm,
as depicted by the solid line plots in Figures 6 (a) and(b)
respectively. It can be observed Figure 6 (b) that the
UAV followed a constant velocity in between the waypoints,
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(a)

(b)

Figure 5. (a) DJI S1000 octocopter used for flight tests (b)
Map of flight plan at NASA LARC.

yet maintaining a smoother transition as it takes a turn at
the waypoint locations. Such kinematic smoothness was
achieved by the NURBS simluation. Further, uncertainty
was added to the cruise velocity in the form of a normal
distribution. A flight executed from the same vehicle, on
another day and on another route, was utilized to compute
the variance Σv of the cruise velocity distribution: Σv ≈
I3 [0.0625, 0.0625, 0.0289]T (m/s)2. Uncertainty in cruise
velocity was then propagated to generate variance in ETA,
thereby providing confidence bounds along the entire position
and velocity profile as shown by the dashed lines in Figure 6.

The NURBS trajectory along with the confidence bounds
represents the prior PDF of the UAV position at time stamp
t = 0 s. After every interval of 1 second, the measurement
along with the covariance of its filtered estimate is utilized to
compute the posterior PDF according to Eqs. (21). Addition-
ally, the remaining trajectory is generated following the state-
space model using Eq. (22). Figure 7 depicts the estimated
and predicted position values along with 95% confidence
intervals based on measurements available up to (a) 50, (b)
150 and (c) 280 seconds.

From the three plots it is observed that the proposed method
of generating NURBS trajectory followed by the filtering of
the state-space model using Kalman filter provided reason-
ably accurate prediction of future position profile. The mea-
sured locations lied within the 95% confidence intervals for
most of the trajectory. It can be observed that when measured
position lied close to the expected trajectory, the estimated
position values were associated with tighter bounds, such as
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Figure 6. (a) DJI S1000 octocopter used for flight tests (b)
Map of flight plan at NASA LARC.

in between 100− 200sec in Figure 7 (c). On the other hand,
the velocity is more uncertain at the transition spots when
the UAV changes its direction. As a result, the confidence
bounds are higher close to those waypoint locations. Besides,
as more measurements were available with increasing time,
the uncertainty bounds became tighter representing higher
confidence associated with the prediction results.

For certain sections of the trajectory, the UAV deviated sub-
stantially from its planned route due to unforeseen reasons,
such as detour caused by unplanned geofencing during 260−
300 second. Under such circumstances, the dynamic replan
strategy, explained in [16], shall be triggered which would
regenerate a new prior PDF computed by the NURBS algo-
rithm. Subsequently, the estimated and predicted trajectory
by the Bayes filters would be able to take such discrepancies
into account, thereby refining the UAV monitoring. The
dynamic replan approach falls outside the scope of this paper
and hence not been illustrated in these results.

Remarks on the uncertainty affecting trajectory predictions

The research presented in this paper raises a question re-
garding prediction of future states in an autonomous system
with an in-built controller. Typically, when Bayes filters
are implemented in prognostic of unconstrained phenomena,
it is known that confidence intervals associated with the
later stages of prediction increase. This can be explained
intuitively, since predictions based on early observations are
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(a)

(b)

(c)

Figure 7. Trajectory estimation and prediction using Bayes
filtering with on-board navigation measurements available

upto (a) 50 sec (b) 150 sec and (c) 280 sec.

associated with higher uncertainty levels. However, the
presence of a controller in ensures that the vehicle is kept
close to its pre-defined path. Hence, it is not realistic to
increase future prediction uncertainties in an unbounded way.
Such controller effect is not accounted for in Kalman filters
described in second row of Eq. (21). Hence, implementing
Bayes filters in their traditional form may not yield realis-
tic confidence intervals for future trajectory in autonomous
UAVs. A possible solution is the use of sampling-based
Monte Carlo methods using a medium / high fidelity model
to compute exact confidence bounds on the trajectory, for
example using particle filtering with a physics-based model
with multiple degrees of freedom. However, this may be
computationally prohibitive. Simplified ways to propagate
uncertainty of predictions of controlled variables is presently
under study.

5. CONCLUSION
This paper presents a comprehensive trajectory tracking ap-
proach for an autonomous UAV operation. The methodology
leverages existing B-spline algorithm to generate kinematic

smooth trajectories which is independent of the vehicle prop-
erties. Further, error interval method is implemented to quan-
tify uncertainty in UAV’s cruise velocity and propagate to
times of arrival at each waypoint, thus generating confidence
intervals along the entire NURBS trajectory. The mean po-
sition along with the confidence intervals are further refined
with available measurements from on-board navigation units
using Kalman filters. Unlike previous works, the Kalman
filter is adopted on a state-space model which takes both
previous and current states as inputs. The proposed modi-
fication enables a robust approach to be applicable on a broad
category of UAV flights, without enforcing the assumption
of constant velocity throughout the entire trajectory. Fur-
ther, the estimated and predicted trajectory is dependent on
the discrepancy in between measured and expected position
values as well as on quality of the on-board filtered estimates.
Although the results in this paper illustrates a constant vari-
ance of measured position, the framework remains valid for
varying measurement variances at every time-step.

The above method does not incorporate any vehicle model.
Although a control term proportional to the error between
planned and observed position is introduced in the model
prediction, the simulated path may still not align with an
real UAV flight operated by Ardu-pilot software. Particularly,
in this paper, only linear dynamics of the vehicle has been
studied. Estimates of yaw, pitch, roll and angular velocities
require vehicle models which will be incorporated in future
work. Safety metrics based on the predicted trajectory such
as future power consumption profile, proximity to obstacles
or wind effects in urban canyon will be included in the future
extensions of this work.
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