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Activated carbon is a porous material in the Trace Contaminant Control (TCC) system that 

physically adsorbs volatile organic compounds (VOCs) generated within spacecraft and spacesuit 

environments. Several isotherm models exist to predict adsorption equilibria for processes involving 

multicomponent systems. This paper investigates the use of Ideal Adsorbed Solution Theory (IAST) 

for predicting multicomponent trace contaminant adsorption behavior using single-component 

isotherms based on potential theory. Developing simulations for experimental breakthrough curves 

will gauge the validity on the sizing and design of TCC architecture. Model results on predicting bed 

performance and roll-up effects are compared with available multicomponent test data. 

Nomenclature 

𝐴 = Specific surface area of adsorbent (m2/g) 

𝐴𝑖 = Adsorption potential factor of component 𝑖 (K/(m3/mol)) 

𝐴𝑖,𝑇𝐷𝑅 = Modified adsorption potential factor of component 𝑖 (K2) 

𝐸0 = Energy of adsorption (J/mol) 

𝑛𝑖 = Molar loading of component 𝑖 (mol/g) 

𝑃𝑖  = Partial pressure of component 𝑖 (bar) 

𝑃𝑖
𝑠 = Saturation pressure of component 𝑖 (bar) 

𝑃𝑖
0 = Pressure of component 𝑖 at 𝑇 and 𝜋 of mixture (bar) 

𝑅 = Gas Constant (J/K/mol) 

𝑇 = Adsorption temperature (K) 

𝑉𝑖 = Liquid volumetric loading of component 𝑖 (ml/g) 

𝑉𝑖
𝑇 = Liquid molar volume of component 𝑖 at adsorption temperature 𝑇 (m3/mol) 

𝑉𝑟𝑒𝑓
𝑇  = Liquid molar volume of reference component at adsorption temperature 𝑇 (m3/mol) 

𝑉𝑖
𝑚 = Liquid molar volume of component 𝑖 at the normal boiling point (m3/mol) 

𝑉𝑟𝑒𝑓,ℎ𝑒𝑥
𝑚  = Liquid molar volume of reference component hexane at the normal boiling point (m3/mol) 

𝑉0 = Maximum volumetric adsorption capacity of adsorbent (m3/g) 

𝑥𝑖 = Liquid mole fraction of component 𝑖 in the adsorbed phase (dimensionless) 

𝛽𝑖 = Affinity coefficient of component 𝑖 (dimensionless) 

𝛽𝑖
𝑚 = Affinity coefficient of component 𝑖 at the normal boiling point (dimensionless) 

𝛽𝑖
𝑇 = Affinity coefficient of component 𝑖 at adsorption temperature 𝑇 (dimensionless) 
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𝜋𝑖 = Spreading pressure of component 𝑖 (N/m) 

ACHBD = Axial Charcoal Bed Efficiency 

DR = Dubinin-Radushkevich 

HVLA = high velocity, low aspect ratio 

IAST = Ideal Adsorbed Solution Theory 

ISS = International Space Station 

LVHA = low velocity, high aspect ratio 

PLSS = Portable Life Support Subsystem 

TDR = Tangential Dubinin-Radushkevich  

TCC = Trace Contaminant Control 

TCCS-CP = Trace Contaminant Control Simulation computer program 

VOCs = volatile organic compounds 

I. Introduction 

HE ultimate goal of simulating trace contaminant control (TCC) systems for spacecraft and spacesuit 

environments is to universalize the dynamic adsorption of a multicomponent system of volatile organic 

components (VOCs) while preserving reliable predictability. Activated carbon is a microporous sorbent used in TCC 

beds that may be chemically treated to facilitate the chemical adsorption of contaminants such as ammonia. Activated 

carbon, however, inherently favors the physical adsorption of VOCs, and a method of prediction solely based on 

carbon properties is a fundamental and thus desirable avenue of study. 

 TCC design is crucial in the spacecraft environments such as the Orion crew exploration vehicle. Emergency 

scenarios involving the production of combustion byproducts due to cabin fires depend on reliable dynamic adsorption 

modeling to properly size first responder respirator masks and purification systems such as the Orion Smoke-Eater 

filter.1 The adsorbent, encased in the cartridge, must withstand the dynamic inlet conditions of acrolein, formaldehyde, 

and other toxic gases.  

 Applications also extend to the spacesuit air ventilation loop in the Portable Life Support Subsystem (PLSS). 

Circulation of gaseous components within the spacesuit volume resulting from metabolic generation and materials 

off-gassing require appropriate sizing to determine the life expectancy and change-out frequency of the carbon filter.2 

Desorption processes in which the sorbent undergoes regenerative operations for further use is a growing topic of 

interest. Methods include thermal swing and pressure swing cycling.3 

 Adsorption studies conducted by Lockheed at their Palo Alto Research Laboratory4 were used to develop the model 

presented in this paper. Barnebey-Cheney untreated activated carbon, a coconut shell granular activated carbon that 

adsorbs VOCs more efficiently than standard charcoal, was the porous media used to generate breakthrough curves 

for each contaminant in an air stream. The particle size was kept constant throughout the experimental runs; however, 

the model can expand to consider different particle sizes and other sorbents to serve as a template for loading 

predictability. 

A. Adsorbent Characteristics and Adsorption Equilibria 

 Activated carbon is a microporous material that facilitates physical adsorption, or physisorption, of contaminants. 

A large average pore size of 15 Ångströms and a high porosity introduces large surface area per unit volume for 

contaminant uptake.5 Low surface acidity allows attracting van der Waals interactions to occur between the adsorbate 

and the functional groups residing on the pore surface. Induced electrical forces weakly pull adjacent molecules 

together while retaining the same chemical compositions. Because van der Waals forces are distance-dependent, 

bonding occurs directly at the gas-solid interface in which the adsorbate leaves the bulk gas and condenses onto the 

pore surface.6 

 Physical adsorption is an exothermic process in which mass transfer occurs from a flowing bulk fluid to the solid 

adsorbent surface due to differences in concentration. The rate of mass transfer is controlled by various governing 

resistances residing in a macroporous and microporous environment and determines the shape of the breakthrough 

curve for an adsorbate.6 Curve characteristics can be quantified by an overall mass transfer coefficient, which is a 

function of macropore and micropore diffusion coefficients, pore size, the Reynolds number, and gas properties such 

as viscosity and density. The overall mass transfer coefficient can be correlated for other components as a function of 

key parameters.7 

T 



 

International Conference on Environmental Systems 
 

 

3 

B. Adsorption Theories and Model Approaches 

 The Polanyi Adsorption Potential Theory is a pore-filling isotherm model that describes the adsorption of gaseous 

contaminants onto the pore surface occurring in the condensed phase. The theory has been used in bed design as an 

established bed sizing approach. The adsorption potential measures the likelihood of liquid phase adsorption in 

micropores as the energy required to compress a gaseous contaminant 𝑖 from a partial pressure 𝑝𝑖  to the saturation 

vapor pressure 𝑝𝑖
𝑠 at adsorption temperature 𝑇.8 The adsorption potential factor 𝐴𝑖, presented in the form below as a 

function of contaminant liquid molar volume 𝑉𝑖
𝑚 at the normal boiling point, captures the degree of adsorption for a 

contaminant. 

 

 𝐴𝑖 =
𝑇

𝑉𝑖
𝑚 𝑙𝑜𝑔10

𝑃𝑖
𝑠

𝑃𝑖
 (1) 

 

 The potential factor varies inversely with the log of the contaminant partial pressure. Polanyi adsorption potential 

plots are log-log plots of volumetric liquid loadings against potential factors that result in a temperature-invariant 

characteristic curve for a given adsorbate-adsorbent system and for a wide range of partial pressure.  

 The Polanyi Adsorption Potential Theory serves as the basis for simulating adsorption processes in the Trace 

Contaminant Control Simulation computer program (TCCS-CP), a FORTRAN-based modeling tool initially 

developed by Lockheed and progressively updated by both Lockheed and NASA Marshall Space Flight Center.9, 10 

The theoretical and empirical approach predicts loading equilibrium capacities for fixed activated charcoal beds and 

has analyzed TCC system performance and design for Spacelab, Space Station Freedom, and eventually onboard the 

International Space Station (ISS). Subroutine Axial Charcoal Bed Efficiency (ACHBD) incorporates the approach in 

Version 8.1 of the program.10 The routine calculates the saturation zone length as a function of bed geometry, 

contaminants removed, and the maximum adsorption capacity. The adsorption zone length, correlated from 

experimental data, depends on gas velocity. 

 The traditional Dubinin-Radushkevich (DR) equation, founded on the Polanyi Adsorption Potential Theory, 

describes adsorption in microporous solids with a pore-size-distribution-dependent adsorption potential exponent set 

to 2. The isotherm is expressed as 

  

 
𝑉𝑖

𝑉0
= 𝑒

−[
𝑅𝑇

𝛽𝑖𝐸0
𝑙𝑛
𝑃𝑖
𝑠

𝑃𝑖
]
2

 (2) 

 

 where 𝑉𝑖 is the volumetric loading of the contaminant, 𝑉0 is the maximum adsorbent volume available for 

adsorption, 𝑅 is the gas constant, 𝛽𝑖 is the affinity coefficient for contaminant 𝑖, and 𝐸0 is the energy of adsorption for 

a reference compound. In the traditional DR equation, the affinity coefficient is represented by 𝛽𝑖
𝑇 as defined below. 

𝑉𝑖
𝑇 is the contaminant liquid molar volume at adsorption temperature 𝑇, and 𝑉𝑟𝑒𝑓

𝑇  is the liquid molar volume at 

adsorption temperature 𝑇 for the reference compound: 

 

 𝛽𝑖
𝑇 =

𝑉𝑖
𝑇

𝑉𝑟𝑒𝑓
𝑇  (3) 

 

C. Multicomponent Adsorption  

The single-component DR isotherm models discussed in the previous section can be applied to predict loadings 

for gaseous mixtures by implementing the Ideal Adsorbed Solution Theory (IAST). The IAST assumes that the 

adsorbent is homogenous, or maintains consistent morphology throughout the entire adsorbent surface area. Other 

assumptions include that the adsorbent active sites are equally accessible to all components, and the adsorbed phase 
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behaves as an ideal mixture.11 To implement IAST, the component spreading pressures, 𝜋𝑖, must be evaluated using 

the following integral: 

 

 
𝜋𝑖𝐴

𝑅𝑇
= ∫

𝑛𝑖

𝑃𝑖

𝑃𝑖
0

0
𝑑𝑃𝑖  (4) 

 

 𝑛𝑖 represents the contaminant molar loading, and 𝐴 is the specific surface area of the adsorbent. 𝑃𝑖
0, the standard 

contaminant pressure at the temperature and spreading pressure of the mixture, can be solved for using an expression 

similar to Raoult’s Law for ideal solutions with 𝑥𝑖 representing the liquid mole fraction of the adsorbed phase: 

 

 𝑃𝑖 = 𝑥𝑖𝑃𝑖
0(𝑇, 𝜋) (5) 

 

 Each variable must be solved for iteratively to describe the thermodynamics of the adsorbed phase in a mixture. 

The IAST requires that the isotherm equation implemented be thermodynamically consistent in both the Henry’s Law 

region and at complete loading;12 otherwise, Eq. 4 cannot be properly integrated to obtain the spreading pressure. 

D. Modified DR Adsorption Isotherms 

The traditional DR isotherm at complete loading appropriately results in the saturation pressure. In the limit of 

zero loading, however, the equation does not approach the Henry’s Law limit and is therefore unreliable at extremely 

low pressures. For use in IAST, modified forms of the DR equation that correct thermodynamic behavior at low 

coverage have been studied extensively in the literature and will be discussed presently.  

 Previous work conducted by Ye et al.13 correlated isotherm parameters of a proposed modified DR equation for 

several organic compounds on untreated activated carbon. The affinity coefficient was modified as 𝛽𝑖
𝑚 to depend on 

inherent adsorbate properties rather than on adsorption conditions. 𝑉𝑖
𝑚 is the contaminant liquid molar volume at the 

normal boiling point, and 𝑉𝑟𝑒𝑓
𝑚  is the liquid molar volume of a reference component at the normal boiling point. The 

ratio includes exponential 𝑛 as an empirical fitting parameter:  

 

 𝛽𝑖
𝑚 = (

𝑉𝑖
𝑚

𝑉𝑟𝑒𝑓
𝑚 )

𝑛

 (6) 

 

The affinity coefficient resulted in a stronger fit to experimental loadings of the contaminants studied with an 𝑛 value 

of 0.69. 

 Work by Mahle14 presents a modified tangential DR (TDR) form that combines the traditional DR with the proper 

lower limit. The form is simple to implement and does not require additional parameters. By establishing a tangential 

line from the origin to a point on the traditional DR curve, the modified isotherm form functions continuously for both 

limiting cases. A logical statement implemented in code would apply the traditional DR equation beyond this 

tangential point; otherwise, the tangential line would be used to predict loadings at very low concentrations.  

II. Approach 

A. Isotherm Development for Single Component Systems 

Breakthrough data from Robell4 were used for isotherm development. The Polanyi Potential theory was initially 

used to evaluate the data. Adsorption potential factors for each contaminant were calculated using Eq. 1. The Polanyi 

plot revealed a predominantly linear relationship between the experimental loading and the potential factor. Two linear 

correlations applicable to water soluble compounds and insoluble compounds for untreated type BD activated charcoal 

were also plotted for comparison.15  

An alternate form of the adsorption potential factor, 𝐴𝑖,𝑇𝐷𝑅, was explored by incorporating Eq. 6. The form is 

defined below. Volumetric loadings predicted by the TDR equation were plotted as a function of Eq. 7. 
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 𝐴𝑖,𝑇𝐷𝑅 = [
𝑇

𝛽𝑖
𝑚 𝑙𝑛

𝑃𝑖
𝑠

𝑃𝑖
]
2

 (7) 

 

Similar to Eq. 1, the alternate form is not dimensionless. The exponent 𝑛, employed in the affinity coefficient, and 

the adsorption energy 𝐸0, employed in the isotherm expression, served as fitting parameters for the contaminant 

loadings studied. Justification for using the TDR expression was ensured before initiating model development. 

B. Dynamic Adsorption Modeling  

Dynamic adsorption modeling was implemented in Aspen Adsorption®, a flowsheet simulator that models and 

optimizes gas and liquid adsorption processes. The process flowsheet included a dynamic gas bed block from the 

model library, an inlet air/nitrogen stream carrying a single contaminant, and a product stream. Bed dimensions, 

adsorbent properties, and inlet conditions such as temperature, pressure, and component flowrates were adjusted to 

reflect those of each experimental run. Adsorption of oxygen and nitrogen, the carrier gases, were deemed negligible 

and treated as inerts in the process. The flowsheet constraints section incorporated the traditional DR and TDR 

isotherm equations using Eq. 6 as a user submodel.  

Configuration of the bed block assumed a fluid film mass transfer model with constant overall mass transfer 

coefficients. The discretization method chosen mitigated the impact of numerical noise on the predicted curves. 

Experimental test data were fed into the estimation tool in Aspen Adsorption® to estimate an overall mass transfer 

coefficient for each contaminant. Dynamic runs with the estimated parameters generated predicted breakthrough 

curves for each run.  

The viability of developing a mass transfer correlation based on component properties and bed conditions was 

investigated. Such a relation would create a more autonomous and complete multicomponent adsorption model that 

estimates mass transfer coefficients for VOCs beyond those studied by Robell,4 which in turn would predict 

component breakthrough characteristics. Otherwise, requiring inputs on experimental single-component isotherms 

unique to run conditions limit model capability. Several parameters and formulas plotted against the mass transfer 

coefficient were explored in pursuit of revealing a linear relationship. 

After demonstrating successful single-component model prediction, the bed block configuration was updated to 

include IAST in the user submodel. The flowsheet constraints section required two additional submodels to implement 

Eq. 4 and 5. The complementary error function, based on a rational approximation found in Numerical Recipes,16 was 

also included to ensure accuracy in evaluating the spreading pressure integral.  

Aspen Adsorption® offers a built-in feature combining the traditional DR with IAST. Loading predictions for the 

traditional DR executed in code as a user submodel with IAST was compared to those of the built-in feature to establish 

confidence in the customized isotherm model. 
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III.  Results 

A. Isotherm Development for 

Single Component Systems 

 A Polanyi Plot of each contaminant 

along with the water soluble and 

insoluble correlations15 is shown in 

Figure 1. At low potential factors, 

corresponding to relatively high 

contaminant concentrations, the points 

no longer coalesce along a 

characteristic curve and gradually 

level off to complete saturation. 

Consequently, the correlations are 

only representative for contaminants 

with an 𝐴 value greater than 8. For 

values less than 8, the correlations 

increased dramatically in relative 

error. This deviation from linearity 

implies that an alternate form of the 

potential factor may better unify 

adsorption data. 

Figure 2 plots Eq. 7 against the 

loadings predicted by DR and TDR 

isotherms. Compared to Figure 1, all 

of the experimental points collapse 

reasonably well into a single curve by 

fitting parameter 𝑛 in Eq. 6 to the data. 

Minimizing the sum of relative errors 

between the predicted and 

experimental loadings resulted in an 𝑛 

value of 0.685, which corresponds to 

the value obtained by Ye et al.13 A 

resemblance to previous adsorption 

work builds confidence in the 

development efforts. 

The TDR isotherm was 

investigated to exhibit proper Henry’s 

Law behavior for ultimate use with 

IAST. Loading behavior of the 

traditional DR, TDR, and the 

referenced correlation for insoluble 

compounds is shown in Figures 3 and 

4 for ethylene. Figure 3 shows the 

loading behavior for a wide range of 

partial pressure and at very low 

pressures, as shown in the inset. The traditional DR and TDR isotherms are identical except in the low pressure region, 

in which lower limit behavior is revealed in Figure 4. As pressure goes to zero, the traditional DR approaches zero 

loading and the water insoluble correlation approaches infinite loading. Both cases are not integrable in Eq. 4 for the 

spreading pressure and thus not applicable to IAST. The TDR, however, is in thermodynamic agreement and 

approaches the Henry’s law limit. 

 

 

 

 
Figure 1.  Experimental and correlated volumetric loadings as a 

function of the Polanyi Adsorption potential factor. 
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Figure 2. Experimental and predicted volumetric loadings as a 

function of a modified adsorption potential factor. 
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B. Dynamic Adsorption Modeling 

1. Single Component Breakthrough 

Modeling 

The overall mass transfer 

coefficient for each contaminant was 

estimated using the estimation tool in 

Aspen Adsorption® and used to 

simulate breakthrough curves. The 

predicted curve and experimental test 

points are plotted in Figures 5 and 6 

for butane and propylene, 

respectively. Breakthrough curves for 

ethylene, propane, toluene, and 

vinylidene chloride were also 

generated. The results indicate 

successful prediction of experimental 

data using the TDR equation.  

A generalized correlation of the 

mass transfer coefficient as a function 

of the Peclet number or a function of 

component properties and isotherm 

parameters resulted in large degrees of 

error and was not pursued further. 

Scatter in the limited data set 

represented indistinguishable impacts 

of dispersion and interparticle and 

intraparticle mass transfer effects. 

Efforts continue to arrive at a 

generalized correlation to ideally 

predict the shape of the breakthrough 

curve. Additional single-component 

adsorption data operating at a fixed 

flowrate and at room temperature are 

ultimately desired for a meaningful 

study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Predicted loadings in the low pressure region for the DR 

and TDR equations and the water insoluble correlation. 
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Figure 4. Henry's law comparison of the DR and TDR equations and 

the water insoluble correlation. 
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Figure 6. Comparison of Aspen Adsorption® simulated 

breakthrough curves and experimental data for propylene. 
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Figure 5. Comparison of Aspen Adsorption® simulated breakthrough 

curves and experimental data for n-butane. 
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2. Multicomponent Modeling with 

IAST  

The TDR with IAST model was 

challenged with a concurrent flow of 

n-butane and propylene in air. 

Simulated breakthrough curves of 

each adsorbate are shown in Figure 7. 

The red horizontal lines denote 

respective feed concentrations for 

propylene and n-butane. The figure 

illustrates the significance of 

competitive adsorption on the 

adsorbent surface. The more weakly 

adsorbed component, propylene, 

breaks through first. The more 

strongly adsorbed component, n-

butane, displaces propylene from the 

adsorbent, resulting in a higher gas 

phase concentration exiting the bed 

than the feed concentration. As n-

butane gradually breaks through after 

some time, propylene is no longer 

displaced, and the effluent returns to 

its original feed concentration. This 

phenomena, known as the roll-up 

effect, occurs between relatively 

weakly and strongly adsorbed 

components.  

To verify model efforts, the 

traditional DR equation as executed in 

the user submodel with IAST was 

compared to the built-in traditional 

DR with IAST feature offered in 

Aspen Adsorption®. Eq. 6 was used as 

an isotherm parameter in both cases. 

Quantitative differences in loading 

predictions were insignificant, 

establishing confidence in the 

customized model. 

3. Model Application 

Figure 8 compares an experimental 

breakthrough run of n-butane and 

propylene in air with curves simulated 

by the TDR with IAST model. The red 

and orange horizontal lines represent 

feed concentrations for propylene and 

n-butane, respectively. Propylene 

initially preadsorbs and gradually 

exits the bed up to its feed concentration. The subsequent introduction of n-butane, designated by the vertical line, 

creates a roll-up effect for propylene. Roll-up persists until equilibrium is reached and the effluent resembles feed 

conditions. 

Breakthrough simulations based on the value of 𝐸0 obtained from the correlation are also plotted for reference. 

The slightly early propylene breakthrough time and delayed butane breakthrough time imply a sensitivity to the value 

of 𝐸0, which plays a role in horizontally shifting the overall curve. This level of variability is inherent in both the 

experimental data and the universalized TDR correlation. 

 
Figure 8. Aspen Adsorption® simulated breakthrough curves and 

roll-up effects for propylene with subsequent introduction of n-

butane. 
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Figure 7. Aspen Adsorption® simulated breakthrough curves and 

roll-up effects for a concurrent flow of n-butane and propylene.  
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IV. Conclusions and Recommendations 

A dynamic model to describe multicomponent adsorption using IAST based on single component isotherms has 

been developed. The isotherm was modified to calculate loadings in the Henry’s Law region without compromising 

proper thermodynamic behavior. Experimental breakthrough data for several components on untreated activated 

carbon were used for model prediction. More experimental data from both stand-alone and integrated tests are needed 

to support efforts in validating the model, specifically with high velocity, low aspect ratio (HVLA) radial bed 

geometries and low velocity, high aspect ratio (LVHA) axial flow bed geometries. Experimental runs operating at 

room temperature and at a fixed flowrate would aid in determining a generalized mass transfer correlation, which may 

extend model predictions to other components. Characteristic testing of other sorbents may also be utilized to create 

a more sophisticated and applicable model. Ultimately, model results will be compared to predictions of the recognized 

FORTRAN TCCS-CP to improve bed performance design.  
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