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Presentation Outline

• What are Single Event Environments/Effects (SEE) and why do we care about them?
• SEE environments consist of the energetic charged particle components of space radiation environments

• SEE effects are observed when a single charged particle passes through a susceptible microelectronic device 
causing device anomalies/failures that propagate to system level anomalies/failures

• SEE effects are an important safety, reliability and mission success issue for spacecraft avionics systems. 

• International Space Station (ISS) Natural/Induced SEE Environments
• 51.6 degrees orbital inclination and ~ 400 km flight altitude determine natural SEE environments

• Latitude dependent geomagnetic shielding of galactic cosmic rays (GCR) and solar particle events (SPE)

• Geomagnetic trapping of charged particles create the south Atlantic anomaly (SAA)

• Avionics systems SEE environment depends on ISS shielding mass processing of the natural SEE environment

• ISS Command and Data Handling System (C&DH) Multiplexer de-Multiplexer (MDM) in-flight 
SEE performance

• System design and pre-flight test/verification approach

• Latitude, geographic region, and shielding mass dependence of total single event upset (SEU) counts in ISS 
MDM dynamic random access memory (DRAM) between 2010 to 2017.

• Monthly average MDM SEU count timeline from 2005 to 2018

• Solar cycle, SPE, altitude, and shielding mass effects

• ISS MDM SEE functional interrupt (SEFI) 

• Geographic dependence

• Timeline
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Presentation Outline

• ISS Portable Computer System (PCS) in-flight SEE performance
• Pre flight testing vs in-flight performance and safety driven constraints on use

• Assembled article high energy (200 MeV) proton testing 

• ISS T61P Lenovo SEE FI dependence on geographic region

• SEE vs non-SEE FI rates (commercial off-the-shelf  (COTS) hardware general reliability issues)

• Comparison of 4 month average SEE counts for ISS T61p PCS  and 4 internal MDMs

• T61P SEFIs and solar particle events, 2010 -2012 timeline

• Can ISS be utilized as a flight demonstration and test platform for cis-lunar and interplanetary 
flight systems?

• ISS High Latitude SEE Environments

• Summary of prior theoretical/experimental work to date

• High latitude GCR and SPE environments

• Geomagnetic shielding effects and planetary shadow shielding using CREME-96 with McIlwain L-
parameter (L shells) at 400 km fixed altitude and a range of latitudes and longitudes

• Similarity to NEI GCR environment increases with latitude as expected from observed latitude 
dependence of GCR SEE effects on ISS avionics systems 

• SPEs are strongly attenuated as expected from the absence of any observable SPE SEE effects on 
ISS avionics

• Comparison of Solar Heliosphere Observatory (SOHO) and ISS GCR SEE rates for similar/ comparable 
DRAM parts

• Scaling from the ISS SEE environment to the SOHO SEE Environment

• Peterson Figure of Merit and ISS latitude zone residence time analysis

• Summary and Conclusions
3
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What are Single Event Environment/ Effects 
(SEE) and why do we care about them?
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anomalies or failures in microelectronic 
devices caused by the passage of  a single 
energetic charged particle through the device

• The charged particle produces ionization/excitation on passage 
through microelectronic device materials

• Ionization in the device “sensitive volume” (SV) can cause SEE

• Every PN junction (and associated depletion region) in solid state 
microelectronic devices is a potential SV 

• Charged particle Linear Energy Transfer, LET, is a measure of 
how much ionization the charged particle can produce by “direct 
ionization”

• LET = dE/dL = a function of  charged particle atomic number, z 
and velocity, v, [(z/v)2] as well as target material electron number 
density which depends on density, atomic charge number, and atomic 
mass number 

• LET units used for microelectronics work = (MeV cm 2)/mg  (Si)

• High LET => more ionization => greater microelectronics SEE threat

• Charged particles with LET too low to cause SEE by direct 
ionization can produce high LET nuclear reaction products on 
collision with device materials nuclei in or near the SV

• Energetic protons and neutrons cause SEE primarily via in-device 
nuclear reactions

• Heavier GCR ions (Z > 1) cause SEE primarily by direct ionization

• With very few device specific exceptions, natural environment 
energetic electrons and photons do not cause SEE
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A reverse biased PN junction diode. The energetic 

charged  particle produces charge carriers along its 

track (green arrow) through the depletion region
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Single Event Effects:
Why do we care about them?

• Meeting Program Reliability and Mission Success Requirements

• Performance based specification (primary ISS requirement)

• The probability of losing any mission success or safety critical system or subsystem 
functionality must meet program requirements, during the specified time interval, t, and 
in a specified operational environment. 

• Verified by test and analysis at the part, subassembly, sub-system, and system levels 
prior to flight

• Prescriptive specification (secondary ISS requirements – avionics systems assembly and 
manufacturing)

• Mandates specific parts, manufacturing and assembly procedures believed to maximize 
safety and reliability 

• Verified by inspection for compliance with the mandate

• SEE in avionics systems are a potential system failure cause, i.e. a possible cause of not meeting 
program requirements

• The most common hazard effects of the SEE space radiation hazard cause are:
• Avionics system anomalies

• Single event effects leading to loss of safety  related “must-work must-not-work” 
functions

• Electrical power system anomalies
• Destructive  failures of  MOS power transistors 

• ISS uses a performance based SEE specification and one objective of this presentation is to
demonstrate how well that worked in more detail than previously reported

6



National Aeronautics and 

Space Administration
National Aeronautics and 

Space Administration

Single Event Effects
(visual)
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International Space Station (ISS) 
Natural/Induced SEE 

Environments
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ISS SEE Environments

• Galactic Cosmic Rays (GCR)
• Latitude dependent geomagnetic shielding

• Little or no effect on higher energy GCR (> 20 GeV/n)
• Primary cause of ISS avionics systems SEE

• The Van Allen Belts (SAA)
• Mostly lower kinetic energy protons (than GCR or SEP)
• Secondary cause of ISS avionics SEE 

• Solar Particle Events (SPE)
• Latitude dependent geomagnetic shielding 
• Predominantly lower kinetic energy protons (than GCR), but higher kinetic 

energy than SAA protons
• No observable effects on ISS avionics systems to report to date

• Shielding Mass Effects (Induced Environments) 
• Space radiation charged particles collide with ISS materials and generate 

secondary particle showers
• Observable increase in SEE rates with increasing shielding mass in some 

cases

9
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Latitude dependent 
geomagnetic shielding of GCRs
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Global grid of quiescent vertical geomagnetic cutoff rigidities (GV) 

calculated from charged particle trajectory simulations using the 

IGRF model for the 1996 epoch (solar cycle 23 minimum). Rigidity 

increases with particle kinetic energy. 

Christopher J. Mertens, John W. Wilson, Steve R. Blattnig, Brian T. Kress, John W. Norbury, 

Michael J. Wiltberger, Stanley C. Solomon, W. Kent Tobiska, John J. Murray; 46th AIAA Aerospace 

Sciences Meeting and Exhibit 7 - 10 January 2008, Reno, Nevada, AIAA 2008-463

CREME 96 calculations of average daily GCR charged 

particle flux (#/m2-sec-sr)  vs. LET for near-Earth 

interplanetary (NEI), LEO 365km/51.6°, and LEO 

365km/28.5° flight environments.    Increasing orbital 

inclination increases orbit-average similarity to the 

interplanetary GCR environment.
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ISS orbit vs. Interplanetary Space

[#/(cm2 week LET)] at various shielding depths in a concentric 
spherical shell shielding mass model
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SiDet1
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SiDet3

SiDet4

SiDet5

SiDet6

SiDet7

SiDet8

LETmeanBIN( )

ISS Orbital Environment 

Combined ISS GCR and trapped 

proton environments with 

secondary particle showers 

Interplanetary Environment 

Interplanetary GCR environment 

with secondary particle showers

FLUKA (FLUktuierende 

Kaskade) differential LET 

Spectra at different shielding 

masses

FLUKA (FLUktuierende 

Kaskade) differential LET 

Spectra at different shielding 

masses

Detector Si Shell SiDet1 SiDet2 SiDet3 SiDet4 SiDet5 SiDet6 SiDet7 SiDet8

Detector Shell Radius (cm) 5037.4 5037.3 5037.1 5035.6 5033.7 5030.0 5018.9 5000.0

Si Detector Median Al Shielding 
Mass in g/cm2 

0.15 0.81 1.6 7.9 15.6 31.1 77.5 156.2
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ISS SEE/TID Environment
(Visual)
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ISS Command and Data Handling 
System (C&DH) Multiplexer de-
Multiplexer (MDM) in-flight SEE 

performance
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flight test and verification approach

• Nearly 50 standard MDMs on ISS, as of 2016,  Configured as a distributed 
computing network

• The ISS MDM system is configured as a three tiered parallel redundant system
• Tier 1 MDMs (system wide control functions) are two fault tolerant,

• Tier 2 MDMs (subsystem control functions) are single fault tolerant

• Tier 3 MDMs are 0 (really 0.5) fault tolerant (numerous sensors and effectors)

• C&DH Fault Detection Isolation and Recovery  (FDIR) functions
• Bus failures

• MDM failures

• Each Standard MDM consists of a power supply and an Input/Output Control 
Unit (IOCU) Card

• Each IOCU card contains an 80386SX processor, a 1553 Bus Interface adaptor and a total of 
33,554,432 bits of DRAM memory configured from 8 Texas Instruments TMS 1Mx4 DRAM 
memory devices

• A Hamming code single-error-correction-double-error-detection algorithm is imbedded in the 
DRAM refresh cycle – SEU bad bit residence time < 10 microseconds

• DRAM SEU events (along with time of occurrence and ISS location) are reported to the 
ground via ISS telemetry 

14
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verification approach

• MDM parts lists are screened for potentially SEE 
susceptible devices (SSDs)

• SSDs are subjected to heavy ion testing to 
determine device SEE cross section (σ) as a 
function of ion LET

• Soft errors (SEU)

• Single Event Functional Interrupt (recoverable)

• Destructive SEE

• Proton (GCR, trapped, and SPE) σ calculated 
from heavy ion σ

• https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4
033188

• Expected on-orbit device SEE rates calculated 
using σ values determined by test combined with 
CREME-86/96 SEE environment models

• Box and System level SEE rated calculated from 
device see rates combined with box/system
functional block diagrams (and conventional 
reliability engineering methods) to estimate on-
orbit system SEE failure rates
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Note: it was assumed that ESA test data for 

the TI-44100 would be applicable to the 

TMS-44400 and that turned out to be a good 

assumption. 

ISS DRAM (TI 44100) Heavy ion test data 
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ISS MDM DRAM SEUs
What we observe

16

The geographic distribution of the AL-1 MDM DRAM SEUs for the time period 2005 to 2017. Blue symbols

represent events attributed to Van Allen belt trapped protons in the SAA and green symbols represent events

attributed to GCRs.
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ISS MDM DRAM SEUs
Explaining what we observe
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• SEUs in MDM DRAM are 

identified and corrected by an 

EDAC algorithm 

implemented as part of the 

normal memory refresh cycle

• Each memory location is 

refreshed every few micro 

seconds and SEUs are 

reported in the telemetry 

stream along with an ISS time 

mark

• SEU bad-bit residence 

time is less than a few 

microseconds

• About 20 % of SEUs 

happen in the South 

Atlantic Anomaly and 

about 70% at high 

latitudes

• Very few outside the 

SAA at low latitude

Device Median 

Shielding 

Mass

g/cm2

In-Flight 

SEU/bit 

day

FLUKA 

Predicted

SEU/bit day

(FLUKA)

CREME-96

Predicted

SEU/bit day

(CREME)

FOM

Predicted

SEU/bit day

(FOM)

TMS44400 10 8.5 x 10-8 8.8 x 10-8 1.1 x 10-7 2.5 x 10-7

TMS44400 40 7.0 x 10-8 7.2 x 10-8 3.1 x 10-8 6.8 x 10-8

-90 

-180 -150 -120 -90 -60 -30 30 60 90 120 150 180 
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MDM DRAM SEU total counts between 

2010 and 2018:  latitude, geographic 
region, and shielding mass dependences
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AL-1 LA-1 LA-2 LA-3 N2-1 N2-2 N3-1 N3-2 P1-1 P1-2 P3-1 P3-2 PTR1 S0-1 S0-2 S1-1 S1-2 S3-1 S3-2 STR1

40 to 52 19.5% 1883 1858 2032 2077 1753 1725 1823 1826 1766 1650 1698 1624 1834 1878 1672 1692 1735 1641 1649 1797

20 to 40 16.1% 697 669 692 738 573 612 656 664 426 446 391 439 432 485 481 483 434 438 438 497

-20 to 20 28.6% 719 732 762 768 588 678 720 658 468 467 446 459 447 567 513 497 468 448 486 517

-40 to -20 16.2% 790 814 867 849 656 702 799 737 631 584 588 602 635 670 583 597 645 648 607 668

-52 to -40 19.7% 2037 2067 2056 2084 2024 1892 2022 1946 2162 2031 2129 2066 2236 2025 2017 1948 2155 2053 2150 2171

MDM GCR counts versus Geographic Latitude:  02/2010 through 2017

Latitude 

(deg)

External (shielding mass ~ 10g per square cm)Internal (shielding mass ~ 40g per square cm)% 

Time

AL-1 LA-1 LA-2 LA-3 N2-1 N2-2 N3-1 N3-2 P1-1 P1-2 P3-1 P3-2 PTR1 S0-1 S0-2 S1-1 S1-2 S3-1 S3-2 STR1

1346 1619 1441 1299 1755 1410 1153 1275 3872 3658 4172 4264 3601 2373 2733 3235 3628 3723 3680 3182

Internal (shielding mass ~ 40g per square cm) External (shielding mass ~ 10g per square cm)

MDM SAA counts:  02/2010 through 2017

Total MDM SEU counts for both internal (high shielding mass) and external (low shielding mass) MDMs excluding counts in the 

SAA region: 02/2010 through 2017.  The counts are reported for 5 different geographic latitude zones with the annual percentage of 

total flight time in each latitude zone.  SEUs in this region are caused predominantly by GCRs.

Total MDM SEU counts for both internal (high shielding mass) and external (low shielding mass) MDMs counts in the SAA 

region only: 02/2010 through 2017.  SEUs in this region are caused predominantly by Van Allen belt trapped protons.

I I I I I 

I I I I I I I I I I I I I I I I I I 
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MDM DRAM SEU total counts between 
2010 and 2018:  latitude, geographic region, 

and shielding mass dependences -
Statistical Analysis

19

Statistical Analysis of ISS MDM DRAM SEU count data, 02/2010 through 12/2017

The reported differences between the internal and external MDM group DRAM SEU counts are statistically

significant. Applying the “t test” for the significance of the observed differences between the internal and

external MDM mean counts results in a t statistic of 6.107, for 18 degrees of freedom, and p < 0.0001 for the

GCR region and a t statistic of 10.756 for 18 degrees of freedom and p < 0.0001 for the SAA region. The p

value is the probability that the null hypothesis (i.e. the internal mean count is really the same as the external

mean count but only appears different in this case on account of Poisson process random fluctuations) is true.

Statistical Averages for ISS MDMs All 20 ISS MDMs 8 Internal MDMs 12 External MDMs 

Mean SEU count inside SAA (SAA Region) 

with standard deviation 
2671 + 1112 1412 + 182 3510 + 527 

Mean SEUs count outside SAA (GCR 

Region) with standard deviation 
5632 + 403 6030 + 318 5367 + 168 

% of total counts in SAA Region 31.2 % + 11% 13% + 9% 39% + 4% 

% of total counts in GCR Region 68.8% 87% 61% 

% of GCR region total in highest latitude 

regions (poleward of 40 degrees latitude) 
68% + 4% 64% + 1% 71% + 2% 
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Monthly average MDM SEU 
count timeline from 2005 to 
2018:  Solar cycle, SPE, altitude, 
and shielding mass effects

 

Monthly average MDM DRAM SEU rates for the 2005 to 2017 time frame, and for all

geographic regions. Monthly average SEU count data for eight external MDM-4s, four

external MDM-10s, and eight internal MDM-16s are plotted against calendar year. Green

vertical lines mark major solar particle events (NOAA 10/10 criteria, >10 pfu >10 MeV).
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Monthly average MDM SEU 
count timeline from 2005 to 
2018:  Solar cycle, SPE, altitude, 
and shielding mass effects

Monthly average MDM DRAM SEU rates inside the SAA (excluding the GCR region).

Monthly average SEU count data for eight external MDM-4s, four external MDM-10s, and

eight internal MDM-16s are plotted against calendar year. DRAM SEU monthly rates

compared to solar F-10.7 index and ISS altitude
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Monthly average MDM SEU 
count timeline from 2005 to 
2018:  Solar cycle, SPE, altitude, 
and shielding mass effects

GCR region MDM DRAM SEU monthly rates compared to the GCR modulation

parameter, ϕ. Note the small variations in external MDM DRAM SEU rate

accompanying the small variations in ϕ during 2011.
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Monthly average MDM SEU count 
timeline from 2005 to 2018:  Solar 
cycle, SPE, altitude, and shielding 

mass effects

23

• MDM DRAM SEU rates show very different dependences on 

shielding mass, altitude, and the 11 year solar cycle inside and 

outside the SAA.  

• Outside the SAA high energy GCRs determine SEU rates which 

increase with increasing shielding mass (secondary particle 

shower effects), and show little dependence on altitude,  and an 

expected weak dependence on the solar cycle (GCR modulation 

factor Phi)

• Inside the SAA, lower energy trapped protons determine SEU 

rates which increase with decreasing shielding mass and show a 

strong dependence on altitude and solar cycle (F10.7)
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• Specific Program Requirement 
• Mean Time To Recover (MTTR) << MTBF

• Recovery requires ground 

intervention and takes ~ 24 hours

• On-orbit MTBF calculated from:
• Heavy ion test data on all SEE susceptible 

components 

• ISS SEE design environment (SSP-30512)

• A reliability engineering functional block 

diagram of the MDM

• For the total compliment of ~50 MDMs:
• Predicted lock-up rate = 10/year

• Observed lock-up rate = 1 per year

• The number of observed lock-ups  is 

between about and 10 times smaller than 

the number of lock-ups predicted 

• Flight MDMs are meeting requirements 

with considerable margin

PUEPIC 

-30 

MOM Lockups Attributable to SEE (2001 - 2015:034) 
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ISS Portable Computer System (PCS) in-
flight SEE performance
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performance
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PCS Computer Type 3 IBM 760 XD Thinkpads

Radiation SEFI per day

7 Lenovo T61Ps

Radiation SEFI per day*

In-flight observation time frame 03/01/2001 to 12/31/2001 2011 to 2014

Expected SEFI rate  (high energy 

proton testing)

0.04 0.13

In-flight SEFI rate 0.023 + 0.012 0.013 + 0.004

*Observation times for the 7 T61P laptops varied from 877 to 1 088days and two of the 7 T61Ps suffered hard failures that

may or may not be radiation induced.

Summary Data: ISS PCS computers pre-flight testing vs in-flight performance.
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Geographic distribution of T61P command fault error functional interrupts, both radiation

induced and not radiation induced from 2010 to 2015.
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A comparison of 4 month average SEE effect counts for 7 T61P PCS computers and 6

MDM-16 internal MDMs. The two different computers appear to be responding to the same

SEE environment factors. Compare this plot with the GCR region time line for the year 2011 on

slide 22 in this presentation.
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Date and latitude of T61P SEFIs and dates of SPEs 2010 to 2012.  There is no statistically 

significant correlation between PCS SEFIs and SPEs, even at high latitude.
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GOES 8 and SAMPEX
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• Four polar cap traversals by SAMPEX are shown. 

• Around 36000 sec UT SAMPEX saw a polar cap population of only the GCR. 

• The onset of the SEP occurred just before SAMPEX entered the polar cap the next time at 38200 

sec UT. 

• SEP event particles were observed only for invariant geomagnetic latitudes > ~ 60 degrees for 

these polar passes.  

• July 14, 2000 corresponds to UTC day 196.  

http://www.srl.caltech.edu/sampex/DataCenter/DATA/CutoffVariations/jpg/jul00.jpghttps://www-istp.gsfc.nasa.gov/istp/events/2000july14/SAMPEX_14July00.jpg

Ju ly 2000 
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And why don’t we see SPE 
effects in ISS avionics?
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http://www.srl.caltech.edu/sampex/DataCenter/DATA/CutoffVariations/

Leske, R.A., Mewaldt, R.A., Stone, E.C., and von Rosenvinge, T.T., "Observations of Geomagnetic Cutoff Variations 

During Solar Energetic Particle Events and Implications for the Radiation Environment at the Space Station", J. 

Geophys. Res. 106, 30011-30022 (2001).

MAST/SAMPEX 8-15 MeV /nuc He 

{same latitude as 30-60 MeV protons) 

07/14/00 
12:25 

MAST/SAMPEX 8-15 :t.leV/nuc He 

{same latitude as 30-60 MeV pr(.)tons) 
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Can ISS be utilized as a flight 
demonstration and test platform for cis-
lunar and interplanetary flight systems?

32
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Some Relevant Prior Work

• Alpha Magnetic Spectrometer 01 (AMS-01) measurements of GCR spectra in 
different geomagnetic latitude regions

• P, He, C, and Fe GCR kinetic energy spectra approach NEI spectra at high latitude

• Bobik, P.; Boella, G.; Boschini, M. J.; Gervasi, M.; Grandi, D.; Kudela, K.; Pensotti, 
S.; Rancoita, P. G. “Fluxes and nuclear abundances of cosmic rays inside the 
magnetosphere using a transmission function approach,” Advances in Space 
Research, Volume 43, Issue 3, p. 385-393. (AdSpR Homepage), DOI 
10.1016/j.asr.2008.11.020

• Using high latitude ISS data to evaluate shielding mass performance expected 
in the NEI environment

• Livio Narici, Marco Casolino, Luca Di Fino, Marianna Larosa, Piergiorgio Picozza, 
Alessandro Rizzo, Veronica Zaconte; “Performances of Kevlar and Polyethylene as 
radiation shielding on-board the International Space Station in high latitude radiation 
environment,” Nature Scientific Reports | 7: 1644 | DOI:10.1038/s41598-017-01707-2

• Livio Narici, Marco Casolino, Luca Di Fino, Marianna Larosa, Piergiorgio Picozza, 
Veronica Zaconte; “Radiation Survey in the International Space Station,” J. Space Weather 
and Climate, 5, A237 (2015)

• Note that AMS-02 has been operational on ISS since May 2011
• https://www.nasa.gov/sites/default/files/files/7_NASA_NAC_April7_TAGGED.pdf

33

http://www.elsevier.com/inca/publications/store/6/4/4
https://www.nasa.gov/sites/default/files/files/7_NASA_NAC_April7_TAGGED.pdf
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Modeling latitude dependent 
geomagnetic GCR and SPE shielding 

• Used the CREME-96 SEE TID analysis tool to calculate particle kinetic 
energy and LET spectra

• https://creme.isde.vanderbilt.edu/

• Includes geomagnetic (L shell) and planetary shadow shielding 
effects as a function of altitude and latitude/longitude

• Particle spectra as a function of geomagnetic latitude are calculated 
by fixing the altitude at 400 km over a range of latitude/longitude 
values

• NEI and ISS (400km) spectra (as a function of L shell) can be 
directly compared to assess similarity

• ISS orbit average

• Specific geographic regions

• Vehicle shielding mass effects can also be included

34

Image Credit - Daniel I Golden - Postdoc in the Stanford University Radiology 

department. Member of the Stanford Quantitative Imaging Laboratory

The McIlwain L-parameter (Carl E. McIlwain), or L shell, is a 

parameter describing planetary magnetic field lines. The L-value is 

the number of Earth-radii at which a particular field line crosses the 

geomagnetic equator.

CREME-96 GCR LET fluences compared for 1 day at 

ISS orbit and NEI (100 mils (0.254 cm) of aluminum 

shielding)

Ratio of integral near-earth interplanetary to ISS orbit GCR fluences

for 100 mils (0.254 cm) and 1000 mils (2.54 cm) Al shielding. 
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Modeling latitude dependent 
geomagnetic GCR and SPE shielding 

• CREME-96 altitude/L-Shell modeling at 400 km altitude indicates that the ISS GCR 
environment becomes increasingly similar to the NEI GCR environment  at geographic 
(geomagnetic) latitude increases

• Increasing shielding mass can further increase the similarity between the ISS and NEI 
environments by screening out low high abundance, low KE GCR particles

35

GCR integral flux for NEI and 3 different 400 km altitude L shell 

bins corresponding to 0 degrees latitude (L=1-1.5), 40 degrees 

latitude (L=1.5-2.5), and 51.6 degrees latitude (L=2.5-4.5).  

Ratio of integral NEI to ISS orbit integral GCR LET fluxes averaged 

over three different L shell regions with 100 mils (0.254 cm) of 

aluminum shielding.  L=1-1.5 => a geographic latitude 0 degrees.  

L=1.5-2.5 => a latitude 40 degrees north.   L=2.5-4.5 =>  latitude 51.6 

degrees north.  A similar range of L values is encountered in the southern 

hemisphere. 

GCR LET for L bins and NEI Ratio of NEI to 155 L bin fluxes 
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Modeling latitude dependent 
geomagnetic GCR and SPE shielding 
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Ratio of NEI to ISS orbit average solar particle event fluence versus LET for two different 

aluminum shielding thicknesses: 100 mils (0.254 cm) and 1000 mils (2.54 cm).  The CREME-96 

peak 5 minute (Oct 1989 SPE event) was used in the calculation.  
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SEE Effects?

• Approach – compare SEU rates for 
similar DRAM on ISS and SOHO

• ISS LEO 400 km, 51.6 degrees, high 
shielding mass (10g/cm2)

• SOHO NEI, low shielding mass (1 g/cm2)

• First question, how do the in-flight SEE 
rates compare without scaling (both at 
solar minimum)

• ISS:  8.5 x 10-8 SEU/bit-day (all geographic 
regions)

• SOHO: 5.9 x 10-7 SEU/bit-day

• SOHO/ISS = 7 (not bad, we can make 
reasonable NEI SEE rate estimates from ISS 
SEE rate data directly

• SOHO FOM/ISS FOM = 6.4

• Next question – can we do better scaling 
to account for ISS high latitude 
residence time, shielding mass and 
differences in GCR environment?

• FOM = Petersen Figure of Merit SEU 
rate estimation method 

37

 

Cross section vs LET functions for the ISS MDM DRAM 

and the SOHO DRAM (ISS MDM DRAM TMS44400 and 

SOHO DRAM SMJ44100)
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SEE Effects?

• Scaling approach

• Start with the observed average ISS MDM DRAM SEU rate (all regions) and the 
corresponding Petersen Figure of Merit (FOM) ISS MDM DRAM rate

• Scale both to account for ISS residence time poleward of 40 degrees latitude and the 
percentage of total counts poleward of 40 degrees latitude

• Last use FOM equations to correct for differences in GCR environment and spacecraft 
shielding mass

• Note that the FOM method is known to overestimate SEE  rates, compared to flight data, and in 
this case the overestimate is about a factor of 3

• The FOM overestimate is 3.3 + 0.3 for all steps in the scaling method for both spacecraft, 
supporting the validity of the method

• Results

• ISS DRAM rate scaled to SOHO NEI Environment:  4.4 x 10-7 SEU/bit-day

• SOHO DRAM rate: 5.9 x 10-7 SEU/bit-day

• SOHO/scaled ISS = 1.35  (better, we can make more accurate NEI SEE rate estimates 
from ISS SEE rate data by scaling

• SOHO FOM/scaled ISS FOM = 1.07

38
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Summary and Conclusions

• ISS MDM DRAM SEU count rates display a strong dependence on both shielding mass 
and geographic location  

• Internal (high shielding mass) and external (low shielding mass) MDM DRAM SEU count rates 
differ in the SAA vs. the GCR regions

• For the 12 external MDMs, 39% of the total SEU counts were inside the SAA region and 
61% in the GCR region

• For the 8 internal MDMs, 13% of the total SEU counts were inside the SAA region and 
87% in the GCR region

• The observed effects are attributed to:

• Differences in shielding mass between the two MDM populations, 

• The relatively low kinetic energy of SAA trapped charged particles compared to 
GCR charged particles and,

• Secondary particle showers caused by nuclear reactions between ISS shielding mass 
materials and high energy GCR particles

• In the GCR region SEU count increases with increasing shielding mass and in the SAA 
region SEU count decreases with increasing shielding mass

• In the GCR region, the highest MDM DRAM SEU count rates were observed in the high 
latitude region, poleward of 40o, for both MDM shielding mass environments

• For the 12 external MDMs, 71% of the total GCR region SEU counts were poleward of 40 
degrees latitude

• For the 8 internal MDMs, 64% of total GCR region SEU counts were poleward of 40 
degrees latitude

• We have observed no correlations between SPEs and  MDM monthly average DRAM 
SEU rates or MDM SEFI events for either MDM shielding mass environment 40
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Summary and Conclusions

• Between January 2005 and January 2018, the external MDM SEU rates responded
primarily to:

• The expected increases in trapped proton flux with ISS altitude, offsetting any reduction in
trapped proton population through the last solar maximum

• In the SAA region the internal MDM SEU rate shown very little variation between 2005
and 2017

• As solar cycle 24 winds down, both GCR and trapped proton fluxes are expected to increase
and both the internal and external MDM SEU rates observed to be increasing after January
2015

• In the GCR region, the internal MDM DRAM SEU rates are following changes in the
heliospheric GCR modulation factor, ϕ, between 2005 and 2017

• As solar cycle 24 winds down, ϕ is decreasing so that more GCR particles of lower kinetic
energy are able to enter the inner solar system and all MDM SEU rates are increasing outside
the SAA following January 2015

• The ISS PCS system laptop computers in-flight SEFI rates were lower by a factor of 2 to
10, depending on the make and model of laptop computer, than were predicted before
flight on the basis of high energy (200MeV) assembled article proton testing

• It should be remembered that non-SEE FI rates for both laptops were comparable to SEE rates
and that the use of both laptops on ISS is subject to a number of constraints designed to
minimize the safety and mission success risks presented by this relatively unreliable consumer
COTS hardware 41
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Summary and Conclusions

• The maximum MDM DRAM SEU counts are observed in the high latitude portion of the
ISS orbit poleward of 40 degrees latitude, where geomagnetic shielding of GCRs is
minimal and similarity to the NEI GCR environment is maximum

• Decades of GCR transport modeling in the geomagnetic field and direct measurements of
GCR flux at high latitude by AMS-01 suggests that the ISS GCR environment at high
latitudes bears a high degree of similarity to the NEI GCR environment

• ISS should, therefore, be useful as a flight demonstration and test platform for spacecraft
hardware intended for operations in cis-lunar space and beyond

• Modeling the high latitude GCR environment using the CREME-96 SEE/TID analysis
tool and comparing the observed SEU rates for comparable DRAM memories on ISS and
SOHO lend some support to the credibility of the proposal that ISS can be a useful flight
test and demonstration platform for spacecraft components destined for NEI space

• AMS-02 has been operating on ISS for several years now and should be able to produce
more complete and detailed high latitude ISS GCR environment date sets, providing a
sound basis for scaling ISS high latitude SEE data to the near Earth interplanetary
environment 42
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Back-up
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Predicting on-orbit interplanetary 
Solar Particle Event (SPE)  Rates:

FLUKA Calculations of SPE Upset 
Rate Increases 
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Spacecraft/System and 

Device

Nov. 1997 SPE

Upsets/bit  

July 2000 SPE

Upsets/bit 

Nov. 2001 SPE

Upsets/bit

Oct. 2003 SPE

Upsets/bit 

Cassini/Solid State Recorder 

DRAM

1) Observed event upsets

2) Estimated event upsets

3) Estimated/Observed

4) Quiescent (no event)

daily upset rate

1) 4.4x10-7

2) 1.4x10-7

3) 0.32

4) 5.8x10-8

NA NA NA

SOHO /Solid State Recorder 

DRAM

1) Observed event upsets

2) Estimated event upsets

3) Estimated/Observed

4) Quiescent (no event) 

daily upset rate

1) 4.4x10-6

2) 2.110-6

3) 0.48

4) 5.9x10-7

1) 4.7x10-5

2) 2.1x10-5

3) 0.4

4) 5.9x10-7

NA NA

Thuraya/ DSP DRAM

1) Observed event upsets

2) Estimated event upsets

3) Estimated/Observed

4) Quiescent (no event) 

daily upset rate

NA NA 1) 2.0x10-6

2) 2.8x10-6

3) 1.4

4) 5.3x10-8

1) 1.5x10-6

2) 3.8x10-6

3) 2.5

4) 5.3x10-8


