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HELIOCENTRIC ESCAPE AND LUNAR IMPACT                      
FROM NEAR RECTILINEAR HALO ORBITS 

Diane C. Davis,* Kenza K. Boudad,† Rolfe J. Power,‡  
Kathleen C. Howell§, and Daniel. J. Sweeney** 

Spacecraft departing from the Gateway in a Near Rectilinear Halo Orbit (NRHO) 

experience gravitational forces from the Moon, the Earth, and the Sun, all of 

which can be simultaneously significant. These complex dynamics influence the 

post-separation risk of recontact with the Gateway and the eventual destinations 

of the departing spacecraft. The current investigation examines the flow of objects 

leaving NRHOs in the Bicircular Restricted Four-Body Problem, and results are 

applied to heliocentric escape and lunar impact trajectories in a higher-fidelity 

ephemeris model. Separation maneuver magnitude, direction, and location are 

correlated with risk of recontact with the Gateway and successful departure to 

various destinations.   

INTRODUCTION 

The Gateway1 is proposed as a crewed outpost supporting a variety of exploration missions. As a staging 

ground for lunar surface missions and for exploration beyond cislunar space, the Gateway will experience 

spacecraft periodically arriving and docking, and subsequently, spacecraft and objects with a wide range of 

shapes and masses will also depart the Gateway for other destinations. Notable examples of Gateway 

departures include lander descent to the lunar surface, safe disposal of discarded logistics modules to 

heliocentric space, and deployment of cubesats to various locations in cislunar space. Each departure is 

governed by the dynamics of the Gateway orbit and the surrounding dynamical environment. The current 

baseline orbit for the Gateway is a Near Rectilinear Halo Orbit (NRHO) near the Moon.2 NRHOs exhibit 

nearly stable behavior, but over time, any unmaintained object in such an orbit eventually departs due to the 

small instabilities associated with these NRHOs. A separation maneuver speeds the departure from the 

NRHO, but the effects of the maneuver on the spacecraft behavior depend on the location, magnitude, and 

direction of the burn. The departing flow changes significantly based on these burn parameters, resulting in 

a large design space. Employing maps and other visualizations aids in condensing the potential departure 

options. The maps and visuals enable a broad understanding of the design space and identification of 

particular trajectories that lead to desired behavior; broad regions of the separation maneuver space are also 

excluded as undesirable.   

Previous investigations3,4 examined departure from the NRHO and escape from the Earth-Moon vicinity 

from the perspective of logistics module (LM) disposal. The current investigation extends this work, 

exploring several additional aspects of the departure dynamics from the NRHO. First, the bicircular restricted 
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4-body problem (BCR4BP) is employed to characterize the natural flow of trajectories departing the NRHO. 

Then, maneuvers that result in escape to heliocentric space are explored. Groups of separation burns that 

yield sufficient energy to escape the Earth-Moon vicinity are identified through Hamiltonian maps, and then 

maneuver orientations that allow solar gravity to pull a departing spacecraft into heliocentric space are 

determined.  Finally, lunar impact trajectories originating from the NRHO are explored. 

DYNAMICAL MODELS 

In this investigation, three dynamical models are employed. The CR3BP5 provides a framework for 

investigation of departure dynamics and flow nearby the NRHO before and immediately after separation 

from the Gateway. In this regime, the primary gravitational influences on the spacecraft are the Earth and 

Moon, and the CR3BP is an effective approximation for the dynamics. As the spacecraft departs the 

immediate vicinity of the NRHO, the effects of the Sun become significant.  Thus, the BCR4BP6 is employed 

to characterize the behavior of the departing spacecraft. The BCR4BP incorporates the influence of solar 

gravity on the Earth-Moon-spacecraft three-body system and offers an increase in fidelity over the CR3BP, 

while still offering insight into the underlying dynamical behavior in the system. Finally, an N-body model 

based on ephemeris data provides higher-fidelity analysis for particular mission scenarios. 

The Circular Restricted 3-Body Problem 

The CR3BP describes the motion of a massless spacecraft affected by two primary gravitational bodies 

such as the Earth and the Moon. The model assumes that the two primary bodies are point masses orbiting 

their center of mass in circular orbits. The spacecraft moves freely under the influence of the two primaries, 

and its motion is described relative to a rotating reference frame. No closed-form solution exists to the CR3BP 

equations of motion, but five equilibrium solutions, the libration points, are denoted L1 through L5. Stable 

and unstable periodic orbit families, including the L2 halo orbits, emerge in the vicinity of the libration points. 

A single integral of the motion exists in the CR3BP, the Jacobi constant,5 written 

                                                                       𝐽 = 2𝑈∗ − 𝑣2 (1) 

where v is the rotating velocity magnitude. The pseudopotential U* is a function only of position, defined as 

 𝑈∗ =
1

2
(𝑥2 + 𝑦2) +

𝜇

𝑟
+

(1−𝜇)

𝑑
 (2) 

 where x, y, and z are components of the position vector relative to the barycenter in the Earth-Moon rotating 

frame and �̇�, 𝑦,̇  and �̇� are components of the velocity vector in the same frame. The values d and r are the 

distances between the spacecraft and P1 and P2 respectively, and 𝜇 =
𝑚2

𝑚1+𝑚2
 is the mass parameter of the 

system where m1 and m2 are the masses of the two primaries.  An energy-like quantity, the Jacobi constant 

limits the motion of the spacecraft to regions in space where v2 > 0, with zero velocity surfaces (ZVSs) 

bounding the regions within which the spacecraft can move freely. For values of Jacobi constant greater than 

that associated with the L1 libration point, the ZVSs form closed regions around each of the two primaries. 

As the energy of the spacecraft trajectory increases, the value of Jacobi constant decreases until, at the L1 

value, the ZVSs open at the L1 libration point and the spacecraft can move between the two primaries. 

Similarly, when the value of the Jacobi constant decreases to the value associated with L2, the ZVSs open at 

L2 and the spacecraft is able to escape the vicinity of the primaries entirely.  For spacecraft orbiting in one of 

the selected NRHOs, the CR3BP is a good 

approximation for the behavior of the trajectory.  

The Bicircular Restricted 4-Body Problem 

In scenarios where the gravitational influence 

of the Sun is non-negligible, a higher-fidelity 

model is necessary to accurately describe the 

spacecraft behavior. The BCR4BP incorporates 

the gravitational effect of three massive bodies, 

for instance, the Earth, the Moon and the Sun, on 

the motion of a spacecraft.7 The mass of the 

spacecraft is assumed to be negligible in 
Figure 1. BCR4BP in the Earth-Moon rotating frame 
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comparison to the masses of the other bodies. In this model, the Earth and the Moon are assumed to move in 

circular orbits around their common barycenter, denoted 𝐵1, while the Sun and 𝐵1 move in circular orbits 

with respect to the Earth-Moon-Sun barycenter, labeled 𝐵2, as denoted in Figure 1. The BCR4BP is not a 

coherent model: the perturbing acceleration from the Sun does not influence the motion of the Earth and the 

Moon, thus, the motion of the Moon is not a solution to the Sun-Earth CR3BP. The equations of the motion 

in the CR3BP are extended to include the solar gravitational influence as follows, 

                                             �̈� = 2 �̇� +
𝜕Υ∗

𝜕𝑥
, �̈� = −2 �̇� +

𝜕Υ∗

𝜕𝑦
, �̈� =

𝜕Υ∗

𝜕𝑧
 (2) 

where 

                                                           Υ∗ = 𝑈∗ +
𝑚

𝑟𝑠 𝑠/𝑐
−

𝑚

𝑎3 (�̅�𝑠 ∙  �̅�𝑠/𝑐), (3) 

𝑚 =
𝑚𝑆

𝑚𝑒+𝑚𝑚
 is the nondimensional mass of the Sun, and 𝑎 =

𝑟𝑠

𝑟𝑒𝑚
 is the nondimensional distance between the 

Earth-Moon barycenter and the Sun. The independent time variable, 𝑡, explicitly appears in the BCR4BP 

pseudo-potential. Therefore, the BCR4BP is time-dependent and does not admit an integral of the motion. 

However, a scaled version of the Hamiltonian is defined to be consistent with the Jacobi constant in the 

CR3BP, i.e., 

                                                          𝐻(𝜃) = 2Υ∗ − √�̇�2 + �̇�2 +\�̇�2 (4) 

The time-dependent nature of the differential equations in the BCR4BP yields time-dependent equilibrium 

solutions. These instantaneous equilibrium solutions correspond to the perturbed, or oscillating, CR3BP 

libration points (𝐿𝑖), and are denoted 𝐸1(𝜃𝑠) through 𝐸5(𝜃𝑠). Similarly, time-dependent ZVSs in the BCR4BP 

define instantaneous forbidden regions for a given value of H. Note that the relative positions of the primaries 

in the BCR4BP are periodic: one period corresponds to the time between two alignments of the Earth, the 

Moon and the Sun (in this order) and is approximately equal to 29.5 days, i.e., one synodic period.  
 

The N-Body Ephemeris Model 

For applications in mission scenarios where high-fidelity modeling accuracy is required, N-body 

differential equations and planetary ephemerides are employed. The N-body dynamics describe the motion 

of a particle of interest (e.g., a spacecraft) in an inertial frame relative to a central body under the gravitational 

influence of the same central body and additional perturbing bodies. Within this analysis, the relative position 

of each perturbing body with respect to the central body is instantaneously computed by employing NAIF 

SPICE ephemeris data. The Moon is selected as the central body for numerical integration in the J2000 

inertial frame. The Earth and Sun are included as point masses, and the Moon’s gravity is modeled using the 

GRAIL (GRGM660PRIM) model truncated to degree and order 8. Solar radiation pressure (SRP) acting on 

a sphere is also included in the force model. 

For multi-revolution propagations in the NRHO prior to a disposal maneuver, orbit maintenance 

maneuvers (OM maneuvers) are implemented. In some simulations, operational errors on the spacecraft are 

considered in the higher-fidelity modeling. In these simulations, each OM maneuver is associated with a 

navigation error on the spacecraft state: both low navigation errors of 1 km in position and 1 cm/s in velocity 

and larger navigation errors of 10 km in position and 10 cm/s in velocity are considered. Maneuver execution 

errors comprising 1.5% in magnitude and 1° in direction, as well as a fixed magnitude of 1.42 mm/s, are 

applied to each OM maneuver. Mismodeling in SRP assumptions provide 15% error in area and 30% error 

in coefficient of reflectivity. Momentum wheel desaturations are assumed to occur once per revolution near 

apolune with a translational Δv component of 3 cm/s applied in a random direction. In addition, the disposal 

maneuver is applied with a 1.5% execution error in magnitude with lower or higher navigation errors on the 

state, as specified in each case. All values are 3σ and are implemented as Gaussian errors with zero mean. 
 

REFERENCE NRHOs AND DEPARTURE  
 

The current analysis focuses on two NRHOs. The current reference orbit for the Gateway spacecraft is a 

southern L2 NRHO in a 9:2 resonance with the lunar synodic period; that is, the spacecraft completes nine 

revolutions within the NRHO in the time it takes the Sun-Earth-Moon geometry to repeat twice. With a 

perilune radius of approximately 3,250 km and an apolune radius of about 71,000 km, a spacecraft in the 9:2 

NRHO completes one revolution about every 6.5 days. The second NRHO of interest is a southern L2 NRHO 
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in a 4:1 resonance with the lunar synodic period. With a longer period of about 7.3 days, the 4:1 NRHO 

passes farther from the Moon with a perilune radius of approximately 5,750 km and an apolune radius of 

about 75,000 km. Perfectly periodic in the CR3BP, the two NRHOs retain their periodicity in the BCR4BP,8 

but become quasi-periodic orbits in the higher-fidelity ephemeris force model. In any of the three models, 

the NRHOs are nearly stable. The maximum stability indices9 associated with the 9:2 and 4:1 NRHOs in the 

CR3BP have magnitudes equal to about 1.3 and 1.6 respectively, where a maximum stability of index of 1 

represents a marginally stable orbit in a linear analysis. In contrast, the maximum stability index in the L2 

halo family reaches a value of over 600 where the family bifurcates from the L2 Lyapunov orbit family. While 

the 9:2 and 4:1 NRHOs are nearly stable, over time perturbations cause an object to depart if the orbit is not 

maintained. Departure from the NRHO is assessed based on a momentum integral.10 The momentum integral, 

MI, is a line integral of the position vector from the initial time, t0, to the current time, t, 
 

                                         MI(𝑡) =  ∫ 𝑥(𝜏)�̇�(𝜏)
𝑡

𝑡0
+ 𝑦(𝜏)�̇�(𝜏) + 𝑧(𝜏)�̇�(𝜏)𝑑𝜏 (4) 

For a perfectly periodic halo orbit in the CR3BP and BCR4BP, the MI is also periodic and returns to zero 

after precisely one period. In the higher-fidelity ephemeris model, the value of the MI does not return 

precisely to zero over one period, however, it does remain bounded while the spacecraft remains in the 

NRHO. Over time, as the orbit of a perturbed or unmaintained spacecraft diverges from the NRHO, the 

magnitude of the MI also increases, and departure is defined in terms of the divergence of the MI. In the 

current analysis, when the magnitude of the MI crosses a threshold of 0.1, the debris object is considered 

‘departed’ from the NRHO. Since the stability index of the 9:2 NRHO is greater than one, an object moving 

along the NRHO will depart without orbit maintenance. In the CR3BP, depending on the convergence 

tolerance and numerical integration techniques, a departure from the 9:2 NRHO without a maneuver occurs 

after about 230 days.  In the higher-fidelity ephemeris model, departure times without a separation maneuver 

or orbit maintenance range from 70 - 100 days for a quiet, uncrewed spacecraft to 30-60 days for a noisy, 

crewed configuration. When a separation maneuver is applied to an object departing the Gateway, departure 

time decreases. A previous investigation4 characterizes time to depart as a function of maneuver magnitude 

and true anomaly for maneuvers in the velocity, normal, and binormal directions in the CR3BP. The fastest 

observed departures occur after separation burns in the velocity direction at perilune. Such maneuvers are 

further explored in the ephemeris force model. For velocity-direction separation maneuvers at perilune, 

certain maneuver magnitudes lead to consistent times to depart across all revolutions in both the 9:2 and 4:1 

NRHOs, while other maneuver magnitudes result in variable departure times from one revolution to the next.  
 

FLOW ANALYSIS IN THE BICIRCULAR RESTRICTED FOUR-BODY PROBLEM 
 

Once an object has departed from the NRHO, its ultimate destination depends on the departing flow. 

Two models are used to explore the departing behavior. While an object remains in or near the NRHO, the 

CR3BP effectively describes its behavior.  Once the object has departed, solar gravity has a significant effect 

on the trajectory, and the BCR4BP is employed for higher-fidelity analysis. 

First, information about the departure dynamics from the NRHO is investigated using dynamical systems 

theory and the Earth-Moon CR3BP. Although described as ‘nearly stable’ orbits, NRHOs in a 9:2 resonance 

and a 4:1 resonance with the lunar synodic period possess a saddle mode, as apparent in Table 1 and, thus, 

stable and unstable manifolds. The six-dimensional angle between the stable and unstable eigenvectors along 

a revolution of the 9:2 synodic resonant NRHO appears in Figure 2. Near apolune, the eigenvectors are 

oriented in distinct directions, and the angle reaches a maximum value of 53 degrees. Close to the Moon, 

however, the angle between the stable and unstable eigenvectors is small, with a minimum value of less than 

4 degrees at perilune. The small angle indicates that the eigenvectors (and, thus, manifolds) are not well 

defined near perilune; for example, a step along the unstable eigenvector can result in a propagated step close 

to the unstable manifold, a step near the stable manifold, or a combination of both modes. The proximity of 

the eigenvector spaces represents an additional challenge in the near vicinity of the Moon, along with strong 

nonlinear effects and numerical challenges.  
 

Table 1. Stability quantities associated with the CR3BP 4:1 and the 9:2 NRHOs. 

Orbit Eigenvalues Stability indices 

4:1 NRHO 1, 0.5067 − 0.8621𝑖, −2.9027 1, 0.5067, −1.6236 

9:2 NRHO 1, 0.6846 + 0.7289𝑖, −2.1774 1, 0.6846, −1.3183 
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Figure 2. Angle between unstable and stable eigenvectors of the 9:2 NRHO 

 

The baseline 9:2 NRHO is discretized and patch points are selected where the eigenvectors are the most 

distinct, that is, near apolune, as depicted in Figure 3a. A step along the unstable eigenvector is computed, 

and the resulting state is propagated in the Earth-Moon CR3BP. Trajectories along the unstable manifold for 

initial states posts- apolune appear in Figures 3b and 3c, while trajectories for initial states prior to apolune 

appear in Figures 3d and 3e. The geometries are consistent with departure/disposal trajectories observed 

previously:3,4 excursions to the L1 side of the Moon, as observed in Figures 3b and 3d, a large loop on the L2 

side, in Figure 3c, and departures with a ‘sharp turn’, in Figure 3e. 
 

 

Figure 3. Manifold structures near apolune of the 9:2 NRHO in the CR3BP 

These stability results are extended to the Earth-Moon-Sun Bicircular Restricted 4-Body Problem 

(BCR4BP). Previous work8 demonstrated that specific NRHOs corresponding to a synodic resonance, 

including the 4:1 and the 9:2 NRHOs, are transitioned to the BCR4BP while maintaining the geometry, the 

perilune and apolune radii and the linear stability properties. The 4:1 NRHO in the CR3BP and its BCR4BP 

counterpart appear in Figure 4a. The six-dimensional angle between the stable and unstable eigenvectors 

along the 4:1 NRHO in each model is plotted in Figure 4b. Note that the angle is computed for four 

revolutions of the 4:1 NRHO in the CR3BP, accommodating the longer period of the 4:1 NRHO in the 

BCR4BP. Consistent with the angle between unstable and stable eigenvectors of the 9:2 NRHO in Figure 2, 

the angle for the 4:1 NRHO is less than 10 degrees near perilune for both the CR3BP and the BCR4BP 4:1 

NRHOs. Similarly, the eigenvectors are oriented in distinctly different directions closer to apolune, as 

observed for each revolution of the 4:1 NRHO in the BCR4BP in Figure 4b. The 4:1 NRHO in the BCR4BP 

includes four lobes: two on the 𝐿1 side of the CR3BP 4:1 NRHO and two on the 𝐿2 side of the CR3BP 4:1 

NRHO. For the lobes on the 𝐿1 side, the angle between stable and unstable eigenvector directions exceeds 

100° near apolune. On the 𝐿2 side, the angle is approximately 70° near apolune. For reference, the angle 

along the 4:1 NRHO in the CR3BP is approximately 80° close to apolune. The stability characteristics and 

the eigenvectors direction in the 4:1 synodic resonant NRHO remain consistent when transitioned to the 

BCR4BP.  
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Figure 4. CR3BP 4:1 NRHO in blue and BCR4BP 4:1 NRHO in orange, as viewed in the Earth-

Moon rotating frame (a). Angles between unstable and stable eigenvectors of each NRHO (b). 

The BCR4BP 4:1 NRHO is discretized 

and a set of patch points close to the apolune 

is selected, as apparent in Figure 5. A 

representative subset of the manifolds is 

constructed and plotted in purple in Figure 

5. The departing flow near apolune is 

structured and consistent with Figure 3e and 

the departure trajectories previously 

computed.2,3 Manifold structures are well 

defined near apolune of the 4:1 NRHO in 

the CR3BP and the BCR4BP. Near perilune, 

the angle between stable and unstable 

eigenvector directions is less than 10°. Thus, 

accurate computation of the manifolds in the 

lunar proximity is challenging.  
 

ESCAPE TO HELIOCENTRIC SPACE 
 

Once an object has departed the NRHO, its destination depends on the effects of the Sun, the Earth, and 

the Moon on the trajectory. The object may impact the Moon, it may remain in orbit in the Earth-Moon 

vicinity, or it may escape to heliocentric space. Various objects departing the Gateway may be delivered to 

heliocentric space for disposal or for science and exploration applications. Examples include spent logistics 

modules, debris or wet trash, and cubesats. For any object attempting to depart the Earth-Moon vicinity with 

a relatively small maneuver, two basic prerequisites are necessary. First, the energy in the Sun-B1 frame must 

be sufficient for the time-varying ZVSs to be open at the Sun-B1 E1 and E2 libration points. Second, the 

orientation within the Sun-B1 frame must be favorable for the solar gravity to pull the object through the 

portals. The current investigation considers each of these constraints for specific examples, employing maps 

and other visuals to condense the large data space. 
 

Energy in the Sun-B1 system: Hamiltonian behavior 
 

The Hamiltonian in the Sun-B1 system is a representation of the energy of a given trajectory; a lower 

value of Hamiltonian represents a higher energy. As discussed, the time-varying Hamiltonian describes 

osculating ZVSs that govern the allowable motion of an object in the Sun-Earth-Moon BCR4BP. To achieve 

escape from the Earth-Moon vicinity, the energy must be sufficiently high, or the Hamiltonian must be 

appropriately low, such that the ZVSs allow open portals at the Sun-B1 E1 and E2 libration points. For 

example, a sample escaping trajectory appears in the Earth-Moon rotating frame in Figure 6a and in the Sun-

B1 rotating frame in Figure 6b in the ephemeris model. The Sun-B1 Hamiltonian appears as a function of time 

in Figure 6c; the values of H corresponding to the E1 and E2 portals are indistinguishable at this scale and 

appear as a black line. The MI over time is plotted in Figure 6d. In each image, the trajectory is colored 

orange while the orbit is maintained prior to the separation maneuver. Note the large oscillations in the Sun-

Earth Hamiltonian as the spacecraft remains under the close influence of lunar gravity, and the near-

Figure  5.  Representative unstable mainfolds near the 

BCR4BP 4:1 NRHO apolune. 
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periodicity in the MI prior to the separation burn. At time t = 0, a separation burn is executed, and the 

trajectory is colored pink as it remains in or near the NRHO. The MI slowly starts to diverge from its periodic 

behavior. After about 38 days, the value of the MI exceeds 0.1, and the trajectory, now colored blue in Figure 

6, is considered departed from the NRHO. The Hamiltonian at this point is below the value corresponding to 

the E1 and E2 libration points, and the spacecraft is sufficiently energetic to escape the Earth-Moon vicinity. 

Approximately 60 days after the separation burn, the spacecraft passes through the E1 portal, and the 

trajectory, now in green, is considered in heliocentric space.    
   

 
Figure 6.  Escaping trajectory in the Earth-Moon rotating frame (a), the Sun-B1 rotating frame (b) 

and the corresponding Sun-B1 Hamiltonian (c) and Momentum Integral (d). 

The departing trajectory in Figure 6 represents a single successful heliocentric departure trajectory. 

Further examination of the Hamiltonian in the ephemeris force model yields insight into the relationship 

between maneuver magnitude and the resulting energy in the Sun-B1 system. Specifically, for separation at 

a given location along the NRHO, maneuvers are explored that result in Hamiltonian values sufficiently low 

to correspond to E1 and E2 portals that are open, allowing escape to heliocentric space. A maneuver location, 

direction, and magnitude is sought that leads to consistent, predictable behavior. Consider a separation 

maneuver applied in the inertial velocity direction at every perilune for 56 consecutive revolutions within the 

NRHO, or for approximately one year. A given maneuver can lead to: 

1. Consistent behavior across the year with energy too low to allow escape from the vicinity of the Earth 

through the Sun-B1 portals.  

2. Inconsistent behavior throughout the year, with some departing trajectories possessing sufficient 

energy to escape and others with insufficient energy to escape 

3. Consistent Hamiltonian values reflecting sufficient energy to escape from the vicinity of the Earth 

for a maneuver at every perilune passage throughout the year.  

For reliable heliocentric escape, the third option is desirable. However, a larger maneuver does not 

necessarily correspond to a higher energy or a more reliable result. For example, the Hamiltonian as a 

function of time appears in Figure 7a-c for three small values of Δv magnitude delivering separation burns in 

the inertial velocity direction at perilune. In Figure 7a, a maneuver magnitude of 0.1 m/s leads to departure 

from the NRHO after eight additional revolutions within the NRHO, with values of the Hamiltonian 

consistently higher than the value at the E1/E2 portals (represented by the black line). A lunar flyby after 

about 100 days shifts the Hamiltonian value significantly in some cases. In the Figure 7b, a higher separation 

maneuver of 0.7 m/s results in inconsistent departure times from the NRHO and corresponding inconsistent 

Hamiltonian behavior from one revolution to the next. In Figure 7c, a maneuver of 1 m/s yields departure 

after 4 additional revolutions in the NRHO. After departure from the NRHO, the Hamiltonian is consistently 

below the black line, indicating sufficient energy to escape the Earth-Moon vicinity. When the orientation of 

each departing trajectory is appropriately aligned in the Sun-B1 frame, it is able to escape. Thus, a maneuver 

magnitude of 1 m/s yields predictable, favorable behavior when the separation burn is performed in the 
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inertial velocity direction at perilune. However, a small variation in magnitude breaks the consistent patterns 

of behavior: a variation larger than +/- 0.1 m/s leads to inconsistent or unfavorable behavior. Thus, errors in 

navigation or maneuver execution render a 1 m/s maneuver magnitude unreliable for heliocentric escape. 

 
Figure 7.  Hamiltonian as a function of time for low (left), medium (center), and high (right) 

maneuver magnitudes for 56 consecutive revolutions in the NRHO 

The same pattern is repeated as the maneuver magnitudes increase, with Hamiltonian values consistently 

too large to allow escape, followed by inconsistent escape behavior as the trajectory transitions from 

departure after N revs in the NRHO to departure in N-M revs, followed by consistently low Hamiltonian 

values as the maneuver magnitude increases. Then, the Hamiltonian increases along with maneuver 

magnitude until inconsistent behavior is again observed. In Figures 7d-7f, maneuvers of 1.8, 2.5, and 3.5 m/s 

yield earthbound, variable, and energetic NRHO departures, respectively. Similarly, in Figures 7g-7i, 

separations burns of 5.5 m/s, 10 m/s, and 14 m/s display low energy, inconsistent, and high energy departures, 

respectively, as the departure transitions from 2 additional revolutions within the NRHO to immediate 

departure after the separation burn. 

A low separation burn magnitude of 1 m/s, a medium Δv magnitude of 3.5 m/s, and  a larger maneuver 

magnitude of 15 m/s all yield consistent high-energy departures. However, the window of reliable high 

energy departures around the nominal value increases along with the maneuver magnitudes. A tolerance of 

only +/- 0.1 m/s is available to ensure high energy departure in the 1 m/s case, while a variation of +/- 0.4 

m/s continues to produce consistently low Hamiltonian values for 3.5 m/s separation burns. If the nominal 

maneuver is 15 m/s, a variation of +/- 2 m/s continues to yield Hamiltonian values that allow escape from 

the Earth-Moon vicinity. The higher magnitude is more robust in response to errors but does not remove the 

importance of Sun orientation or maneuver location and direction. 

The Hamiltonian plots in Figure 7 represent separation from a single location along the NRHO (perilune) 

and in a single maneuver direction (inertial velocity direction). While separation at perilune is effective for 

achieving escape, both the Gateway and the departing object are susceptible to perturbations and errors in 

the sensitive region near perilune; separation at other locations along the NRHO may be more attractive. To 

seek other potential separation locations, a set of Hamiltonian maps is developed to explore the maneuver 
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design space for a variety of burn locations, directions, and magnitudes and to identify separation maneuvers 

that yield robust, high-energy departures. A sample appears in Figure 8a for 1 m/s separation burns departing 

from perilune at a particular revolution along the 9:2 NRHO and in every possible direction. Each separation 

location is parameterized by osculating true anomaly, TA, although the NRHO is not a Keplerian orbit. The 

center of the map represents a maneuver in the inertial velocity direction. The horizontal axis represents 

maneuver yaw direction with respect to the velocity vector and ranges from -180° to 180°. The maneuver 

pitch angle is plotted along the vertical axis and spans -90° to 90. The velocity, normal, and binormal 

directions are marked on the map as white points. Each colored point on the map represents the outcome of 

a departure burn. If the Hamiltonian at NRHO departure, defined as the time when the momentum integral 

reaches a value of 0.1, is greater than HE1-E2, then the energy is insufficient to escape and the point is colored 

blue. If the Hamiltonian at NRHO departure represents sufficient energy to escape, that is, H < HE1-E2, the 

point is colored red. If the spacecraft impacts the Moon prior to NRHO departure, the point is colored yellow; 

the lunar impact cases are explored in detail in the following section. There are several observations to note. 

First, the Hamiltonian maps do not necessarily reveal a maneuver that leads to heliocentric escape, only 

whether the energy at departure is sufficient to escape. Second, the maps in Figure 8 are generated in the 

ephemeris force model, so the results for a given NRHO location may vary from one revolution to the next. 

However, the maps yield useful information on favorable locations and directions for maneuvers that yield 

trajectories with sufficient energy for heliocentric escape. They also provide insight concerning the 

robustness of a maneuver in the presence of navigation and maneuver execution errors as well as reliability 

from one revolution to the next.   
 

 
Figure 8. Hamiltonian maps representing separation burns from three locations along the NRHO. 



 10 

Recall the 1 m/s separation burn executed at perilune in the inertial velocity direction depicted in Figure 

7a. This maneuver results in a value of H at departure that is low enough to allow heliocentric escape; the 

maneuver is represented by the point directly in the center of Figure 8a, which is correspondingly colored 

red. It is surrounded by a region of other red points, implying that the departure is robust to a pointing error 

in the separation maneuver within the yaw and pitch boundaries of the red region. As the maneuver direction 

changes further, the red region is surrounded by blue areas representing departures insufficiently energetic 

to escape, and then by thin red rings representing directions that lead to high energy departures but without 

tolerance for pointing errors. A second large red region exists in the anti-velocity direction in Figure 8a. As 

the departure location varies, the red regions shift from the velocity and anti-velocity directions to areas on 

the map representing other burn directions, or they change from solid regions to rings. For example, a map 

representing departure from a true anomaly TA = 150° appears in Figure 8b, as this location is notably 

favorable from a Hamiltonian perspective. Note that a solid red region exists at this departure location 

centered at yaw = -50° and pitch = 50°, representing a candidate for a separation burn away from perilune. 

A departure location further along the NRHO at apolune appears in Figure 8c. In this map, the solid red 

region is replaced by red rings, representing departures that are less robust to navigation and pointing errors. 

As the burn magnitude changes, the characteristics of the maps also evolve. Though not apparent in the 

figure, the red region centered on the velocity direction disappears as the magnitude passes 1.1 m/s, signifying 

a narrow tolerance to errors in burn magnitude. Large red regions return to the maps for separation burns of 

3.5 m/s; corresponding maps appear for the same three locations along the NRHO in Figures 8d-8f. As the 

Δv magnitude is further increased to 5 m/s, velocity-direction maneuvers at perilune are insufficiently 

energetic to escape and are represented by the blue region in the center of the map in Figure 8g. The 

corresponding time history of the Hamiltonian for a 5 m/s separation from perilune in the velocity direction 

at perilune appears in Figure 7d, demonstrating consistently insufficient departure energies. Maneuvers in 

the anti-velocity direction with a 5 m/s burn at perilune lead to lunar impact, as is apparent from the large 

yellow region on the map, and thus are not candidates for heliocentric escape. As departure moves along the 

NRHO, as in Figures 8h-8i, rings of sufficient energy remain visible but large solid regions do not appear in 

the maps for 5 m/s departure burns. Increasing the energy further to 15 m/s, however, yields large, robust red 

regions in the Hamiltonian maps at both perilune and at TA = 150°. Note the large yellow region surrounding 

the anti-velocity direction; these points correspond to lunar impact trajectories, which are examined in detail 

in the CR3BP in the next section.  

The maps in Figure 8 represent departure along a single revolution in the quasi-periodic reference 

NRHO. Overlaying maps representing sequential revolutions within the NRHO reveals the robustness of a 

given departure burn to variations in the NRHO. For example, consider the maps in Figure 9.  Each map 

represents departure at a particular burn magnitude and from a particular separation location. In this case, the 

red points reflect separation burns that yield sufficient energy at departure for heliocentric escape for each of 

9 consecutive revolutions (representing 2 synodic periods in the NRHO and, thus, each possible Sun-Earth-

Moon-Spacecraft geometry). The blue regions represent maneuvers that lead to insufficient departure energy 

for at least one revolution among the 9. Darker blue regions signify burns resulting in sufficient energy for 

escape from the first revolution tested but insufficient energy in later revolutions. Similarly, bright yellow 

regions represent burns that always result in lunar impact, while darker yellow areas denote maneuvers that 

lead lunar impact during at least one but not all of the nine revolutions. For a 1 m/s burn from perilune (Figure 

9a), while a red ring remains in the map, the velocity direction is not consistently robust from revolution to 

revolution; at TA = 150°, no burn direction consistently leads to sufficiently energetic departure. Therefore, 

for each revolution, a 1 m/s maneuver direction is available that yields energetic departures; however, no 

direction is reliable over every revolution of the 9 tested. If the burn magnitude is increased to 3.5 m/s, 

however, a velocity-direction maneuver at perilune and a small region near yaw = -25° and pitch = 50° at TA 

= 150° yield consistent high-energy departures across all 9 revolutions. Similarly, with a larger burn 

magnitude of 15 m/s, dependable departure directions exist at both perilune and at TA = 150°.   

In Figures 8 and 9, maps corresponding to three possible separation burn locations are depicted. To 

explore the continuum of burn locations along the NRHO, similar maps are stacked into a 3D figure, with 

yaw and pitch represented along the two horizontal axes and maneuver TA along the vertical axis. Examples 

appear in Figure 10 for burn magnitudes of 3.5 m/s and 15 m/s. In these maps, only the points corresponding 

to departures of sufficient energy to escape are included, each colored according to its Hamiltonian value at 

departure. Maneuvers that result in insufficiently energetic departures or lunar impacts are excluded. In both 
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cases, a sphere at the center of the map signifies a group of robust successful maneuvers centered around the 

velocity direction at perilune. In Figure 10a, for a 3.5 m/s separation burn, the sphere extends from -60° < 

TA < 60° in location, and from -30° < yaw < 30° and -30° < pitch < 30° in direction. As the maneuver moves 

away from perilune, another region associated with successfully energetic separation burns appears near TA 

= 150, marked in Figure 10a by an arrow. A similar map appears in Figure 10b for Δv = 15 m/s. At the higher 

burn magnitude, two regions representing burns that result in energetic departures exist away from perilune; 

one near TA = 150° and another near TA = -150°; both are marked by arrows. Outside of these regions, only 

narrower rings of energetic departures exist; hence the focus on TA = 0° and TA = 150° in this study. 
 

 
Figure 9.  Hamiltonian maps representing departure from 9 consecutive revolutions along the NRHO 

 

 

 
Figure 10. 3D Hamiltonian Maps for two separation burn magnitudes 

 

The robustness of the departure energy for selected separation burns in the presence of navigation and 

maneuver execution errors are tested via Monte Carlo analysis. Because orbit determination errors are 

expected to be higher at perilune than elsewhere in the orbit,11 the analysis assumes 3σ navigation errors of 

10 km in position and 10 cm/s in velocity for departures at perilune and errors of 1 km in position and 1 cm/s 

in velocity for departures at TA = 150°; other errors involved in the Monte Carlo analysis are described 

previously.    

The first set of Monte Carlo results addresses robustness along a single revolution within the reference 

NRHO. That is, for a given departure epoch, the reliability of a separation burn is explored. In each case, 100 

Monte Carlo trials are executed and the number of trials that lead to heliocentric escape after a 200-day 

propagation is recorded. The results appear in Table 2. The first set of results corresponds to departures at 

perilune, as in the left-hand column in Figure 8. Departures in the velocity direction (yaw = pitch = 0°) lie in 

the center of the large red regions in Figures 8a, 8d, and 8j. For a 1 m/s maneuver, the navigation errors 

perturb the departures significantly, and only 33 of the 100 trials achieve escape to heliocentric space. 

Increasing the Δv magnitude to 3.5 m/s improves the robustness, with 89% of trials successfully escaping the 

Earth’s vicinity. For departures from perilune, a burn of 15 m/s results in 100% success; the larger burn 

magnitude is necessary to ensure escape to heliocentric space in the presence of the larger navigation errors 

expected near perilune. Maneuvers with a non-zero pitch angle are also explored. Such options exist as 

narrower bands in the Hamiltonian maps in Figure 8. The results from one sample direction (yaw = 0°,         
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pitch = 75°) for 1 m/s and 3.5 m/s Δv magnitudes appear in Table 2, without improvements in robustness. 

However, by moving away from perilune, the expected navigation errors decrease, and reliability improves. 

Consider departures from the Gateway at TA = 150°, as in the center column in Figure 8. For maneuver 

magnitudes equal to 1 m/s, 3.5 m/s, and 15 m/s, large red regions exist in the maps corresponding to 

sufficiently energetic departures. These regions are characterized by negative yaw and positive pitch values. 

A 1 m/s separation maneuver directed in the center of the corresponding red lobe such that yaw = -50° and 

pitch = 25° results in a 97% success rate. Increasing the Δv magnitude to 3.5 m/s and recentering the direction 

to yaw = -25° and pitch = 25° yields all 100 trials escaping from the Earth-Moon vicinity. Similarly, a 15 m/s 

burn results in 100% of the trials achieving heliocentric escape. Narrower bands of red also exist in the 

Hamiltonian maps for these three maneuver magnitudes for departures at TA = 150°. For example, separation 

burns of 1 m/s and 3.5 m/s in a direction defined by yaw = 50° and pitch = -25° yield 91% and 77% success 

respectively. A maneuver of 15 m/s directed such that yaw = 120° and pitch = -60° leads to 100% heliocentric 

escape. As expected, selecting a maneuver direction centered in one of the larger red regions leads to 

improved reliability. 
   

Table 2.  Monte Carlo trials for separation burns over a single NRHO revolution: successful escapes 

  

TA = 0  

(perilune, 10 km/10 cm/s nav errors) 

TA = 150  

(away from perilune, 1 km/1 cm/s nav errors) 

  

yaw = 0,  

pitch = 0 

yaw = 0,  

pitch = 75 

yaw = -50, 

pitch = 25 

yaw = -25, 

pitch = 25 

yaw = 50, 

pitch = -25 

yaw = 120, 

pitch = -60 

1 m/s 33/100 43/100 97/100  91/100   

3.5 m/s 89/100 38/100   100/100 77/100   

15 m/s 100/100     100/100   100/100 
 

The results in Table 2 represent departures along a single revolution in the NRHO. Recall from Figure J 

that maneuver directions leading to escape vary from one revolution to the next in the ephemeris force model. 

To explore robustness across many revolutions within the reference NRHO, an expanded Monte Carlo 

analysis is run. The analysis focuses on the most reliable maneuvers identified in Table 2, that is, separation 

burn magnitudes of 3.5 m/s and 15 m/s, and separation locations at TA = 150°. For a given separation burn 

magnitude, direction, and true anomaly, 10 trials are run for departures at TA = 150° along each of 56 

consecutive revolutions within the reference NRHO, for a total of 560 trials over a one-year span. The 

maneuver directions are selected from the maps in Figure 8d and 8f, marked with black dots. The maps 

suggest that the selected maneuver directions may yield sufficient energy to escape across all revolutions. In 

fact, the maps’ predictions hold over the Monte Carlo analysis. In each case, though not all trajectories 

achieve heliocentric escape, 100% of the Monte Carlo trials depart the NRHO with energy sufficient to allow 

escape. For a 3.5 m/s burn at TA = 150° directed so that yaw = -25° and pitch = 35°, 396/560 trials escape to 

heliocentric space. For a 15 m/s separation burn in the yaw = -5°, pitch = 40° direction, 460/560 trajectories 

escape. Again, every departing trajectory is sufficiently energetic to escape, though escape does not always 

occur. The earthbound trajectories that fail to achieve heliocentric escape fail because of their orientation in 

the Sun-B1 frame.      

In summary, for any revolution along the NRHO, maneuver locations, magnitudes, and directions can 

be identified that yield energy sufficient for escape from the Earth-Moon vicinity. Hamiltonian maps 

characterize the maneuver design space and allow selection of maneuver magnitudes and directions that yield 

sufficiently energetic departures from the NRHO. Separation locations away from perilune are associated 

with smaller navigation errors and, thus, are associated with more robust departure energies for small 

separation burns. In a Monte Carlo analysis, 100% robustness is observed for maneuver magnitudes as low 

as 3.5 m/s for maneuvers away from perilune, while 15 m/s is required for reliable departures from perilune. 

A 1 m/s burn does not provide 100% robust departure energy in the presence of navigation errors, even away 

from perilune, especially if a consistent maneuver location and direction is desired from one revolution to 

the next.  

NRHO Departure geometry and Sun-B1 Hamiltonian 

The relationship between departure geometry from the 9:2 NRHO and the Sun-𝐵1 Hamiltonian value is 

explored in the BCR4BP. For a fixed magnitude and direction maneuver at perilune along the NRHO, the 

initial position of the Sun is varied, and the state is propagated using the BCR4BP equations of motion. The 
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resulting trajectories for a maneuver 

of 5 m/s in the velocity direction are 

plotted as viewed in the Earth-Moon 

rotating frame in Figure 11. The 

trajectories are propagated for an 

arbitrary duration of 40 days, a 

sufficient time for all trajectories to 

reach a plateau in Sun-𝐵1 

Hamiltonian value, plotted in Figure 

11c. Multiple geometries are observed 

in Figure 11a. Trajectories plotted in 

shades of blue, corresponding to an 

initial Sun angle between −100° and 

80°, depart the NRHO near apolune, 

and possess a negative 𝑧-coordinate 

after departure. These types of 

geometries do not offer sufficient 

energy to escape the Earth-Moon system. As the initial Sun angle increases, the departing trajectories stretch 

toward the Moon, and the resulting Sun-B1 Hamiltonian values decrease. The trajectory possessing the lowest 

Sun-B1 Hamiltonian after departure from the NRHO, that is, the most energetic trajectory, is plotted in black 

in Figures 11a to 11c. Its geometry is consistent with previously observed successful disposal trajectories: a 

sharp ‘turn’ after departure from the vicinity of the Moon. As the initial Sun angle further increases, for lines 

colored in shades of red in Figure 11, another loop begins to form around the Moon and the Sun-B1 

Hamiltonian values start to increase. This new loop indicates a transition in the solution geometry, from 2 

revolutions to 3 revolutions before departure. The departure metric, i.e., the momentum integral, is plotted in 

Figure 11b, and exhibits signs of the shift in geometry as well: trajectories that present an extra loop with 

respect to the Moon also possess an additional crest in their associated momentum integral value. Departure 

geometry from the lunar vicinity and the evolution of the Sun-B1 Hamiltonian value are closely related; by 

appropriately selecting the NRHO departure geometry, favorable energy in the Sun-B1 frame is achieved. 

Orientation in the Sun-B1 System: Maneuver timing 
 

After a separation maneuver is selected that yields sufficient energy at NRHO departure, a second 

prerequisite must be met to ensure escape to heliocentric space. Once the spacecraft has departed the NRHO, 

solar gravity significantly affects the trajectory. The orientation of the orbit in the Sun-B1 frame determines 

the impact of solar gravity, i.e., circularize the orbit around the Earth-Moon barycenter, preventing escape, 

or elongate the orbit, facilitating escape to heliocentric space.12 A previous analysis3 details departures from 

the NRHO in quadrant I or quadrant III in the Sun-B1 rotating frame with the appropriate energy and 

eccentricity that lead to heliocentric escape, where the B1-centered quadrants are defined in red text in Figure 

12a. The higher the energy at departure, the less precise the required orientation to allow escape through the 

E1 and E2 portals in the ZVSs. For example, consider the trajectories in Figure 12. In each image, the ZVS is 

defined by the Sun-B1 Hamiltonian value along the trajectory after departure from the NRHO, and the 

spacecraft cannot cross into the forbidden region, shaded in blue. In Figure 12a, the Hamiltonian is 

sufficiently low and the trajectory is oriented appropriately for the 3.5 m/s separation burn to lead to escape. 

In contrast, in Figure 12b, while the ZVSs are open, the orientation is not favorable and the trajectory does 

not escape. Figure 12c represents a 5 m/s separation maneuver that results in insufficient energy; the ZVSs 

are closed at both E1 and E2. Figures 12d and 12e both represent a 15 m/s separation burn; though the 

Hamiltonian is lower in Figure 12e and the portal is open further, the orientation is unfavorable and the 

trajectory remains earthbound. To ignore orientation entirely, a separation burn as high as 200 m/s is required, 

as in Figure 12f. In this case, the ZVSs are entirely out of plane and any orientation leads to escape. Since a 

Δv of such a high magnitude is operationally infeasible, smaller burns must be executed such that the 

departing trajectory is elongated by the Sun’s gravity and pulled through the E1 or E2 portal.  

The orientation of the escaping path in the Sun-B1 rotating frame depends on the time between the 

separation maneuver and the MI value indicating departure from the NRHO as well as the orientation of the 

maneuver itself. Thus, for a given set of burn parameters, the location of the burn in the Sun-B1 frame is 

Figure 11. Departure geometries from the 9:2 NRHO in the 

BCR4BP for a 5 m/s maneuver (a). Associated momentum 

integral (b) and Sun-B1 Hamiltonian (b) 

                                               b. 

a.                                            c. 
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mapped to the outcome. Three candidate separation burns from Table 2 are again investigated. This time, the 

burn locations are plotted in in Figure 13 in the Sun-B1 rotating frame, colored according to their fate. 

Maneuvers that lead to heliocentric escape are colored red, while burns that result in earthbound trajectories 

appear in blue. Recall that the Hamiltonian values at NRHO departure for each of the 560 trajectories 

represented in Figure 13 are sufficiently low to allow heliocentric escape; however, only the burns marked 

in red result in a trajectory oriented appropriately to allow solar gravity to facilitate escape from the Earth-

Moon vicinity. Note that nine clusters of maneuvers appear in each plot; these nine burn locations repeat 

because of the 9:2 resonance of the NRHO with the lunar synodic period. In each case, five or six of the nine 

possible maneuver orientations result in consistent heliocentric escape over the one-year analysis. All of the 

earthbound trajectories originate from maneuvers in the remaining orientations, with the 15 m/s burns 

resulting in fewer total earthbound outcomes. The specific maneuver locations that lead to successful escapes 

depends on the burn parameters.  
 

 
Figure 12. Escaping and earthbound trajectories at the Moon and ZVSs defining forbidden regions 

 

 

 
Figure 13. Maneuver orientations in the Sun-B1 frame. 

 

LUNAR IMPACT TRAJECTORIES 
 

For some Gateway applications, it may be desirable to impact the lunar surface after departure from the 

NRHO. Lunar impact trajectories are of interest to lunar science missions, ejecta studies, and potential 

disposal of objects not intended for heliocentric space.13 Understanding the behavior of lunar impact 

trajectories originating from the NRHO also characterizes risk and may drive constraint definition for mission 

designs in which lunar impact is not desired and aid in avoidance of lunar heritage sites. As observed with 
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the Hamiltonian maps, the qualitative and quantitative nature of departure trajectories from the NRHO are 

highly dependent on the location, magnitude and direction of the departing maneuver. Characteristics of the 

impacting trajectories in relation to these quantities are sought. Lunar impact trajectory characteristics of 

interest include the location in pitch-yaw space of the departure maneuvers that lead to impact, the velocity, 

angle, and location of lunar impact as well as the time of flight to impact. Impact velocity, angle, and location 

are key quantities for investigation of lunar ejecta, science mission applications, as well as avoidance of 

heritage sites. Time to impact influences the application of impacting trajectories and provides a quantifiable 

metric for impact geometry. Analysis of the lunar impact trajectories occurs in the CR3BP to eliminate epoch 

dependence and to leverage the Jacobi constant as an integral of the motion. The current analysis is limited 

to orbits that remain in the lunar vicinity.  
 

Theoretical Bounding of Impact Speed 
 

The speed relative to the lunar surface at impact is important for various applications, including kinetic 

impactors and ejecta analysis. The CR3BP supplies a theoretical bound on the extrema for impact speeds 

resulting from maneuvers in the NRHO. The Jacobi constant in Equation (1) is a first order integral of the 

motion in the CR3BP and remains constant across any continuous ballistic trajectory. Assuming a given 

initial Jacobi constant, Equations (1) and (2) are rearranged to 

yield the relative velocity magnitude at any point along the 

trajectory as a function of position and  𝐽, i.e.                                                    

𝑣 = √(𝑥2 + 𝑦2) +
2(1−𝜇)

𝑑
+

2𝜇

𝑟
− 𝐽.  (5) 

The impact condition bounds 𝑑, 𝑟, and (𝑥2 + 𝑦2).  The 

distance to the Earth at impact, 𝑑, is never greater than that of 

the lunar orbital radius plus the lunar radius; the distance to the 

Moon at impact, 𝑟, is always equal to the lunar radius, and the 

quantity (𝑥2 + 𝑦2) is bound by the square of the bounds on 𝑑. 

Thus, the minimum and maximum speeds at impact are 

evaluated for a given initial Jacobi constant value and a given 

maneuver magnitude at perilune in both the anti-velocity and 

velocity directions, respectively. Note that the derivation of the 

minimal and maximal impact velocities does not ensure that 

trajectories actually exist. The impact extrema as functions of separation maneuver magnitude appear in 

Figure 14. As maneuver magnitude increases, arbitrarily high impact speeds (red) are predicted. Conversely, 

a minimum of approximately 1.6 km/s exists for the minimal impact speed (blue). Beyond this point, the 

minimal theoretical impact speed climbs with the same slope as the maximal. The slope of the increasing 

curves is nearly one, suggesting that a 1 km/s increase in departure maneuver magnitude corresponds to a 1 

km/s increase in minimal and maximal theoretical impact speeds. This relationship demonstrates that 

achieving high impact velocities demands high departure maneuver magnitudes. Impact speed extrema for 

four maneuver magnitudes appear in Table 3. At each maneuver magnitude, the difference between the 

maximum and minimum impact speeds is 20 to 30 m/s. This minor variation leaves little room for impulsive 

trajectory design strategies that increase – or decrease – the impact speed significantly without adding 

additional maneuvers beyond the initial departure. 
 

Table 3. Impact speed extrema for 1, 5, 10, and 15 m/s departures 

Maneuver 

Magnitude [m/s] 

Minimum 

Theoretical Impact 

Speed [km/s] 

Maximum 

Theoretical Impact 

Speed [km/s] 

Minimum 

Observed Impact 

Speed [km/s] 

Maximum 

Observed Impact 

Speed [km/s] 

1.0 2.350 2.360 2.354 3.356 

5.0 2.347 2.362 2.351 2.358 

10.0 2.344 2.366 2.348 2.362 

15.0 2.340 2.370 2.344 2.363 
 

Impact Maps   
 

To explore the observed impact velocities after NRHO departure, a set of impact maps appears in Figure 

15. Impact trajectories departing from the NRHO are parameterized by the magnitude, yaw, and pitch of the 

Figure  14.  CR3BP minimal and 

maximal lunar impact speeds  
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separation maneuver, the location of the burn along the NRHO, and the time to impact. Finding an impacting 

departure trajectory requires a search through this five-dimensional search-space. The search-space is 

reduced to four dimensions by capping integration time at 130 days and propagating departure trajectories 

forward until lunar impact or departure from the lunar region. Departure from the lunar region is defined as 

a trajectory that crosses 𝑥 = 𝑥𝐿1 or 𝑥 = 𝑥𝐿2, where 𝑥𝐿1 and 𝑥𝐿2 represent the 𝑥 components of the locations 

of the Earth-Moon 𝐿1 and 𝐿2 libration points.  

As the departing trajectories are propagated forward in time, each impact trajectory is recorded along 

with its impact velocity, angle, location, and time of flight. The maneuvers that lead to lunar impact are 

plotted on the impact maps in Figure 15 colored according to the impact speed of the corresponding trajectory 

for maneuver magnitudes of 1, 5, and 15 m/s. Note the similarity to the yellow regions in Figure J, indicating 

the consistency in results between the CR3BP and the ephemeris model. Two main structures are observed 

in the impact maps: rings and lobes. At lower maneuver magnitudes, rings are the dominant structures and 

primarily exist surrounding the anti-velocity direction at perilune; they shift as the departure location moves 

around the orbit. Rings represent localized maneuver directions that lead to lunar impact, and they are 

observed in each of the maps in Figure 15. A single ring possesses similar impact velocity characteristics 

throughout. At higher maneuver magnitudes, another group of rings forms around the velocity direction, 

characterized by higher impact velocities, again consistent across each ring. The second type of structure is 

observed as lobe-like patterns centered on the anti-velocity direction. At perilune, as in Figures 15b and 15c, 

these lobes appear as sets of concentric ring structures, but as the departure location is shifted, they deform 

and lose symmetry, as observed in Figure 15f. Impact velocity varies continuously across each lobe. A key 

feature of the lobe structures is that a small change in maneuver direction still results in an impacting 

trajectory; impact departure directions located on the isolated ring structures do not share this robustness. It 

is observed that maneuvers with a larger component in the anti-velocity direction result in lower impact 

speeds. Intuitively, as anti-velocity burns reduce the energy of a spacecraft, speed decreases at any particular 

position. Impact velocities are observed within the range bounded by the theoretical minimum observed 

impact speeds, as apparent in Table 3.  
 

 
Figure 15.  Impact speeds for separation maneuvers of 1, 5, and 15 m/s at various true anomalies on 

the ascending half of the NRHO 

In Figure 16, a series of maps is stacked such that the TA of the separation burn is represented along the 

vertical axis. These 3D maps are colored according to lunar impact angle for burn magnitude of 5 and 15 

m/s. Impact angle is defined as the velocity vector angle at impact with respect to the local surface normal. 

Thus, an angle of 0∘ represents an impact normal to the surface while impact angles near 90∘ are tangent to 

the lunar surface at impact. Immediately apparent are rings or shells surrounding the velocity direction, solid 

lobes around the anti-velocity direction, and other structures and chaotic points throughout the maps. 

Consistent impact angles are absent in the ring or shell structures for any given TA across all true anomalies 

and maneuver magnitudes; large variation in angle exists within each single ring. Within the larger lobe 
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structures, however, a relatively smooth gradient across impact angle is observed. Discontinuous jumps are 

apparent within the lobes in Figure 16b, marked by a white arrow. The cause of these discontinuities is 

described in Figure 17; 17a is a map corresponding to separation at perilune. Near the anti-velocity direction, 

all of the transfers in the lobe are 2-revolution transfers. As the maneuver direction shifts away from the anti-

velocity direction, the latitude of impact rises and the impact angle decreases. Beyond a critical value, the 

trajectory does not impact the surface; rather, two more revolutions are added before impacting at a lower 

impact angle. An impacting trajectory prior to this discontinuity appears in Figure 17b while an impacting 

trajectory immediately following the discontinuity appears in Figure 17c. Note that the 4-revolution transfers 

proceed through the range of impact angles much more quickly than the 2-revolution transfers because of the 

increased sensitivity in the final states resulting from the increase in transfer time. The impact angles outside 

of the lobe structures are quite unpredictable and, as the departure location shifts toward apolune, this 

unpredictability grows. Such chaotic behavior is in contrast to the relatively predictable behavior generally 

observed in the impact velocity. Figures 15 and 16 demonstrate that the magnitude of spacecraft velocity at 

impact is easier to predict than the direction of spacecraft velocity. 
 

 
Figure  16.  Impact angles for separation maneuvers of 1, 5, and 15 m/s at three true anomalies on the 

ascending half of the NRHO 

 

Figure  17.  A 2-revolution (b) and 4-revolution (c) impact trajectory occurring inside and outside the 

discontinuity in anti-velocity lobe in Figure 17a. 

The chaotic nature of the region disperses trajectories in geometry, but because impact velocity is largely 

a function of energy in a conservative system, it remains predictable despite large variations in geometry. 

The time of flight of impact trajectories offers an indication of transfer geometry without visually inspecting 

individual trajectories; for a given application, the time of flight of impact trajectories may also rule out 

certain transfer geometries due to spacecraft capabilities. In Figure 18, a series of maps is again stacked with 

the TA of the separation burn is represented along the vertical axis. In this map, however, the points are 

colored according to time to impact for burn magnitude of 5 and 15 m/s. As maneuver magnitude is increased, 

the time to impact tends to decrease. In both cases, the minimum time of flight is observed close to the anti-

velocity direction. As with the impact speeds, the time of flight remains relatively constant throughout a ring 

(or shell) structure. However, unlike impact speed, time of flight is consistent throughout the lobes as well. 

A discontinuity is seen in the lobe in Figure 19a, marked by a white arrow; this discontinuity is congruent 

with the observed jump from 2-revolution to 4-revolution impact trajectories. Figure 19 demonstrates the use 



 18 

of time of flight as a quantifiable measure of geometry; it represents a single slice of the 3D map in Figure 

18b for a separation TA = 180°. Impact trajectories performing 2, 3, 4, and 5 revolutions are identified from 

variations in the time of flight; each trajectory corresponds to a separation burn marked on the map in Figure 

19a. 
 

 
Figure  18.  Times to impact for separation maneuvers of 5 and 15 m/s  

 
Figure  19.  Differing multi-revolution transfers found from time of flight variation in map 

Defining latitude and longitude with respect to the rotating frame in the CR3BP and assuming that the 

Moon is exactly fixed in its tidal lock, the latitude and longitude of the impact locations are calculated. Figure 

20 depicts impact locations for various magnitudes and departure locations. Interestingly, the 1 m/s and 15 

m/s cases show more overall structure than the 5 m/s case. The 1 m/s case demonstrates that at all depicted 

departure locations, transfers exist to the lunar south pole region. The 15 m/s case shows a lack of impact 

trajectories near the south pole with a majority of impacts occurring in the norther hemisphere. The streaks 

present for the 15 m/s case in Figures 20c and 20f correspond to the multi-revolution transfers depicted in 

Figures 17 and 19, respectively. The anti-velocity lobes, therefore, cluster not only in yaw-pitch space but 

also in lunar impact position. This provides a level of robustness on both sides of the impact transfer. In 

general, at higher maneuver magnitudes, the percentage of impact trajectories in the southern hemisphere 

drops. In either case, however, the impact locations outside the streaks are either part of a ring structure or 

are one-off impact departures in yaw-pitch space vastly reducing their robustness. 



 19 

 
Figure  20.  Impact locations on lunar surface for departure maneuvers of 1, 5, and 15 m/s at various 

true anomalies on the ascending half of the NRHO 

Commonly Observed Geometries 
 

Throughout the exploration of impact trajectories, three dominant geometries of impacts arise. These 

geometries appear in Figure 21. Figure 21b depicts the multi-revolution transfers occurring in the anti-

velocity direction and responsible for the streaks observed in Figures 21c and 21f. This geometry is present 

at and above maneuver magnitudes of 5 m/s. These offer the most robust transfers in terms of sensitivity of 

final impact location with respect to error in initial departure location and maneuver direction. Figure 21c 

displays motion present in the center ring structures around the velocity direction. These structures greatly 

resemble the Period-4 Halo Orbits investigated by Zimovan-Spreen and Howell14 and may be related to the 

manifold structures originating from the unstable members of the family. The geometry present in Figure 

21d is similar to that of the unstable manifold structure of the Butterfly orbit family. The geometry of 

trajectories departing the NRHO and impacting the lunar surface appear to be closely related to the geometry 

of nearby periodic orbit family manifolds. Further investigation into the relationship of these structures may 

inform future impact trajectory design methodologies. 
 

 
Figure  21. Commonly observed impact trajectory geometries 

 

CONCLUDING REMARKS 
 

Objects departing the Gateway may be destined for heliocentric space or to the lunar surface. Reliable 

delivery to the desired destination is imperative for safe spacecraft operations. The multibody dynamical 



 20 

environment in cislunar space complicates trajectory design while providing opportunities for low-cost orbit 

transfers. The natural flow of objects in this regime is explored; although not well defined near perilune, the 

unstable manifold directions near apolune in the Earth-Moon CR3BP accurately describe departing behavior 

of trajectories originating in NRHOs. Departures to heliocentric space require sufficient energy at NRHO 

departure as well as a favorable orientation in the Sun-B1 frame. The energy is not directly predicted by the 

magnitude of the departure burn, as the Sun-B1 Hamiltonian is affected by the pattern of the departure flow, 

which in turn depends on the location, magnitude, and direction of the separation burn. Hamiltonian maps 

are generated that yield at a glance the maneuver parameters that lead to sufficiently energetic trajectories.  

Then, the escape success is related to the maneuver orientation in the Sun-B1 frame to recommend separation 

burns of 3.5 m/s and 15 m/s away from perilune that lead to reliable heliocentric escape in the presence of 

navigation and maneuver execution errors. Finally, lunar impact trajectories are explored, including the 

correlation of separation burn magnitude, direction, and location with lunar impact speed, angle, and location.  

The time of flight is an indicator of trajectory geometry. 
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