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Today’s astronaut corps represents a wide range of various anthropometric dimensions. 

Accommodating this wide range of anthropometry and protecting for size variations in future 

crews, makes spacesuit sizing and fit a challenging and necessary aspect of suit development. 

Spacesuit fit can play an important role in performance, but a suit fit assessment, especially 

in dynamic postures, is difficult without extensive human-in-the-loop testing. One approach 

to address this issue is to model and simulate the human-spacesuit interactions for a target 

population early in the design process. The Anthropometry and Biomechanics Facility (ABF) 

at the NASA Johnson Space Center has been working to incorporate parametric human 

models based on 3D full-body scan data with spacesuit CAD models that can be driven by the 

user or imported motion capture data. An articulated spacesuit model combined with a 

poseable high-fidelity human model allows comparisons to be made between spacesuit 

capabilities and normal human ranges of motion. Furthermore, predictions can be made as to 

how a specific individual or population may perform in the suit from the perspective of reach 

and mobility. In this paper, we will present case study examples of reach, mobility, and fit 

analyses that can be done with these models and the methodology developed thus far. These 

models have the potential to become powerful tools for evaluating future spacesuit design 

architectures from the perspective of optimizing fit and performance. 

Nomenclature 

ABF = Anthropometry and Biomechanics Facility 

DCM = Display and Controls Module 

EMU = Extravehicular Mobility Unit 

EVA = Extravehicular activity 

HITL = Human-in-the-loop 

HUT = Hard Upper Torso 

IK = Inverse kinematics 

IVA = Intravehicular Activity 

LTA = Lower Torso Assembly 

NASA = National Aeronautics and Space Administration 

PLSS = Portable Life Support System 

RE = Reach Envelope 

ROM = Range of Motion 

SAFER = Simplified Aid for EVA Rescue 

I. Introduction 

xtravehicular activity (EVA) spacesuits are essential for crew operations outside of a spacecraft. Not only do 

spacesuits need to provide the essentials for maintaining life, they also must allow sufficient mobility for an 

astronaut to carry out mission tasks that cannot be accomplished within the spacecraft. Crewmembers undergo 
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extensive training exercises for each EVA1 in addition to the actual EVA time spent on orbit. A suboptimal suit 

architecture design can lead to human mobility compensations that result in discomfort, reduced performance, or even 

injury. Optimization of the bearing type, size, orientation, and location with respect to human body joint centers of 

rotation reduces these risks by minimizing the amount of compensation needed to accomplish a given task. However, 

the impact on performance of different designs can be difficult to assess. Optical motion capture systems have been 

used to assess the motion and performance of suited individuals,2 but this information only explains the motion of the 

surface of the suit. Understanding the motions of the subject inside the suit is not so straightforward. Optical motion 

sensors cannot visually track the body inside the suit, inertial measurement units (IMUs) are not reliable with all of 

the surrounding metallic components in the suit, and current forms of human-suit interaction sensors are not robust 

enough for the harsh in-suit environment. To add to these difficulties, it is logistically challenging and expensive to 

collect data through human-in-the-loop (HITL) suited testing. Furthermore, there is no perfect analog on Earth for 

simulating how a person fits or “falls” into a spacesuit in different gravity environments.  

 To combat some of these challenges encountered in suited human performance testing, the Anthropometry and 

Biomechanics Facility (ABF) has been developing morphologic and kinematic human and spacesuit computer models 

to assess spacesuit fit and mobility. This allows for a much more extensive assessment of how different body types 

might perform in a given spacesuit design. Specific suit design parameters can also be adjusted to see the impact on 

the modeled population, which can aid designers of future spacesuits in improving accommodation. This paper 

discusses some of the ongoing efforts the ABF has made in recent years to develop dynamic human-suit interaction 

models.  

II. Model Development 

Over the past decade, the ABF has been developing and improving upon various computerized models of both 

spacesuits and human manikins, and the following sections provide a brief overview of how they were developed and 

their current status. 

A. Human Model Development 

The ABF collects and maintains a large database of linear anthropometry and 3D volumetric scans in different 

poses for the astronaut population, as well as for a large number of engineering test subjects. However, sometimes 

there is a need for a unique pose or a specific body shape that was not collected in the dataset. Thus, a need exists for 

human computer models in order to make pose adjustments, generate different body shapes, and perform population 

analysis for virtual suit design and fit evaluations.  

Initial efforts to develop a 3D human model focused on using the linear anthropometric measures pulled from 3D 

scans to build a “skeleton” of primitive shapes in SolidWorks (Dassault Systemes SolidWorks Corp., Waltham, MA). 

These “anthronauts” could represent any combination of anthropometric measures (Figure 1) and could even be put 

through very basic animations to demonstrate mobility. However, they lacked the compressibility of human tissues 

and were difficult to manipulate. Additionally, the shapes did not accurately portray the true volume and curvature of 

the human body.  

a) b)  

Figure 1.  First iteration of “anthronaut” models representing a range of anthropometry for the lower body 

(a); Anthronaut subject demonstrating a prescribed reach envelope of the shoulder (b). 
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The next phase of human modeling 

development was to move toward 

incorporating the actual 3D scans in a 3D 

modeling environment to improve ease of 

use and achieve a higher level of fidelity 

when looking more closely at aspects of suit 

fit. These 3D scans were imported into 

Blender (Blender Foundation, 2017), and a 

skeletal armature or “rig” was applied to the 

mesh to be able to dynamically adjust the 

posture of the subject. A vertex-weighting 

algorithm with respect to distance to the 

armature joint locations was applied to each 

vertex in the scan (Figure 2). As the 

armature is manipulated, the vertices 

associated with the armature segment are 

translated. The amount of displacement is 

based on the weighting. This will ultimately 

deform the body in response to armature 

articulation. 

Repositioning the armature in this way, which is essentially a weighted sum of the linear transformations by the 

linked joints, works well for small adjustments. However, it cannot accurately quantify anatomically unique skin 

deformation or muscle bulging, especially in extreme positions at complex joints like the shoulder (Figure 3). This is 

not a major issue for basic range of motion assessments that do not rely on accurate body deformation, but it is critical 

for suit-to-body contact assessments. Furthermore, while the database of scans covers a wide range of anthropometry, 

it is possible that some specific body shapes exist in real life that are not represented in the database. To address these 

issues, statistical parametric human body models based on the 3D scans were developed to improve skin deformation 

simulation.  

Due to the large point-cloud data that is associated with each 3D scan, a template-based nonrigid registration and 

morphing technique3 was used to create homologous surface models with the same point-to-point correspondence 

across all scans. This allowed for a more manageable point cloud size, and vertex mapping similarity across models 

to facilitate incorporation into the integrated model. Correlations between shape and pose deformations across 

individuals were statistically modeled to generate a wide range of body shapes. Using critical anthropometry 

dimensions that are relevant to spacesuit fit, such as stature and shoulder breadth, the scan geometry data can be scaled 

and interpolated to produce the approximate body shape of an unrepresented individual with those critical dimensions. 

Figure 5 illustrates a variety of body shapes that can be generated and visualized based on an arbitrary set of 

anthropometry dimensions. 

a)     b)  

Figure 2.  Subject with skeletal rig (a) and close-up example of the 

upper arm with the weight-painted region of the forearm 

highlighted by the color-map (b). Vertices in red are entirely 

affected by the movement of the selected armature bone. As the 

color fades into dark blue, the vertices are decreasingly affected by 

that bone’s movement. 

a)     b)     c)  

Figure 3.  Comparison of subject shoulder deformation from a neutral posture (a) to an overhead reach based 

on vertex-weighting (b) and statistical parametric modeling (c). The wrist was constrained to the same target 

in both cases.  
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B. Spacesuit Model Development 

Several spacesuit models have been developed to build a database 

of different suit designs that can not only be positioned around the 

user's body shape in 3D space, but that can also rotate and bend at 

the various bearings and soft goods breakpoints as they do when 

worn by a user. Only EVA suits currently exist in the model database 

because intravehicular activity (IVA) suits have a very different 

architecture and often have less stringent mobility requirements 

because they nominally are not fully pressurized nor worn outside of 

a spacecraft. 

 

1. Extravehicular Mobility Unit (EMU) 

The EMU 3D model was developed initially in SolidWorks via 

reconstruction from a combination of 3D scans and manual 

measurements of the hard upper torso (HUT) and scye bearings. The 

shoulder in the actual EMU is made entirely of soft goods, aside 

from the scye and upper arm bearing components, and has two 

fabric restraint-line seams that run down the sides of the shoulder 

convolute. In the model, a pivoting linkage was added between 

these two bearings, which allows it to mimic the types of motions 

seen in in this region of the suit during human testing (Figure 5). 

The pivoting linkage was designed to represent the longitudinal 

restraint line along the side of the joint, which is considered to be 

inextensible while allowing the joint to flex open and closed. The 

lower arms and lower torso assembly (LTA) of the actual EMU 

consist entirely of soft goods with the exception of bearings 

between segments. These portions of the suit were added to the 

Blender model by capturing a 3D scan with full texture and color 

data (Artec3D, Luxembourg) that was converted into individual 

mesh objects for the arms and LTA.  

 

2. Mark III Space Suit Technology Demonstrator 

Similar to the EMU, the hard-good components of the Mark 

III suit were constructed in SolidWorks based on 3D scans and 

manual measurements (Figure 6). The shoulder convolutes were 

modeled to match the actual mechanism configuration with a 

series of six pivoting metal convolute rings. The Mark III LTA 

consists of a waist bearing that allows for horizontal rotation and 

a waist ring pivot joint and rolling convolute that allow forward/aft 

motion. A rigid pelvis with three rigid hip bearings and a thigh 

abduction/adduction convolute allow the ability to ambulate and 

do other lower body tasks such as bending down to pick up 

objects. After importing the hard-goods geometry model into 

Blender, the soft goods components that make up the lower arms 

and legs were modeled as simple tubes with generic boots and 

gloves.  

 

3. Z2 Series 

The Z2 series of spacesuits carry a lot of similarity in 

architecture to that of the Mark III, having a rear-entry and rolling 

convolute shoulder design. However, unlike the EMU and Mark 

III suits, which were designed before modern CAD modeling 

programs, a 3D model was available for the Z2. Therefore, 

 
Figure 5.  EMU CAD model of the upper torso 

hard goods (top); the comparison between the 

3D scans and the modeled HUT (center), and 

the comparison between the actual EMU 

shoulder (bottom left) and modeled 3-

convolute shoulder (bottom right) with the 

restraint line circled. 

 

  
Figure 4.  Statistically generated human 

models showing an arbitrary range of body 

shapes that can be created using the 

statistical model. 
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reconstruction via scans and manual measurements was not 

necessary to build a kinematically poseable Z2 model. In this 

case, the original model files for the hard-good components were 

imported. At the time of this paper, only the HUT and shoulder 

components of the articulating model are complete, and it is 

expected that the rest of the arms and legs will be built out over 

the coming year using a combination of 3D laser scans and solid-

body modeling to result in a fully articulating suit model.   

 

4. Integrated Hard and Soft Goods Deformation 

The process for embedding an armature system to repose the 

suit is largely the same for each suit model. The armature is 

essentially a series of bones that originate at the HUT and extend 

outward to the arms and legs. It controls both the hard (e.g., HUT 

and shoulder bearings) and soft good (LTA and arm) components 

of the suit (Figure 7). The head and tail of each bone is coincident 

with the center of rotation of the corresponding segment on the 

suit. Each bone is also assigned x, y, and z-axes constraints to 

prevent or limit the degrees of certain rotations to simulate the 

mechanical range of motion (ROM) of each joint in the actual 

suit. For example, bones controlling the shoulder convolute rings 

are only allowed to bend about the axis of rotation of the 

connecting pins and have ROM limits that prevent them from 

interfering with one another in ways that are mechanically 

impossible.  

Sections of the suit that do not deform in real life are 

constrained to remain un-deformed in the model. On the contrary, 

soft goods are allowed to deform based on the same vertex 

weighting method used in the human models. Similar to the 

human model, there are limitations in using this type of 

deformation method as it becomes increasingly inaccurate in 

extreme postures. Future soft goods modeling will incorporate parametric modeling techniques to improve the fidelity 

of the soft goods deformation. A hybrid suit model incorporating bearing movement and modeled statistical 

deformation is currently under development. The hybrid suit model will enable a detailed understanding of volumetric 

constraints and suit manipulation patterns needed to complete tasks.  

a) b)  

Figure 7.  Full EMU (a) and Mark III (b) models showing the internal rig armatures. 

 
Figure 6.  Mark III upper torso showing the 

internal 6-convolute structure of the shoulder 

(top), and the comparison between the 3D scans 

and the modeled HUT (bottom). 
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III. Applications and Uses 

While these articulating human and spacesuit 

computer models have a multitude of applications, this 

paper focuses on some of the efforts that are being made 

to analyze reach and mobility. Reach and mobility 

analyses can provide early insight into what the suit is 

capable of and how design adjustments might impact a 

wearer’s capabilities in the suit.  

A. Reach Envelope Analysis 

Early iterations of the human-suit model attempted 

to assess range of motion as a set of Euler angles, such 

as degrees of flexion/extension or abduction/adduction. 

These metrics have been extensively studied and 

commonly assessed for kinematic performance of 

unsuited persons in human biomechanics research. 

However, a spacesuit makes these motions far more 

challenging to perform with its added bulk and unique 

kinematic constraints (often referred as 

"programming") for complex joints like the shoulder. 

Current spacesuits have scye bearings that angle inward 

toward the neck to minimize hard contacts with the 

bony prominences of the human shoulder, but this 

limits motion of the arm. For example, data that are 

meant to strictly capture movement in the sagittal plane 

(flexion/extension), often show out-of-plane motions 

because the arm tends to rotate out away from the body 

as the person sweeps their arm backward in extension. 

This confounded pattern may not be uniquely represented in an Euler angle term about a fixed axis of rotation. 

Furthermore, planar motions do not capture the entire reach area and may miss important information about areas that 

are difficult for certain individuals to reach. A better measure of spacesuit mobility at the shoulder and the hip has 

been the reach envelope (RE), in which a subject moves an outstretched limb through all possible ranges of motion. 

Motion capture data from the RE can then be converted into visual representations of reach around the body that can 

be used for a number of different analyses, such as comparison of reach capabilities in different suit designs.  

The shoulder reach envelope can be thought of as a portion of a sphere centered about the shoulder joint center 

with a radius that extends to the end effector of interest, such as the elbow, wrist, or hand. The elbow is ideally kept 

straight throughout all reach motions to maintain a consistent radius across the RE shell providing a true representation 

of shoulder mobility. However, at times it may be helpful to allow bent elbow motions to see all of the reachable areas 

of the hand. The articulated suit models developed thus far have been built with flexibility in mind to be able to 

accommodate all of these different types of analyses. Individual joints can be locked out such that they will not move 

relative to the joint above it and range of motion restrictions can be added to mimic realistic human limits.  

The current spacesuit model provides the opportunity to compare the “mechanical” RE, or the RE that the suit 

architecture is capable of, against HITL motion capture data and human model predictions as well as other suit 

architecture designs. The mechanical RE is simulated by constraining the suit arm to follow a spherical grid-like 

pattern such that it covers the entire space around the suit within the mechanical limit of the joint in consideration. 

Overlap between the suit arm and other suit components is simultaneously detected and recorded during the simulation 

to further refine the spherical segment to exclude areas that are limited by the arm bumping into other parts of the suit 

(i.e., the helmet or display and controls module (DCM)). This simulation results in a spherical segment that visually 

represents the RE specific to that suit configuration.  

a) b)  

Figure 8.  EMU mechanical reach envelope of the elbow 

joint center (a), and the palm (b) with the elbow 

constrained to remain straight. The green area 

represents non-interfering elements of the mesh, and the 

red indicates areas where interference between the suit 

arm and other suit components (i.e. the helmet, PLSS, 

SAFER, or DCM) were found. The yellow band dividing 

the green and red contact areas is an indication of the 

mesh elements that were only partially in collision. The 

black tracing overlaid on each heat map is the path 

followed by the end effector during the simulation as it 

followed a spherical grid while adhering to the 

mechanical ROM limits built into the suit armature. 
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Figure 8 shows the mechanical RE of the EMU shoulder-

elbow and shoulder-palm segments with the regions of self-

interference indicated in red and the non-interfering areas in 

green. The arm segment (shoulder-to-palm) was put through 

two different simulations (elbow restricted to full extension 

or elbow allowed to bend) to look at the reach area and arm-

to-suit collision throughout the RE simulation. In both cases, 

the elbow position was traced throughout the span of the 

spherical grid representing the mechanical RE. The elbow 

was kept extended either entirely (restricted to full extension) 

or as much as possible (bent elbow allowed). This resulted in 

nearly identical plots between the two conditions over the 

areas reachable with a fully extended elbow, but allowing for 

bent elbow motion expanded the color-coded distribution 

(“heat-map”) to include more coverage in the front of the suit 

(Figure 9). While this example is specific to a particular arm 

length and EMU HUT size, this case study demonstrates 

important knowledge about the mechanical RE of the suit and 

the possibility that there may be unexpected areas in the RE 

that are difficult to reach.  

The human body shape models, in conjunction with the 

articulating suit models, provide an opportunity to better 

quantify the impact on performance of different human-suit 

size combinations. To evaluate how anthropometry affects 

the RE of the person inside the suit, simulations of suit-

human interference were conducted. A parametric shoulder 

model to predict shoulder postures across different body 

shapes4 was combined with the reposable EMU model. Two 

body shapes with different anthropometry were placed 

inside the suit and the arm was directed to follow the 

same spherical pattern from the mechanical RE tests. 

Interferences between the human body and suit 

bearings were detected and recorded. These areas of 

interference are indicated across the reach envelope as 

a heat map overlay (Figure 10). Across different body 

sizes, it becomes apparent that in this simulation, the 

RE, as defined as coverage of an ideal sphere, 

decreases as the anthropometry dimensions increase, 

presumably because the circumference of the limb 

increases proportionally with size. There are 

limitations to this in that humans can tolerate a certain 

amount of compression that varies throughout the 

body, which currently cannot be represented in the 

model. Furthermore, while the comparisons made here 

were done with bodies that were identically positioned 

in the suit, the initial position of the body within the 

suit is a best guess at its current state, particularly for 

small individuals in large suits who have a lot of empty 

space to move around in. It is also important to 

 
Figure 9.  EMU mechanical reach envelope of the 

right palm with the elbow constrained to remain 

straight (blue) overlaid with the mechanical reach 

envelope of the palm with the elbow allowed to flex 

within normal physiological ROM (green). The teal 

sections are the overlap between these two 

conditions. 

a) b)  

Figure 10.  Comparison of human-suit interference over 

the mechanical reach envelope of the EMU between 

subjects with different anthropometry that corresponded 

to a person with a normal BMI (a) and a person with a 

larger BMI (b) . The green area is the region the human 

model could reach without interference with the suit, 

while the red area is the region of the extended elbow 

mechanical reach envelope of the EMU that cannot be 

reached by these subjects. The yellow band is an area of 

uncertainty in the model between these two regions. 
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understand that a bigger non-suit-interfering RE is not necessarily better. It could be an indication that the suit is too 

big for the individual, which can be as equally problematic as a suit that is too small. Nonetheless, this collision 

detection mapping can provide great insight into how different suit architectures may affect fit and performance.   

B. Mobility Analysis 

One of the latest developments in the articulating suit models is motion capture integration. Data captured from 

HITL testing can be used to drive the motion of each segment of the suit model armature (Figure 11). When human 

motion is overlaid with the predicted mechanical RE, it becomes apparent that there are areas that the suit can 

theoretically reach that users cannot due to other factors such as strength, suit stiffness, or individual ROM limits. 

Understanding where these overlaps exist provides 

an opportunity to compare how well the suit 

accommodates human mobility patterns and to see 

where adjustments could be made in the design to 

improve fit and accommodation. 

Many aspects of suit mobility are of interest, 

particularly as we move toward future planetary 

missions. Functional activities, such as walking, 

navigating up and down terrain, and bending down 

to pick up objects, are important functions for a 

planetary spacesuit. Animating these activities with 

the suit model can help to demonstrate the kinematic 

variations that different suit design architectures 

will exhibit while performing such tasks.  

Hip mobility is important for EVA suits that are 

designed for planetary operations. Accommodating 

the complexity of a human’s hip range of motion is 

particularly difficult to do with a spacesuit. Without 

bearings, the rigidity of the pressurized soft goods 

places severe restrictions on hip flexion and abduction, as was apparent in footage from Apollo astronauts ambulating 

on the Moon.5 The Mark III hip includes two angled rigid hip components that were designed in an effort to 

accommodate as much hip mobility as possible. The mechanical reach envelope of the hip was simulated similar to 

that of the shoulder reach envelope 

of the EMU. Motion capture from a 

subject of a previous study that 

included activities such as 

manipulating cargo, bending over 

to make boot adjustments, kneeling, 

sitting down, prone-to-stand 

recovery, side stepping, and ladder 

climbs was combined and 

compared between unsuited and 

suited conditions. This data was 

overlaid with the Mark III hip 

simulated RE as seen in Figure 12. 

One can see that the hip design 

clearly provides a wide range of 

mobility, yet only about half of that 

region is used during the suited 

tasks. Additionally, there is actually 

very little overlap with what the 

subject used during functional 

activities in the unsuited condition 

compared to the suited condition. 

This means that the person inside 

the suit may have to significantly 

 
Figure 12.  Mark III hip mechanical RE (green) overlaid with the RE 

envelope found from HITL motion capture data during functional tasks 

that were done unsuited (orange) and in the Mark III (blue). The red region 

indicates the area of overlap between the functional ROM used by the 

subject in the unsuited condition and the mechanical RE of the Mark III.  

 
Figure 11.  Mark III model being driven by motion capture 

(left) as compared to the actual video footage (right). 
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alter their normal mobility patterns to accomplish certain tasks (i.e., spreading the hips much further out to the sides 

to squat down as compared to a normal unsuited squat). Impacts to mobility such as this are important to understand 

as they may have implications for injury risk in future planetary missions. 

IV. Future Work 

 Future work on the reach envelope analyses is expected to expand on the case studies demonstrated here by 

incorporating a greater variety of subject anthropometry and suit component sizes. With a greater range of body 

shapes, more informative and quantitative reach envelope assessments can be made about a particular suit 

configuration or design. This is expected to be an area of focus once the articulating Z-series spacesuit model has been 

developed.  

As mentioned earlier, motion capture integration with the dynamic suit models is still in the early stages of 

incorporation, and several tools to improve the mapping of the motion capture data to different suit configurations are 

currently under development. Motion capture integration allows for manipulation of the virtual suit models with 

representative suited movements, and could potentially be used to test the mobility of future spacesuit designs in 

predictive analyses. Furthermore, a model can be created from the suited motions to assess the movements used to 

complete EVA tasks.  

Another significant area of work currently underway in regards to human-suit modeling in the ABF is the suit fit 

analysis. There are several projects in progress in the ABF that are aimed at better understanding skin compression 

tolerance across the torso for HUT fit, and the specific impact of overall fit on EVA performance. The results of these 

analyses will be used to enhance interactions between the human and suit models. Additionally, work is still underway 

to improve the fidelity of the soft goods deformation by means of statistical modeling to better represent how the 

shapes of the suit arms and legs change through various ranges of motion. 

Human-suit modeling is a complex endeavor and one that is continually improving as better models are developed 

and technology advances. This paper represents the current state of these models and some of the applications that 

they have. While more analysis on the reach envelope, motion capture integration, and fit aspects is expected, the case 

studies represented here highlight the utility of these models. They have the capability to influence suit design 

decisions that could affect the population accommodated by different suit sizes and geometry, and could influence the 

design and location of various workstations that astronauts will need to interact with during an EVA.  
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