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Background: Spacesuit Design & Fit
Custom Fit Design during Early Space Programs (Apollo and before)

• Spacesuits were designed as a single mission garment and custom built to each astronaut’s body 
• With growing number of astronauts in various anthropometry, cost and logistics became an issue

(Number of crewmembers flown: 24 in Apollo vs. 848 in Shuttle)



Linear Measurements Based Design
Shuttle Extravehicular Mobility Unit (EMU)

• Modular components and sizes (small, medium, large & extra large)
• Intended to fit 5th percentile female to 95th percentile male
• Design and fit based on linear dimensions of body segments
• Currently in use through Shuttle and International Space Station Programs
• Limitations of linear measurements not representing 3-D body geometry



Design Assisted by 3-D Scans and Mockup Print

Medium Size

Large Size

Extra-Large Size

Z-2 Prototype Suit (2016-)
• Suits designs validated using 3-D body scans overlaid with CAD drawing from early design stages
• Fit was assessed using suit-to-body overlap and clearance and verified by 3-D printout
• However, limited number of scans may not represent the entire range of crewmember body shapes

Hard Upper Torso Assembly



Boundary Manikins vs. Large Scale Sample Testing
Boundary Manikin Testing
• Body geometries (“boundary subjects”) were sampled to cover a pre-targeted proportion of population (e.g., 95 or 99%)
• If the selected samples ”pass” the tests, the suit is considered to accommodate 95 or 99% of population
• However, the fit boundary is hypothetical approximation only, not exact quantification of accommodation

Large Scale Sample Monte-Carlo Testing (Newly Proposed)
• A large number of samples are explicitly tested for fit, estimating the exact proportion of accommodated population
• Provides quantifiable evidence for engineering decisions (e.g., boundary case analysis, deltas between suit type A vs. B)
• Requires automatized fit tests using virtual manikins, which can be computationally intensive 



Goals & Methods: Monte-Carlo Suit Fit Analysis
• Goal: 

• Perform virtual fit tests for the new generation spacesuit design (Z-2.5) using large-scale samples

• Methods:
• Analysis concerns a prototype design for a small/medium size hard upper torso (HUT) assembly
• Manikins were iteratively positioned inside the CAD geometry of HUT for an optimal position

(minimizing suit-to-body overlap, which simultaneously meets suit fit rules and requirements)
• The resultant suit-to-body penetration depth and areas are quantified






Preliminary Virtual Fit Test
• 172 male and 79 female manikins from NASA scan database were preliminarily tested for virtual fit
• Each manikin produced a unique suit-to-body overlap histogram (overlap area by penetration depth profile)

172 Male Scans 79 Female Scans









Selection of Physical Fit Test Subjects
• Physical tests are necessary to define the fit vs. unfit threshold with strategically selected subjects
• Scans were sorted by histogram vector distance from hypothetical minimum and maximum overlap scenarios
• Subjects were selected from the intermediate ranks in histogram vector distances
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Physical Fit Tests
• Selected subjects are tested using a 3-D print mockup and pressurized suit (work in progress)
• Fit vs. unfit decisions are made on subjective assessments from the wearers and experimenters



Fit Probability Model Development
• A fit probability model was developed using both the virtually (manikins only) and physically tested subjects
• A logistic regression model describes the fit probability as a function of the histogram vector
• The model is iteratively and progressively updated with physical fit tests

Prob(Fit) = f(H)  = 

where  h1,... hn represent the histogram vector elements
coefficients [𝛃𝛃0, ..., 𝛃𝛃n] minimize the prediction error 

1
1 + 𝑒𝑒− 𝛽𝛽0+𝛽𝛽1ℎ1+⋯+𝛽𝛽𝑛𝑛ℎ𝑛𝑛

h1 h2 hn
... ...

H = [h1,h2,..., hn]

Pr(Fit): 0.001 0.5080.255 0.754 0.994



Projection to a Larger Population Database
• The fit model was projected to a large scale sample database to approximate the accommodated 

population of the current and future crewmembers
• Virtual fit procedures were repeated on ANSUR2 scan subsets (1,734 males & 628 females), 

whose anthropometry meets NASA Human System Integration Requirements
• Each scan was estimated for suit-to-body overlap and produced a corresponding histogram vector
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Preliminary assessments for illustration purpose only. Results may change with further iterations.



Projection to a Larger Population Database (Cont’d)
• With the same logistic model described before, the fit probability for each ANSUR manikin was assessed
• Area under curve (AUC) below Pr(Fit)=0.5 was calculated to represent the estimated proportion of 

accommodated population

Unfit Case
Fit Case

Pr (fit) = 0.5

Preliminary assessments for illustration purpose only. Results may change with further iterations.

Pr (fit) = 0.5



Advantages of Monte-Carlo Fit Analysis
• Boundary manikin technique (worst case analysis) allows a binary assessment only 

(i.e., yes/no to 95% accommodation, but unable to tell specific percent of accommodation)
• However, Monte-Carlo analysis enables an explicit quantification of accommodated population
• Thus, engineering decisions can be made based on quantifiable evidence (e.g., suit type A vs. B)
• This study found a scye-out configuration accommodated an additional 19% compared to the scye-in

+ 19%

Scye-In Configuration (Male Scans) Scye-Out Configuration (Male Scans)

Preliminary assessments for illustration purpose only. Results may change with further iterations.



Advantages of Monte-Carlo Fit Analysis (Cont’d)
• Monte-Carlo analysis can also identify marginally fitting cases, i.e., Pr(Fit) = 0.5 or nearby
• Marginally fitting cases provides important information about the critical anthropometry dimensions and 

suit components associated with clearance restrictions or excessive overlap

Worst cases analysis provides only binary 
fit/unfit decision

Marginally fitting cases inform of the specific 
location of interference (e.g., scye ring)

Subjects with
Prob(Fit) around 0.5






• The new technique provides a more comprehensive assessment of suit fit and accommodation compared to 
traditional methods using boundary manikins

• Future work include:
• Performance Assessments: Range of motion, subjective ratings
• Individual tolerance to suit-to-body overlap
• Posture variations (e.g., maximum inhaling)
• Suit ingress/egress capabilities

Conclusion and Future Work
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