Adventures & Lessons in Aerospace Engineering: 34 Years at NASA Marshall Space Flight Center

John Rakoczy

Chief, Control Systems Design & Analysis Branch

NASA MSFC

March 16, 2020

ASTRO-1 & ASTRO-2 Spacelab Missions (1990, 1995)

PAMELA – Phased Array Mirror Extendible Large Aperture

- 36-segment adaptive spherical primary mirror
- 0.5-meter aperture
- 7-cm segments
- Shack-Hartmann wavefront sensor
- Inductive edge sensors
- 5 kHz sample rate
- Tip/tilt/piston control via voice coil actuators
- Closed-loop bandwidth exceeding 100 Hz

SYMPOSIUM ON OPTICAL SYSTEMS CONCEPTS AND TECHNOLOGY

FOR THE NEXT GENERATION SPACE TELESCOPE

APRIL 15 - 17, 1996

Segment Alignment Maintenance System

			US007050161B1	
(12)	Unite	ed States Patent	(10) Patent No.: US 7,050, (45) Date of Patent: May	161 B1 23, 2006
(54)	GLOBAI ESTIMA SEGMEN	AADIUS OF CURVATURE TION AND CONTROL SYSTEM FOR TIED MIRRORS	5.477,393 A * 12/1995 Sasaki et al 5.623,270 A 4/1997 Kempkes et al. 6.113,242 A 9/2000 Marker et al. 6.293,680 B1 9/2001 Bruns	359/846
(75)	Inventor:	John M. Rakoczy, Madison, AL (US)	6,800,988 B1 * 10/2004 Ribak	310/365
(73)	Assignee:	The United States of America as represented by the Administration of the National Aeronautics and Space	FOREIGN PATENT DOCUMENTS EP 0438664 A2 7/1991 OTHER PUBLICATIONS	\$
(*)	Notice:	Administration, Washington, DC (US) Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 520 days.	John Rakoczy et al., "Global Radius-of-Curvat tion and Control for the Hobby-Eberly Telescop ings of the SPIE, 4837-79 ed., p. 681-692, (Aug * cited by avaption	ure Estima- e," Proceed- g. 22, 2002).
(21)	Appl. No.:	10/637.085		
(22)	Filed: Aug. 6, 2003		Primary Examiner—Hwa (Andrew) Lee Assistant Examiner—Roy M. Punnoose (74) Attorney, Agent, or Firm—James J. McGroary; Todd E. Marlette	
(31)	G01B 9/00 G02B 5/08	(2006.01)	(57) ABSTRACT	
(52)	U.S. Cl	356/125: 359/848: 359/849	An apparatus controls positions of plural mirror	segments in
 (58) Field of Classification Search			a segmented mirror with an edge sensor sy controller. Current mirror segment edge sensor ments and edge sensor reference measuremen	stem and a or measure- ts are com-
(56)		References Cited	pared with calculated edge sensor bias measur resenting a global radius of curvature. Accum	ements rep- ulated prior
	U.S. PATENT DOCUMENTS		actuator commands output from an edge sensor	control unit
4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5	467,186 A 471,447 A 560,256 A 737,621 A 816,759 A 825,062 A 904,073 A 994,073 A 994,073 A 994,3721 A 099,352 A 109,349 A 113,064 A \$	8/1984 Goralnick et al. 9/1984 Williams et al. 12/1985 Blom 4/1988 Gonsiorowski et al. 3/1989 Ames et al. 4/1988 Rather et al. 2/1990 Lawton et al. 2/1990 Lawton et al. 3/1992 Yamamoto et al.	are combined with an estimator matrix to for sensor bias measurements. An optimal control then accumulates the plurality of edge sensor e calculated by the summation unit and outputs sponding plurality of actuator commands. The p actuators respond to the actuator commands is respective positions of the mirror segments. mined number of boundary conditions, corresp plurality of hexagonal mirror locations, are afford mathematical matrix calculation.	m the edge matrix unit rror signals is the corre- lural mirror by moving A predeter- onding to a removed to
J.,	:05,054 A *	11/1993 Breckenridge et al 250/201.1	21 Claims 14 Drawing Shasts	

Mauna Kea Summit – SPIE conference 2002

Solar Sailing ~ 2005

NASA Mid Level Leader Program 2010-2011

JOHN RAKOCZY LEAD AEROSPACE ENGINEER, AST

P: 256-544-1512 C: N/A E-MAIL: john.m.rakoczy@nasa.gov

HOMETOWN: Madison, AL COLLEGE: Georgia Tech ACQUIRED: 1985

John is a team leader in the Control Systems Design and Analysis Branch, leading Ares I Guidance, Navigation and Control algorithm/software integration. He served as the lead engineer for the Hobby-Eberly Telescope's Segment Alignment Maintenance System from 1999 to 2002. He has performed 10 years' research in active and adaptive optics and has experience in satellite attitude control, space telescope pointing control, flexible body dynamics, integrated modeling and analysis, solar sails, image processing, and optical pattern recognition. John started at NASA as a co-op student in 1985.

YEAR	CLUB	POSITION	LEVEL
1985-	MSFC	LEAD AEROSPACE ENGINEER, AST, NAVIGATION, GUIDANCE & CONTROL SYSTEMS	GS-14
20	010 • NASA HEA	ADQUARTERS • WASHINGTON, DC • PRINTED IN	U.S.A.

MLLLP Detail to KSC Summer 2010

Small Satellite Attitude Control 2009-present

Space Launch System

20

Human Landing Systems

Smartphone Video Guidance Sensor (SVGS)

SVGS/RINGS Integration with Astrobee inside ISS Target 2022

Astrobee is successor ISS IVA vehicle after SPHERES is demanifested

Partnership with Florida Institute of Technology

Final Thoughts.....

- Reflections on being a supervisor (2015 present)
- Communication skills are important
 - Written
 - Oral
- Don't forget the Liberal Arts