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Passive Aeroelastic Tailored (PAT) Wing 
GVT using Fixed Base Correction Method – July 2018
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Fixed Base Correction (FBC) Method - Motivation

• Modal testing & finite element model (FEM) correlation desire free-free or rigid boundary conditions 
(BC) for comparisons

• Expensive in cost & schedule to build & test with BC that replicate free-free or rigid 

• Static test fixtures are large, heavy & unyielding, but do not provide adequate BC for modal tests 

• Dynamically too flexible & frequencies within test article frequency range of interest

• Dynamic coupling between test article & test fixture causes significant FEM effort

• If modal test results could be corrected for fixture coupling, then other structural testing setups may be 
adequate for modal testing

• Would allow significant cost & schedule savings by eliminating a unique setup for modal testing

• NASA Armstrong evaluated the Fixed base correction (FBC) method with two recent tests 

• CReW modal test was a pathfinder test to investigate FBC method prior to PAT Wing GVT where 
wing was cantilevered from a static test fixture with the wingtip 10ft off the ground

• To simplify PAT Wing GVT, the FBC method was implemented with wing cantilevered from a static 
test fixture on the lab floor
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Fixed Base Correction Method - Theory

• Two approaches for extracting fixed base modes from structures mounted on flexible tables 

1. Constraint equation to measure mass-normalized mode shapes to generate fixed base modes

• Method requires well-excited modes so that modal mass can be accurately calculated

• Advantage - Large number of shakers do not necessarily need to be mounted on the base

• Disadvantage - Accuracy is reduced if the fixed base modes are not a linear combination of the measured 

mode shapes 

2. FBC method uses base accelerations as references to calculate frequency response functions (FRFs) 

associated with a fixed base, then FRFs are analyzed to extract fixed based modes of the test article

• Fixed Base Correction GVT methodology developed by ATA Engineering, Inc. & implemented in ATA’s 

IMAT (Interface between MATLAB, Analysis and Test) software

• Requires multiple shakers on both the test article & mounting fixture

• Method excites static test fixture base directly & uses drive point accelerations as                                         

references when calculating FRFs instead of traditional shaker forces as references

• Essentially removes the fixture response from the wing response
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Fixed Base Correction Method - Theory

• FBC method can be illustrated with a simple spring-mass two degree-of-freedom (DOF) system

• Applying Newton’s second law, the equation of motion for an undamped system in the frequency domain

• Traditional modal testing calculates FRFs using DOFs 1 & 2 forces applied as references for the full system response 

• FBC method uses DOF 1 force & DOF 2 acceleration as references, then resulting FRFs are associated with a 

structural system with dynamics associated with DOF 2 fixed 

• FRF associated with DOF 1 applied force is equivalent to the FRF of a fixed base system

• Best practice for implementing FBC method

• Need at least one independent excitation source (i.e. shakers) for each DOF that is desired to be fixed

• Requires multiple shakers used on both test article & test fixture (drive the base or test fixture shakers with harder forces)

• Use shaker accelerations as references rather than traditional shaker forces when calculating FRFs

• Make sure drive point FRF are as co-located as practicable & as clean as practicable

• Use seismic accelerometers as drive points on the base
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Where:
m = mass
 = frequency
k = structural stiffness
x = displacement
f = external force
a = acceleration
Subscripts 1 & 2 refer 
to blocks 1 & 2

Spring-Mass Two DOF System
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PAT Wing GVT - Goal, Objective & Success Criteria

• Passive Aeroelastic Tailored (PAT) Wing Ground Vibration 

Test (GVT) was tested July 10-12th, 2018 in NASA 

Armstrong’s Flight Loads Laboratory (FLL) 

• Goal: Obtain PAT Wing modal characteristics from the GVT 

to compare test results with analytical models 

• Objective: Measure the primary frequencies, mode shapes 

& damping (frequencies up to wing torsion mode,  55 Hz) 

using traditional accelerometers with the PAT Wing installed 

on the Wing Loads Test Fixture (WLTF) table

• Success Criteria: Accurately obtaining the primary 

frequencies and shape modes of the PAT Wing (de-coupled 

from the WLTF table & attachment hardware modes) using 

the Fixed Base Correction (FBC) method
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PAT Wing GVT - July 2018
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• NASA’s Advanced Air Transport Technology (AATT) Project desires to develop 

technologies to design, build & test higher aspect ratio wings for lower induced 

drag and thus lower fuel burn

• Passive aeroelastic tailored structural design has been evaluating 

aeroelastically tailored wing structures to increase wing aspect ratio (from 9 to 

14) and reduce weight by 20-25% without impacting aeroelastic performance

• PAT Wing Project 

• Project team: Aurora Flight Sciences Corporation, NASA Langley Research 

Center & NASA Armstrong Flight Research Center 

• Goals

• Design & fabricate a passive aeroelastic tailored structural wingbox 

using the towed-steering technology

• Create finite element models with the towed-steering technology & 

conduct structural analyses

• Conduct structural ground tests to validate analytical models & 

assumptions
• Ground Vibration Test - validate wing’s frequencies & mode shapes 

• Flexural Axis Test - validate wing’s bend twist coupling response 

• Static Load Test - validate wing’s response including stiffness, strains & 

deformations

Passive Aeroelastic Tailored (PAT) Wing 
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Passive Aeroelastic Tailored (PAT) Wing 

• Carbon-epoxy wingbox 

• Wingbox of 27% scale of uCRM

• Right wing w/ high aspect ratio (13.5)

• Root LE to tip TE:  39 ft

• Wing sweep 36.8

• Design & manufactured by Aurora 

• 2 Spars, composite with 58 ribs

• 2 Wingskins with Tow-steered technology

• 2 Reaction plates & 4 Reaction pins

• 14 Load lugs (7 load lugs spanwise on LE & TE)

• Total weight  2,600 lbs
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Test Setup – GVT Test Setup, Original Plan
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Reaction Table 
(rotated 30)

• Original plan: Perform GVT using Fixed Base Correction on the Wing Loads Test Fixture (WLTF) to save cost and 

schedule rather than different boundary conditions from the loads testing

• Reaction plates mounted with attachment hardware to WLTF table

• Wingtip  124” off ground

• Overhead loading structure installed

Overhead Loading 
Structure
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Test Setup – GVT Test Setup, Simplified Actual Testing
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• Simplified actual testing setup: Performed GVT with WLTF table on FLL floor 
• Simplified GVT shaker setup since the wingtip is  50” off the floor, rather than the wingtip being 124” high

• Boundary conditions: WLTF table on FLL floor supported by four retractable feet & one location on the table 

that was secured to the FLL floor tracks with a strap

WLTF Table Boundary Condition on FLL Floor
(NOT ideal for traditional modal testing)
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Test Setup – GVT Equipment
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Brüel & Kjær LAN-XI DAQ LAN-XI 
3160 & 3053 Modules

11-slot 
Main frame

5-slot 
Main frame

PCB T356A16 
Triaxial Accel

MB Modal 110 
Shaker

PCB T333B32 
Uniaxial Accel

PCB 393B04 
Seismic Uniaxial Accel

Note: Some GVT hardware was provided by Contractor  

• GVT Equipment
• Accelerometers

• PCB T333B32 uniaxial accels

• PCB T356A16 triaxial accels

• PCB 393B04 seismic uniaxial accels

• Excitation Systems
• Shakers: MB Dynamics Electromagnetic Modal 110 shaker

• Data Acquisition (DAQ) system: Brüel & Kjær LAN-XI DAQ
• DAQ capable of recording 328 channels

• Mainframes

• LAN-XI 5-slot Main frame, 2 qty

• LAN-XI 11-slot Main frame, 2 qty

• Modules

• LAN-XI 4ch input + 2ch output 3160 source modules, 7 qty

• Capable of running 14 shakers

• Capable of recording 28 channels 

• LAN-XI 12-channel 3053 modules, 25 qty

• Capable of recording 300 channels 

• GVT Software:
• Ideas Test (acquired time histories)

• IMAT (all test related analysis & FBC analysis)
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Test Setup – LAN-XI DAQ

• LAN-XI DAQ frontend setup: Four mainframes (two 5-slot & two 11-slot) capable of driving 14 shakers & recording 

328 channels with network switch daisy chaining modules

• MF#1: five source module (3160) 
• MF#2: two source modules (3160) & three 12-channel input module (3053)
• MF#2: eleven 12-channel input modules (3053)
• MF#2: eleven 12-channel input modules (3053)
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LAN-XI DAQ Setup for PAT Wing GVT

MF #3 MF #4

MF #2

MF #1

Network Switch

Note: Some LAN-XI source modules were provided by Contractor

Total: 288 Channels Enabled 
(Accels & Force Transducers) 
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Test Setup – Accelerometer Layout for FBC
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Wing Accelerometers, 31 Locations
• Accelerometers, Total: 106 Accel Locations (274 Accel DOFs)

• Reference Accels at Shakers – 14 locations (14 DOFs) 

• Wing – 31 locations (87 DOFs)

• Hardware being fixed was majority of accels, 61 locations (173 DOFs)
• Wing Reaction Plates & Pins – 16 locations (48 DOFs)

• Reaction Table – 9 locations (17 DOFs)

• Attachment Hardware (TE) – 18 locations  (54 DOFs)

• Attachment Hardware (LE) – 18 locations (54 DOFs)

Accelerometers of Hardware being Fixed with FBC, 61 Locations
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Test Setup – Accel Wing Photos

• Accel coordinates obtained from FEM
• All nodes in global coordinate system wrt WLTF

• X+ (out Trailing Edge), Y+ (out Outboard), Z+ (up)

• Used 30 template to install wing accels with correct angle orientation

13

Built up Triaxial Accel 

Wing Root only X & Z Accels

Wingtip Triaxial Accels 



Armstrong Flight Research Center IMAC 2020

• Some attachment hardware accels were installed before wing was installed on WLTF table

Test Setup – Accel Attachment Hardware Photos
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Attachment Hardware Accels – Leading Edge side

Triaxial Accels Mainly on Attachment Hardware
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Test Setup – Shaker Force Transducer & Accel Photos

• Wingtip shaker - Force Transducers & Accels (100 mV/g) 

• “Fixed” shakers on Table & Attachment Hardware - Force Transducers & Seismic Accels (1000 mV/g) 
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Wingtip Shaker 

Seismic Accels

“Fixed” Shaker Locations 

Traditional Modal Accel
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GVT Shaker Layout - Fixed Base Correction Method

• FBC method requires multiple independent drive points (shakers) 

mounted to test fixture & test article

• Shaker layout depends on where FBC technique is trying to 

fix the BC

• Needs at least as many independent sources as there 

are independent boundary deformations of the desired 

fixed hardware in the test article frequency range of 

interest

• Shaker placement around the WLTF was adjusted to excite 
primary base modes & maximize the capability of the FBC to 
decouple the base modes from the wing modes

• Higher shaker forces were required on the base

• A few different shaker configurations were attempted to find 
optimal shaker configuration which fixed the reaction table

• Shaker direction on reaction table is important & eliminates the 
effect of the reaction table from moving in the shaker direction
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“Fixed” WLTF Shaker Locations 

Wingtip Shaker
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PAT Wing GVT Shaker Layouts for FBC
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14 Shakers, Final Pass12 Shakers, Second Pass10 Shakers, Initial Pass

• Shaker configurations for FBC method 

• 10 Shakers, Initial Pass – 9 on reaction table, 1 on wingtip

• 12 Shakers, Second Pass – Added 2 on aft triangular brackets (fore/aft)

• 14 Shakers, Final Pass – Added 2 on wing root reaction plates (fore/aft)
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PAT Wing GVT Shaker Layouts & FEM Boundary Conditions
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14 Shakers, Final Pass
Everything “Fixed”, but Wing

12 Shakers, Second Pass
Triangular Brackets “Fixed” 

10 Shakers, Initial Pass
Reaction Table “Fixed”

• FEM “Fixed” boundary conditions were applied to all nodes on related hardware
• 10 Shakers, Initial Pass – 9 on reaction table, 1 on wingtip

• 12 Shakers, Second Pass – Added 2 on aft triangular brackets (fore/aft)

• 14 Shakers, Final Pass – Added 2 on wing root reaction plates (fore/aft)

FEM “Fixed” 
Boundary 
Conditions

 +  + =



Armstrong Flight Research Center IMAC 2020

Results – 14 Shakers, Uncorrected vs. FBC

• FBC mode shapes show very little base deflection

• Uncorrected mode shapes show significant base rotation 
• Wing bending modes coupled the least with WLTF           

(setup is stiffer vertically than in other directions)

• Wing fore/aft modes coupled the most with WLTF & required 

significant correction

• FBC method was able to remove a majority of the dynamics 

of the static test fixture to acquire fixed base modes while 

still accurately measuring the shape of the wing 
• Promising sign of the effectiveness of the FBC method 
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14 Shaker Test Results – Wing 2nd Fore/Aft
GVT: Uncorrected vs. Fixed Base Correction

Frequency % Difference to FEM 
14 Shakers GVT: Uncorrected vs. Fixed Base Correction

Uncorrected, 16.5 Hz

FBC, 30.2 Hz
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Results – 14 Shakers, Uncorrected vs. FBC

• Modal Assurance Criteria (MAC) cleans up when applying FBC

• Uncorrected modes have substantial base rotation

• FBC eliminates some modes when fixing the base
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Uncorrected vs. FEM

Modal Assurance Criteria (MAC), 14 Shaker Tests

Fixed Base Correction vs. FEM

Note: Duplicated modes with lots of base motion eliminated when applying FBC
Note: FEM has W5B & W1T highly coupled 
where GVT showed wing is not as coupled 
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Summary

• PAT Wing GVT results show success and the feasibility of using the Fixed Base Correction (FBC) 

method to decouple the wing & test fixture modes for a flexible wing mounted to a dynamically active 

static test fixture

• Fixed Base Correction method 

• FBC results produce test results with reliable boundary conditions to replicate in analytical models 

• FBC has the potential to change how some modal testing is traditionally performed and can save 

money and schedule time by eliminating an independent setup for modal testing

• Many potential scenarios where this technique can be used on future tests of structures mounted 

on other dynamically active test fixtures
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Questions


