Passive Aeroelastic Tailored Wing Modal Test Using the Fixed Base Correction Method

International Modal Analysis Conference, IMAC XXXVIII February 10-13, 2020 – Houston, TX

Presenter: Natalie Spivey

Feb. 13th, 2020 in Session #78, Boundary Condition Correction in Modal Testing

Authors: Natalie Spivey¹, Rachel Saltzman¹, Carol Wieseman², Kevin Napolitano³ & Benjamin Smith⁴

¹ NASA Armstrong Flight Research Center

² NASA Langley Research Center

³ATA Engineering, Inc.

⁴ Aurora Flight Sciences

Armstrong Flight Research Center

PAT Wing Ground Vibration Test (GVT) - Outline

- Fixed Based Correction (FBC) Method
 - Motivation
 - Theory
- Goal, Objective & Success Criteria
- Test Article Description
- PAT Wing GVT
 - Test Setup
 - Test Configurations
 - GVT Instrumentation
 - Accelerometer Layout
 - Shaker Layout for FBC
- Results
- Summary

Passive Aeroelastic Tailored (PAT) Wing GVT using Fixed Base Correction Method – July 2018

Fixed Base Correction (FBC) Method - Motivation

- Modal testing & finite element model (FEM) correlation desire free-free or rigid boundary conditions (BC) for comparisons
 - Expensive in cost & schedule to build & test with BC that replicate free-free or rigid
- Static test fixtures are large, heavy & unyielding, but do not provide adequate BC for modal tests
 - Dynamically too flexible & frequencies within test article frequency range of interest
 - Dynamic coupling between test article & test fixture causes significant FEM effort
- If modal test results could be corrected for fixture coupling, then other structural testing setups may be adequate for modal testing
 - Would allow significant cost & schedule savings by eliminating a unique setup for modal testing
- NASA Armstrong evaluated the Fixed base correction (FBC) method with two recent tests
 - CReW modal test was a pathfinder test to investigate FBC method prior to PAT Wing GVT where wing was cantilevered from a static test fixture with the wingtip ≈10ft off the ground
 - To simplify PAT Wing GVT, the FBC method was implemented with wing cantilevered from a static test fixture on the lab floor

Fixed Base Correction Method - Theory

- Two approaches for extracting fixed base modes from structures mounted on flexible tables
 - 1. Constraint equation to measure mass-normalized mode shapes to generate fixed base modes
 - Method requires well-excited modes so that modal mass can be accurately calculated
 - Advantage Large number of shakers do not necessarily need to be mounted on the base
 - Disadvantage Accuracy is reduced if the fixed base modes are not a linear combination of the measured mode shapes
 - 2. FBC method <u>uses base accelerations as references</u> to calculate frequency response functions (FRFs) associated with a fixed base, then FRFs are analyzed to extract fixed based modes of the test article
- Fixed Base Correction GVT methodology developed by ATA Engineering, Inc. & implemented in ATA's IMAT (Interface between MATLAB, Analysis and Test) software
 - Requires multiple shakers on both the test article & mounting fixture
 - Method excites static test fixture base directly & uses drive point accelerations as references when calculating FRFs instead of traditional shaker forces as references
 - Essentially removes the fixture response from the wing response

Fixed Base Correction Method - Theory

- FBC method can be illustrated with a simple spring-mass two degree-of-freedom (DOF) system
- Applying Newton's second law, the equation of motion for an undamped system in the frequency domain

$$\begin{bmatrix} -\omega^2 m_1 + k & -k \\ -k & -\omega^2 m_2 + 2k \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} f_1 \\ f_2 \end{cases}$$

$$a_{1} = \left[\frac{-\omega^{2}(-\omega^{2}m_{2}+2k)}{(-\omega^{2}m_{2}+2k)(-\omega^{2}m_{1}+k)-k^{2}} \quad \frac{-\omega^{2}k}{(-\omega^{2}m_{2}+2k)(-\omega^{2}m_{1}+k)-k^{2}} \right] \left\{ \begin{array}{c} f_{1} \\ f_{2} \end{array} \right\}$$

• FBC method uses DOF 1 force & DOF 2 acceleration as references, then resulting FRFs are associated with a structural system with dynamics associated with DOF 2 fixed

$$a_1 = \begin{bmatrix} -\omega^2 & k \\ -\omega^2 m_1 + k & -\omega^2 m_1 + k \end{bmatrix} \begin{cases} f_1 \\ a_2 \end{cases}$$

- FRF associated with DOF 1 applied force is equivalent to the FRF of a fixed base system
- Best practice for implementing FBC method
 - Need at least one independent excitation source (i.e. shakers) for each DOF that is desired to be fixed
 - Requires multiple shakers used on both test article & test fixture (drive the base or test fixture shakers with harder forces)
 - Use shaker accelerations as references rather than traditional shaker forces when calculating FRFs
 - Make sure drive point FRF are as co-located as practicable & as clean as practicable
 - Use seismic accelerometers as drive points on the base

Armstrong Flight Research Center

- k = structural stiffness
- x = displacement
- *f* = external force
- a = acceleration
- Subscripts 1 & 2 refer
- to blocks 1 & 2

PAT Wing GVT - Goal, Objective & Success Criteria

- Passive Aeroelastic Tailored (PAT) Wing Ground Vibration Test (GVT) was tested July 10-12th, 2018 in NASA Armstrong's Flight Loads Laboratory (FLL)
- Goal: Obtain PAT Wing modal characteristics from the GVT to compare test results with analytical models
- Objective: Measure the primary frequencies, mode shapes & damping (frequencies up to wing torsion mode, ≈ 55 Hz) using traditional accelerometers with the PAT Wing installed on the Wing Loads Test Fixture (WLTF) table
- Success Criteria: Accurately obtaining the primary frequencies and shape modes of the PAT Wing (de-coupled from the WLTF table & attachment hardware modes) using the Fixed Base Correction (FBC) method

PAT Wing GVT - July 2018

Passive Aeroelastic Tailored (PAT) Wing

- NASA's Advanced Air Transport Technology (AATT) Project desires to develop technologies to design, build & test higher aspect ratio wings for lower induced drag and thus lower fuel burn
 - Passive aeroelastic tailored structural design has been evaluating aeroelastically tailored wing structures to increase wing aspect ratio (from 9 to 14) and reduce weight by 20-25% without impacting aeroelastic performance
- PAT Wing Project
 - Project team: Aurora Flight Sciences Corporation, NASA Langley Research Center & NASA Armstrong Flight Research Center
 - Goals
 - Design & fabricate a passive aeroelastic tailored structural wingbox using the towed-steering technology
 - Create finite element models with the towed-steering technology & conduct structural analyses
 - Conduct structural ground tests to validate analytical models & assumptions
 - Ground Vibration Test validate wing's frequencies & mode shapes
 - Flexural Axis Test validate wing's bend twist coupling response
 - Static Load Test validate wing's response including stiffness, strains & deformations

- Right wing w/ high aspect ratio (13.5)
- Root LE to tip TE: \approx 39 ft
- Wing sweep 36.8°
- Design & manufactured by Aurora
- 2 Spars, composite with 58 ribs
- 2 Wingskins with Tow-steered technology
- 2 Reaction plates & 4 Reaction pins
- 14 Load lugs (7 load lugs spanwise on LE & TE)
- Total weight \approx 2,600 lbs

Armstrong Flight Research Center

Test Setup – GVT Test Setup, Original Plan

Test Setup – GVT Test Setup, Simplified Actual Testing

- Simplified actual testing setup: Performed GVT with WLTF table on FLL floor
 - Simplified GVT shaker setup since the wingtip is $\approx 50^{\circ}$ off the floor, rather than the wingtip being 124" high
- Boundary conditions: WLTF table on FLL floor supported by four retractable feet & one location on the table that was secured to the FLL floor tracks with a strap

WLTF Table Boundary Condition on FLL Floor (NOT ideal for traditional modal testina)

boundary condition

Test Setup – GVT Equipment

- GVT Equipment
 - Accelerometers
 - PCB T333B32 uniaxial accels
 - PCB T356A16 triaxial accels
 - PCB 393B04 seismic uniaxial accels
 - Excitation Systems
 - Shakers: MB Dynamics Electromagnetic Modal 110 shaker
 - Data Acquisition (DAQ) system: Brüel & Kjær LAN-XI DAQ
 - DAQ capable of recording 328 channels
 - Mainframes
 - LAN-XI 5-slot Main frame, 2 qty
 - LAN-XI 11-slot Main frame, 2 qty
 - Modules
 - LAN-XI 4ch input + 2ch output 3160 source modules, 7 qty
 - <u>Capable of running 14 shakers</u>
 - Capable of recording 28 channels
 - LAN-XI 12-channel 3053 modules, 25 qty
 - Capable of recording 300 channels
 - GVT Software:
 - Ideas Test (acquired time histories)
 - IMAT (all test related analysis & FBC analysis)

Note: Some GVT hardware was provided by Contractor

PCB T333B32 PCB T356A16 Uniaxial Accel Triaxial Accel

PCB 393B04 Seismic Uniaxial Accel

MB Modal 110 Shaker

Test Setup – LAN-XI DAQ

- LAN-XI DAQ frontend setup: Four mainframes (two 5-slot & two 11-slot) capable of driving 14 shakers & recording 328 channels with network switch daisy chaining modules
 - MF#1: five source module (3160)
 - MF#2: two source modules (3160) & three 12-channel input module (3053)
 - MF#2: eleven 12-channel input modules (3053)
 - MF#2: eleven 12-channel input modules (3053)

Note: Some LAN-XI source modules were provided by Contractor

LAN-XI DAQ Setup for PAT Wing GVT

Total: 288 Channels Enabled (Accels & Force Transducers)

NASA

Test Setup – Accelerometer Layout for FBC

Test Setup – Accel Wing Photos

- Accel coordinates obtained from FEM
 - All nodes in global coordinate system wrt WLTF
 - X+ (out Trailing Edge), Y+ (out Outboard), Z+ (up)
 - Used 30° template to install wing accels with correct angle orientation

Built up Triaxial Accel

Armstrong Flight Research Center

Test Setup – Accel Attachment Hardware Photos

• Some attachment hardware accels were installed before wing was installed on WLTF table

Triaxial Accels Mainly on Attachment Hardware

Armstrong Flight Research Center

Test Setup – Shaker Force Transducer & Accel Photos

- Wingtip shaker Force Transducers & Accels (100 mV/g)
- "Fixed" shakers on Table & Attachment Hardware Force Transducers & Seismic Accels (1000 mV/g)

Wingtip Shaker

Traditional Modal Accel

GVT Shaker Layout - Fixed Base Correction Method

- FBC method requires multiple independent drive points (shakers) mounted to test fixture & test article
 - Shaker layout depends on where FBC technique is trying to fix the BC
 - Needs at least as many independent sources as there are independent boundary deformations of the desired fixed hardware in the test article frequency range of interest
- Shaker placement around the WLTF was adjusted to excite primary base modes & maximize the capability of the FBC to decouple the base modes from the wing modes
 - Higher shaker forces were required on the base
 - A few different shaker configurations were attempted to find optimal shaker configuration which fixed the reaction table
- Shaker direction on reaction table is important & eliminates the effect of the reaction table from moving in the shaker direction

Wingtip Shaker

"Fixed" WLTF Shaker Locations

PAT Wing GVT - Shaker Configurations

PAT Wing GVT Shaker Layouts for FBC

- Shaker configurations for FBC method
 - 10 Shakers, Initial Pass 9 on reaction table, 1 on wingtip •
 - 12 Shakers, Second Pass Added 2 on aft triangular brackets (fore/aft)
 - 14 Shakers, Final Pass Added 2 on wing root reaction plates (fore/aft) •

14 Shakers, Final Pass

PAT Wing GVT Shaker Layouts & FEM Boundary Conditions

- FEM "Fixed" boundary conditions were applied to all nodes on related hardware
 - 10 Shakers, Initial Pass 9 on reaction table, 1 on wingtip
 - 12 Shakers, Second Pass Added 2 on aft triangular brackets (fore/aft)
 - 14 Shakers, Final Pass Added 2 on wing root reaction plates (fore/aft)

Results – 14 Shakers, Uncorrected vs. FBC

- FBC mode shapes show very little base deflection
- Uncorrected mode shapes show significant base rotation
 - Wing bending modes coupled the least with WLTF (setup is stiffer vertically than in other directions)
 - Wing fore/aft modes coupled the most with WLTF & required significant correction
- FBC method was able to remove a majority of the dynamics of the static test fixture to acquire fixed base modes while still accurately measuring the shape of the wing
 - Promising sign of the effectiveness of the FBC method

Frequency % Difference to FEM 14 Shakers GVT: Uncorrected vs. Fixed Base Correction

	Mode Description	F	requency (Hz	% Difference to FEM Frequency			
Mode #		FEM	14-Shaker Uncorrected	14-Shaker FBC	14-Shaker Uncorrected	14-Shaker FBC	
1	W1B	3.4	3.5	3.6	3%	5%	
2	W2B	10.4	10.1	10.0	-3%	-4%	
3	W1F/A	11.3	5.1	11.0	-55%	-3%	
4	W3B	22.5	22.0	21.2	-2%	-6%	
5	W2F/A	31.7	16.5	30.2	-48%	-5%	
6	W4B	37.2	35.4	35.2	-5%	-5%	
7	W5B (W1T)	51.8	50.4	52.2	-3%	1%	
8	W1T	55.2	56.5	56.4	2%	2%	

14 Shaker Test Results – Wing 2nd Fore/Aft GVT: Uncorrected vs. Fixed Base Correction

Results – 14 Shakers, Uncorrected vs. FBC

- Modal Assurance Criteria (MAC) cleans up when applying FBC
- Uncorrected modes have substantial base rotation
- FBC eliminates some modes when fixing the base

Note: Duplicated modes with lots of base motion eliminated when applying FBC

Modal Assurance Criteria (MAC), 14 Shaker Tests

Uncorrected vs. FEM

	Uncorrected				FEM/Test Cross MAC Table								
	14 Shakers			FEM Shapes									
Fore/Aft Wingtip Excitation Fully Fixed Pretest FEM (Not Updated)				1	2	3	4	5	6	7	8		
				W1B	W2B	W1F/A	W3B	W2F/A	W4B	W5B (W1T)	W1T (W5B)		
	MAC			3.4	10.4	11.3	22.5	31.7	37.2	51.8	55.2		
bes	1	W1B	3.5	0.99	0.30		0.16						
Sha	2	W1F/A (Base)	5.1			0.83							
est	3	W2B (W1F/A, Base)	9.1	0.26	0.50	0.34	0.17						
Ĕ	4	W2B	10.1	0.32	0.98		0.40		0.19				
	5	W2F/A (Base)	16.5			0.87		0.53					
[6	W3B (W2F/A, Base)	20.2		0.31		0.73		0.37				
[7	W3B (Base)	22.0		0.28		0.88		0.35				
[8	W2F/A (W4B, Base)	34.1			0.20	0.15	0.66	0.26		0.21		
ľ	9	W4B (W2F/A, Base)	35.4				0.18	0.30	0.71				
	10	W5B (W1T, Base)	50.4						0.26	0.23	0.35		
	11	W1T (Base)	56.5							0.70	0.30		

Fixed Base Correction vs. FEM

	Fixed Base Corrected				FEM/Test Cross MAC Table								
	14 Shakers			FEM Shapes									
	Fore/Aft and Vertical Wingtip Excitation				1	2	3	4	5	6	7	8	
	Fully Fixed Pretest FEM (Not Updated)			W1B	W2B	W1F/A	W3B	W2F/A	W4B	W5B (W1T)	W1T (W5B)		
	Wingtip Excitation MAG			MAC	3.4	10.4	11.3	22.5	31.7	37.2	51.8	55.2	
pes	1	Fore/Aft	W1B	3.6	0.99	0.33		0.17					
Sha	2	Vertical	W2B	10.0	0.29	0.98		0.40		0.19			
est	3	Fore/Aft	W1F/A	11.0			0.94		0.24				
F	4	Fore/Aft	W3B	21.2		0.34		0.99		0.41			
	5	Fore/Aft	W2F/A	30.2			0.41		0.96				
	6	Fore/AFt	W4B	35.2				0.32		0.95		0.20	
	7	Vertical	W5B (W1T)	52.2						0.20	0.69	0.21	
	8	Vertical	W1T	56.4							0.40	0.57	

Note: FEM has W5B & W1T highly coupled where GVT showed wing is not as coupled

Summary

- PAT Wing GVT results show success and the feasibility of using the Fixed Base Correction (FBC) method to decouple the wing & test fixture modes for a flexible wing mounted to a dynamically active static test fixture
- Fixed Base Correction method
 - FBC results produce test results with reliable boundary conditions to replicate in analytical models
 - FBC has the potential to change how some modal testing is traditionally performed and can save money and schedule time by eliminating an independent setup for modal testing
 - Many potential scenarios where this technique can be used on future tests of structures mounted on other dynamically active test fixtures

Questions

Armstrong Flight Research Center