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Introduction: Calcium-Aluminum-rich inclusions 

(CAIs) are among the oldest Solar System solids, and 

studies of these objects have played an essential role in 

developing an understanding of chemical and physical 

processes that initiated and characterized key events 

related to the Solar System’s formation and evolution 

[1]. CAIs occur as µm- to cm-sized inclusions in chon-

dritic meteorites, particularly in carbonaceous chon-

drites, and consist of various refractory silicate and 

oxide phases (e.g., melilite, spinel, Al-Ti-rich diopside, 

hibonite, and corundum) that are predicted by thermo-

dynamic models to be among the first solids to con-

dense from a cooling gas of solar composition [2]. Fi-

ne-grained CAIs (FGIs) are important samples to probe 

volatility-driven condensation processes in the solar 

nebula, because they have escaped thermal processes 

(e.g., melting) experienced by coarse-grained CAIs [3]. 

In order to explore the primary nebular history of FGIs, 

a detailed mineralogical and petrologic study is neces-

sary. In this research effort, we constrained the miner-

alogy and petrology of two CAIs 07-10 and -11 from 

the reduced CV3 chondrite Thiel Mountains (TIL) 

07007, with the aim of evaluating their provenance as 

nebular condensates.  

Methods: Our initial survey of CAIs from TIL 

07007 was conducted using JEOL JXA-8530F electron 

microprobe at Korea Polar Research Institute. Two 

CAIs 7-10 and -11 selected for this study were ana-

lyzed in detail using JEOL 7600F field emission scan-

ning electron microscope and JEOL JXA-8530F elec-

tron microprobe at NASA Johnson Space Center.  

 

 
Fig. 1. False color x-ray map in Mg (red), Ca (green), and Al (blue) 

of FGI 7-11. Boxes indicate imaged areas shown in Figs. 2-4.  

 

Results I. FGI 7-11 is a zoned object with a core-

mantle structure, rimmed by diopside (Fig. 1). In this 

analysis, the core and mantle are dealt with separately, 

and an additional mineralogical outline of spinel-rich 

nodules present in FGI 7-11 is provided here.  

Core: The core of FGI 7-11 is dominated by geh-

lenitic melilite (Åk6.7-9.6) that contains minor anhedral 

spinel and accessory perovskite and grossmanite (Fig. 

2). Melilite is often greater than 30 µm in size, which 

contrasts the average grain size of spinel within the 

core, which, on average, is approximately 3 µm in size. 

Spinel is near end-member MgAl2O4, and there is little 

to no compositional variation in spinel throughout the 

CAI core (Mg# = 99.0-99.8).  

 

 
Fig. 2. False color x-ray map in Mg (red), Ca (green), Al (blue), and 

Ti (yellow) of FGI 7-11 core. Sp = spinel, Mel = melilite, Fo = for-

sterite, An = anorthite, Pv = perovskite, Diop = diopside. 

 
Fig. 3. False color x-ray map in Si (red), Ca (green), Al (blue), and 

Ti (yellow) of FGI 7-11 mantle. Grm = grossmanite.  

 

Mantle: The dominant mineral in the mantle is an-

orthite (An99.3-99.9), followed by grossmanite and spinel 

with lesser melilite (Fig. 3). Anorthite generally en-

closes spinel and grossmanite here, and grains are on 

average around 4 µm wide. Grossmanite grains are 

widespread, but are often between 0.5 and 1 µm in 

size, and aggregates of these grains are intergrown with 



spinel. Spinel is often found as ovoid, circular grains 

that are 2-5 µm in size. Mg# in spinel displays more 

variance here, ranging from 95.2-99.7. Minor melilite 

manifests as mottled patches associated with spinel. 

Additionally, a rim of diopside occurs at the perimeter 

of FGI 7-11. 

Spinel-rich nodules: Five spinel-rich nodules occur 

along the interfaces between the core and mantle of the 

inclusion (Fig. 4). Spinel within these nodules mani-

fests as elongate grains that coalesce into mesh-like 

structures. Perovskite grains (1-2 µm in size) are en-

closed by the surrounding spinel laths. Compositions of 

melilite (Åk7.3-9.2) and spinel (Mg# = 99.0-99.7) within 

the nodules do not differ from those housed within in 

the core.  

 

 
Fig. 4. False color x-ray map in Mg (red), Ca (green), Al (blue), and 

Ti (yellow) of a spinel-rich nodule from FGI 7-11. 

 
Fig. 5. False color x-ray map in Mg (red), Ca (green), Al (blue), and 

Ti (yellow) of  FGI 7-10. Hib = hibonite.  

 

Results II. FGI 7-10 is a ~180 µm-wide object that 

is composed predominantly of melilite and hibonite, 

with minor spinel and perovskite (Fig. 5). Spinel and 

perovskite grains are partially to completely enclosed 

by grains of hibonite, and range between 5 and 10 µm 

wide. Melilite exhibits low åkermanite contents (Åk1.4-

5.7), and analyses of spinel yield somewhat elevated Fe 

contents (Mg# = 92.1-94.4). Hibonite is relatively con-

sistent in its chemistry, displaying a small range of 

compositions (MgO = 1.53-3.29 wt% and TiO2 = 2.89-

6.83 wt%), and yields an average stoichiometric formu-

la of (Ca0.99Mg0.47Ti0.47Al10.93O19). The ratio of Mg:Ti 

in hibonite is consistently 1:1.  

Discussion: Due to their fine-grained nature, anhe-

dral crystal forms, and irregular textural features, two 

FGIs 7-10 and -11 from TIL 07007 studied are inter-

preted as the products of nebular condensation pro-

cesses. Moreover, the studied CAIs vary widely in their 

textures and modal mineralogies, owing to a host of 

equally diverse formation mechanisms. In order to ex-

plain the textural and mineralogical heterogeneities 

observed here, we propose that these CAIs experienced 

separate nebular histories.  

In FGI 7-11, this history is better elucidated by ex-

amining the mantle of the object. It is interpreted that 

the mantle is a reaction front, where melilite in the core 

was partially replaced by anorthite, spinel, and gross-

manite [4]. The intergrowths of grossmanite and spinel 

in the mantle indicate that the reaction of melilite with 

gaseous Mg and SiO involved gaseous Ti, allowing 

Ti3+ to incorporate into pyroxene under a highly reduc-

ing condition [4]. This replacement reaction may have 

occurred during the formation of diopside that finally 

rimmed the entire inclusion.   

In FGI 7-10, spinel grains are included in melilite, 

which indicates a deviation from the condensation 

sequence predicted for solids in the solar nebula [2]. 

Previous workers [5] have attributed this to the 

epitaxial nucleation of spinel over structurally similar 

sites in the hibonite crystal, due to a structural 

similarity between spinel and hibonite. Additionally, 

the hibonite in this inclusion appears to have 

undergone a reaction in which Mg and SiO gaseous 

phases have prompted a conversion to melilite, as 

predicted by [6]. Elevated Fe contents in the spinel 

from FGI 7-10 may indicate low-temperature parent 

body reworking of this object. 

Conclusions: An examination of the evidence col-

lected and presented within this study establishes the 

following outcomes: 1) FGI 7-11 preserves evidence 

for a gas-solid reaction of melilite replaced by anor-

thite, spinel, and grossmanite. 2) FGI 7-10 exhibits a 

possible crystallographic control on the nucleation and 

growth of spinel over hibonite. Later, melilite formed 

by a reaction of hibonite with gaseous Mg and SiO.  
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