
Risk and Performance Assessment of Generic Mission
Architectures: Showcasing the Artemis Mission

Clemens M. Rumpf
NASA Ames Research Center & STC & USRA

Moffett Field, CA 94035, USA
+1-650-604-0371

clemens.rumpf@nasa.gov

Oscar Bjorkman
Science & Technology Corp.

Moffett Field, CA 94035, USA.
+1-650-224-9772

oscarb@berkeley.edu
Donovan Mathias

NASA Ames Research Center
Moffett Field, CA 94035, USA

+1-650-604-0836
donovan.mathias@nasa.gov

Abstract—Recently, NASA has initiated a strong push to return
astronauts to the lunar vicinity and surface. In this work, we
assess performance and risk for proposed mission architectures
using a new Mission Architecture Risk Assessment (MARA)
tool. The MARA tool can produce statistics about the availabil-
ity of components and overall performance of the mission con-
sidering potential failures of any of its components. In a Monte
Carlo approach, the tool repeats the mission simulation multiple
times while a random generator lets modules fail according to
their failure rates. The results provide statistically meaningful
insights into the overall performance of the chosen architecture.
A given mission architecture can be freely replicated in the tool,
with the mission timeline and basic characteristics of employed
mission modules (habitats, rovers, power generation units, etc.)
specified in a configuration file. Crucially, failure rates for each
module need to be known or estimated. The tool performs an
event-driven simulation of the mission and accounts for random
failure events. Failed modules can be repaired, which takes
crew time but restores operations. In addition to tracking
individual modules, MARA can assess the availability of pre-
defined functions throughout the mission. For instance, the
function of resource collection would require a rover to collect
the resources, a power generation unit to charge the rover, and
a resource processing module. Together, the modules that are
required for a given function are called a functional group.
Similarly, we can assess how much crew time is available to
achieve a mission benefit (e.g. research, building a base, etc) as
opposed to spending crew time on repairs. Here we employ the
method on the proposed NASA Artemis mission. Artemis aims
to return United States astronauts to the lunar surface by 2024.
Results provide insights into mission failure probabilities, up-
and downtime for individual modules and crew-time resources
spent on the repair of failed modules. The tool also allows us
to tweak the mission architecture in order to find setups that
produce more favorable mission performance. As such, the tool
can be an aid in improving the mission architecture and enabling
cost-benefit analysis for mission improvement.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. METHOD . 2
3. RESULTS . 4
4. SUMMARY AND CONCLUSIONS . 6
5. FUTURE WORK . 6
ACKNOWLEDGMENTS . 6
REFERENCES . 6
BIOGRAPHY . 7

1. INTRODUCTION
The United States National Air and Space Administration
(NASA) has recently renewed its commitment to send astro-
nauts to the lunar surface as part of the Artemis campaign
by 2024. To support this effort we have developed the
Mission Architecture Risk Assessment (MARA) tool. A
given campaign architecture may be handed to MARA, which
simulates this campaign in a discrete time step simulation. At
each time step, discrete events — such as the probabilistic
failure of a mission-critical module, or the availability of new
crew following a launch — are evaluated. Over the course
of thousands of Monte Carlo (MC) runs, these simulations
provide insight into the statistical performance of a given
architecture. The eventual goal of the MARA tool is to enable
architecture optimization by providing sensitivity studies of
architecture performance to design choices. In this paper,
we model a notional Artemis campaign to showcase current
capabilities of the MARA tool.

The Artemis program aims to place US astronauts on the
lunar surface in 2024. An essential component of the program
is the ”Lunar Orbiting Platform - Gateway” space station [1].
Astronauts will be staged there for extended stays and also to
descent to and return from the Lunar surface. The Orion crew
capsule is another key component. This spacecraft will be
the primary means for astronauts to travel between the Earth
and the Gateway station. A yet to be specified lunar lander is
planned to provide lunar descent and ascent capabilities from
the Gateway station.

Previously, similar simulations have been performed as part
of the Lunar Surface Systems (LSS) project [2], [3] or Mars
campaign architectures [4]. These simulations depended
on GoldSim, a commercial software that runs only on the
Windows operating systems. In the current effort, we devel-
oped the code using the open source Python programming
language with its various modules. As such, MARA is indif-
ferent to operating systems, can readily be improved through
in-house development, and has no restrictions associated with
commercial software products.

Assumed Artemis Timeline— The Artemis mission design
remains in flux at the time of writing. As such, no certain
information regarding the timeline and campaign profile are
available. However, tentative information that is sufficient
for our modelling purposes can be gathered from internet
sources. We based the simulation design on a NASA web-
site that showcases the Artemis program in its entirety [5].
According to that website, the official mission timeline is

1

summarized in Table 1.

Year Artemis # Description
2019 - - First science/robotic deliveries us-

ing Commercial Lunar Payload Ser-
vices (CLPS).

2020 1 - Unmanned flight test of the new
Space Launch System (SLS) rocket,
and Orion crew capsule.

2022 2 - Crewed flight of the SLS rocket
and Orion crew capsule. Free return
trajectory around the Moon.

2022 - - A commercial launcher will deliver
the first Gateway station element to
space.

2023 - - Delivery of a rover or similar mo-
bility unit to the Lunar surface.

2023 - - A second element will be added to
the Gateway station.

2024 - - Multiple launches will deliver the
lunar descent/ascent vehicle to the
Gateway station.

2024 3 - SLS and Orion will launch humans
to Gateway who then proceed to
land on the Moon.

Table 1. Publicly available information on Artemis program
timeline. Some missions are on the critical path for crewed

portions of the Artemis program and receive an Artemis
mission number. Other missions have no mission number.

For the purpose of testing our tool and gathering preliminary
results for validation, we created a mock mission manifest
that mirrors the Artemis campaign from the start to the
Artemis 3 mission. The manifest is summarized in Table
2. The need to create a mock flight plan arose because the
simulation requires specific event times (day numbers) asso-
ciated with each mission. MARA requires a detailed launch
manifest that not only includes start times of missions but also
the times of their returns or other milestones. In addition,
the manifest holds information about the crew number and
modules associated with each mission.

Day # Type Modules Crew
0 1 Launch SLS, Orion, ESM 0

14 1 Return Orion, ESM 0
365 2 Launch CLV, PPE 0
730 2 Launch SLS, Orion, ESM 4
740 2 Return Orion, ESM 4
911 3 Launch MHM, CLV 0

1308 4 Launch CLV, LL 0
1430 5 Launch SLS, Orion, ESM 4
1444 5 Descent LL 4
1449 5 Ascent LL 4
1459 5 Return Orion, ESM 4

Table 2. Assumed Artemis program schedule based on
currently available information.

In the mock manifest, missions 1, 2, and 5 correspond to
Artemis 1, 2, and 3 as publicly defined [5] (see Table 1).
Artemis 3 (# 5 in our scenario) is the mission that aims to
land astronauts on the Moon. The remaining missions are
general test and infrastructure buildup missions.

2. METHOD
Implementation

The MARA tool was developed entirely in Python 3.7. We
utilized the SimPy library to set up the event-based simula-
tion.

SimPy—SimPy is a discrete event simulation library [6]. This
section explains some of the core elements that drive a SimPy
simulation. Several concepts are key for SimPy simulations:

Environment: Each SimPy simulation runs within a simu-
lation environment that is created at the beginning of each
simulation. The enviroment is responsible for running the
simulation and coordinating discrete events on the timeline
when individual processes interact with each other.
Process: A process is a function that describes the behaviour
of a component that is modelled within the simulation. For
example, in a simulation that models the interaction of a
driver and its car, both the driver and the car could sensibly
each be modelled as a process. In our case, multiple modules
(spacecraft or parts thereof) are part of the Artemis program.
Each of these modules has a process that models its function
and breakage behaviour. Processes can trigger events that
can have consequences for other simulation components (for
example spacecraft modules).
Resource: Resources are objects of limited capacity that can
be assigned to processes. In our example, the only resource
was a crew of four that was occasionally launched to space
and became available to repair broken modules, conduct
science, or perform maintenance tasks. If more than one
module was broken at a given time, the time of an equivalent
number of crew would be taken up to repair broken modules.
If there was not enough crew available to repair all broken
modules, a broken module would have to wait until one crew
became available again.
Events: Events tell the simulation environment that a discrete
milestone was reached. In our example, this might be the
failure of a module based on a randomly generated trigger.
Depending on the program, this could mean a change in
behaviour for other modules as well.

The interested reader is referred to the SimPy website for
practical examples of small SimPy simulations [6].

Input Files—The Python simulation requires three input files
— a configuration file, a module file, and a manifest file. All
files use the CSV (comma-separated values) format in plain
text. Campaign details can be modified without the need to
write new code.

Configuration File: The configuration file holds parameters
for the simulation setup (e.g., number of Monte Carlo runs
to perform in each analysis, the simulated mission time, if
debugging messages should be displayed, etc.).
Manifest File: The manifest file describes the entire cam-
paign of missions for the simulation. Each line in this file
holds information such as start time of the mission, the names
of the modules involved in this mission, number of crew
launched or returned, amongst other variables.
Module File: This file holds information about the modules
that are simulated in the campaign. Crucially, the failure rates
are specified in this file.
Module Groups: We were interested in the times when cer-
tain mission-relevant functions could be performed. This file
defined functions such as habitation and lunar landing and

2

listed the modules that needed to be operational in order for
that function to be available.

Simulation Setup

SimPy requires a constant time step size with which it steps
through the simulation to evaluate discrete events that may
occur at each time step. This time step was set to correspond
to 1 day in our simulation. A one day time step was chosen as
a suitable compromise between speed of the simulation and
sufficient resolution to capture the campaign timeline.

To increase computational speed, the MARA tool utilizes the
Python’s multiprocessing library and runs individual Monte
Carlo (MC) runs in parallel. The results of each MC run
are collected and combined after the MC runs terminated for
result evaluation.

Modules

The Artemis mission as simulated in this work utilized the
modules briefly described below. The corresponding failure
rates are listed in Table 3. Launcher failure rates were
assumed to be similar to those presented in the literature [7].
Note that the values presented in this table aim to be realistic
but do not represent actual failure rates of the listed systems.
The modules typically (except for launchers) have two failure
rates. The operational failure rate describes the statistical
chance of module failure while the module is in use. The
passivated failure rate is applicable to those times when the
module is not in active use such as a rover sitting on the lunar
surface with no crew present.

PPE: The Power and Propulsion Element provides energy
and station keeping capabilities to the Gateway space station.

MHM: The Minimal Habitation Module is attached to the
Gateway space station. It is the first Gateway module to
support human life there.
SLS: The Space Launch System is the United States flagship
heavy lift launch vehicle and is planned to take an instrumen-
tal role in the Artemis program, lifting Gateway elements and
launching astronauts on Lunar missions.
CLV: These are commercial launch vehicles. Some of the
Gateway and Lunar surface elements are slated to be launched
by them. The vehicles remain unspecified at the time of
writing.
Orion: The Orion crew capsule is the space craft to transport
crew to and from Gateway and for atmospheric re-entry.
ESM: The European Service Module provides power and
propulsion to Orion.
LL: The Lunar Lander will carry astronauts to the surface of
the Moon and return them to low lunar orbit.

Timeline and Delays— MARA replicates the timeline pro-
vided in the campaign manifest file (see Table 2). However,
any mission that requires a launch from the Earth can delay
the overall timeline. The delay was calculated based on a
normal distribution with a mean of 180 days and a standard
deviation of 30 days. The rationale for these delays is that a
failed rocket launch will trigger an investigation into the root
cause of the failure that traditionally takes several months.
During the investigation that particular launch vehicle will be
grounded. Switching to an alternative launch vehicle is sim-
ilarly time consuming (or even impractical) as payloads are
designed against the interface requirements of the intended
launcher and its vibrational and acoustic launch environment.

Module Failure Rate
[

1
day

]
(operational/passivated)

PPE 2.592× 10−2/4.008× 10−5

MHM 2.592× 10−2/4.008× 10−5

SLS 1× 10−2*
CLV 1× 10−2*
Orion 3.816× 10−3/1.9344× 10−4

LL 3.816× 10−3/1.9344× 10−4

Table 3. Artemis campaign modules and their failure rates
as used for this work. Failure rates labeled with asterisks (*)

denote launcher failure rates and are interpreted as failure
chance per launch.

A switch would require re-analysis of launcher requirement
conformity at a minimum and, more likely, time-consuming
re-design work.

Broken Modules and Their Repair—Individual modules that
are operational or passivated may break at any time step
during the simulation. The failure rates specified in the
module file determine the probability of such an occurrence
on a given day. In the event of a failure, the module’s status is
switched from operational or sleeping to broken. It remains
broken until crew becomes available to fix it. A broken
module will count against the availability of functions such
as lunar landing if that module is required for this function.
Crew occupied with the repair of broken modules cannot
conduct lower priority tasks, such as research. A broken
module thus reduces the anticipated benefit of a mission. The
repair time for any module was set to 5 days in this analysis.

Simulation Flowchart—Figure 1 visualizes MARA’s simula-
tion process. The simulation itself runs in a continuous loop
that is only ended when the simulation end time is reached.
Based on the data in the manifest file, new modules and crew
are either introduced into the simulation or removed from it.

Figure 1. Simplified simulation flowchart for the Artemis
simulation.

Performance Metrics

We use the following risk and performance characteristics to
judge whether a given architecture performs better or worse
than the baseline setup.

Delay Time—The MARA tool tracks delay times that accrue
due to launch failures as mentioned in section 2. Each launch
failure adds to the total delay of the program manifest. It can
be expected that a better performing architecture yields less
delays.

3

Science Crew Time—Modules fail and need to be repaired.
Per failed module, one crew was assigned for 5 days to repair
the module. This time could not be spent on mission ben-
eficial tasks such as science. A robust program architecture
minimizes the crew time spent on repairs and maximizes crew
time spent on research.

Functional Group Availability Time—Two functional groups
were defined for this analysis.

Habitation: The function of habitation was given when the
MHM and PPE modules were available (not broken). This
enabled crew to live aboard the Lunar Gateway station with-
out the immediate need to return to the Earth.
Lunar Landing: This is the main objective of the Artemis
program. A lunar landing is a complex undertaking under the
Artemis program architecture. To be available, the following
modules needed to be available: LL, PPE, MHM, Orion, and
ESM.

3. RESULTS
The MARA tool was used to assess the performance of the
Artemis baseline architecture as defined in Section 1. In a
next step, we alter few program parameters and assess how
these changes affect performance metrics. Each analysis
consists of 10 000 MC runs and the presented statistics are
based on these results.

Baseline Results

Delays—MARA calculated a 6.3% chance that the baseline
Artemis program will experience delays. In case of a delay,
the mean expected delay is 182.1 days with a standard devia-
tion of 52.5 days.

Figure 2 visualizes the delay simulation results. The grey
lines in the background show the results from the individual
MC runs over the entire simulation duration in years on the x-
axis. A jump of a line to a new y-axis coordinate signifies that
a delay occurred (usually launch failure). The remainder of
that simulation will be delayed by the number of days marked
on the y-axis. Some simulations experience more than one
delay, which is represented by several jumps in a delay line.
The mean delay shown in Figure 2 accounts for all simulation
runs and is therefore low with 10.2 days. On the extremes,
99% of delayed mission experienced delays longer than 6.3
days and shorter than 384.7 days.

Crew Time—The crew is on station for an average of 44.5
days with a standard deviation of 26.6 days. In general,
four crew are present in space during those days for a total
average of 171.2 crew-days. However, one crew was always
assigned to maintenance tasks and other crew conducted
repairs when necessary. Thus, the total number of crew-days
available for non-repair and maintenance related tasks was
114.7 days with a standard deviation of 75.0 days. Figure
3 visualizes the availability of the crew over the duration of
the Artemis program. The two spikes at about 2 and 4 years
correspond to the two crewed launches in the manifest. Some
of the grey lines representing individual simulations extend
significantly beyond the scheduled crew availability times.
Those occurrences correspond to delayed missions that make
crew available later than anticipated. The concentration of
available crew after the scheduled launch times is due to
mission delays that occur mainly from launch failures with
a mean delay of 180 days. While most of the missions are
carried out as intended, the delayed missions produce a minor

Figure 2. The delays encountered due to launch failures
over the Artemis program timeline. Light grey lines show
individual simulation results while the thicker lines show

mean, standard deviation and 1/99% numbers.

crew availability spike about half a year after the scheduled
mission time.

Figure 3. The free crew over time. These crew members are
available for science tasks or infrastructure buildup tasks.
They are the crew that are not occupied by safety critical

tasks such as maintenance and module repair work.

Functional Groups—The functional group of habitation re-
quired the availability of the MHM and PPE module. This
condition was met for an average of 34.3 days with a standard
deviation of 24.0 days. In 99% of the cases, habitation was
available for more than 8 days and less than 134 days. Break-
ing modules are the cause for a reduced habitation availability
duration. When crew became available, the function could
be restored by repairing broken modules over the course of
5 days per repair. This is the reason why the function of
habitation is available on average for a shorter time than
the average time of crew in space. Figure 4 visualizes the
timeline of habitation functional group availability.

Lunar landing functionality was given when modules LL,
PPE, MHM, Orion, and ESM were available. This condition
was met for an average of 19.0 days with a standard deviation

4

Figure 4. Habitation functional group availability. A value
of 1 means full availability and 0 means no availability. The
mean value across all MC runs may take any value between

[1, 0].

of 14.2 days. In 99% of the cases, lunar landing was available
for more than 6 days and less than 26 days. Figure 5 visual-
izes the timeline of habitation functional group availability.

Figure 5. Lunar landing functional group availability. A
value of 1 means full availability and 0 means no

availability. The mean value across all MC runs may take
any value between [0, 1].

Given that lunar landing is the primary goal of the Artemis
campaign, a more thorough look at the lunar landing avail-
ability outcome is warranted. Figure 6 shows a histogram of
observed lunar landing durations. The distribution contains
markings for statistical parameters such as mean, and median,
as well as for the 1 and 99 percentile values. Few extreme
cases allow for unplanned and potentially unrealistic scenar-
ios in which lunar landing is available for 91 to 296 days.
Only 0.99% of cases exhibited a lunar landing availability
longer than 91 days. These rare cases skew the results such
that the 99 percentile value lies outside the values shown
in this distribution range. They also shift the mean by one
day compared to the median and bias it towards a longer

duration. With this observation, it might be prudent for
mission planners to rely on the median value of 18 days for
the most likely lunar landing duration.

Figure 6. Histogram showing the duration distribution for
which the functional group of lunar landing is available. The

histogram does not show potentially unrealistic scenarios
with lunar landing availability durations between 91 and 296

days which made up only 0.99% of runs.

Alternative Mission Scenario Results

MARA enables assessment of alternative mission scenarios.
To showcase this capability, the original mission scenario has
been altered. Instead of two short crew stays at the Lunar
Gateway space station (mission # 2 and 5 in Table 2), one
extended mission is flown. In practical terms, we removed
the first return mission that would usually return the crew to
Earth (at time 740 in Table 2) and the launch mission that
sends the second crew to space (at time 1430 in Table 2).

This change makes the crew available for an extended period
and allows continued maintenance of modules prone to fail-
ure. Specifically, the PPE module statistically fails every 39
days. In the original mission design this means that the crew
would almost certainly be occupied repairing this module as
soon as they arrive on orbit. The repair takes up a larger
portion of the short on-orbit time. On average, the crew
was on orbit for 44.5 days with 114.7 crew-days available
for science. Each day an average of 114.7

44.5 = 2.58 crew was
available for science.

In contrast, the longer duration crewed mission had crew
on orbit for 734.7 days with 2026.6 crew-days available for
science. That is a science crew per day ratio of 2026.6

734.7 =
2.76 crew corresponding to a 7.0% increase in productivity.
Figure 7 visualizes the available crew over time. The longer
crew time on orbit allows for available crew numbers to
stabilize while dealing with maintenance and the occasional
module failure.

Similarly, a longer crew presence allows the operations of
modules in conjunction with crew to reach steady state. This
is visualized in the functional availability of habitation shown
in Figure 8.

Given that the PPE module needed 17.6 repairs and the MHM
module 12.6 repairs on average while crew was on orbit,
habitation had a steady availability expectation of about 75%
during that time. Steady habitation availability is desirable
as this function is crucial for the survival of crew in space.
Furthermore, it means that module failures can be addressed

5

Figure 7. Free crew over the mission time in the alternative
program design.

Figure 8. Availability of habitation function in the
alternative program design.

promptly as opposed to a situation when an unattended mod-
ule fails in space. An unattended, failed module might worsen
the general program situation in space. For example a failed
Gateway station could drift away from its operational module,
exasperating the need to repair the module with the need to
move it back into place. A permanent crew presence allows
to correct for abnormal situations quickly without risking
situations cascading further into undesirable conditions.

4. SUMMARY AND CONCLUSIONS
A new space mission architecture tool, called MARA has
been developed. It can simulate a predefined space program
manifest while taking into account the failure rates of its
constituent parts. To showcase the tool, we modeled a
plausible timeline for the Artemis program that follows the
sparse information available to the public. The simulation
results presented here are based on 10 000 Monte Carlo runs
for each simulated manifest.

Given our failure rate numbers, the manifest we modelled
faces a 6.3% chance of experiencing a delay until the Moon

landing in 2024. In the case of a delay, the expected delay
time would be about half a year (182.1 days) and almost
certainly less than 384.7 days (99% confidence interval).

Furthermore, MARA’s capability to predict the availability
of predefined functions has been shown. The functions
of habitation on the Lunar Gateway space station and the
function of lunar landing were investigated. Results show
significant variability in the availability duration for these
functions, which might be the cause for concern for mission
planners.

Finally, MARA may be used to compare alternative program
manifests with the current baseline. Comparisons can be
useful to terse out mission architecture choices that improve
program robustness and/or program performance. Here, we
modified the baseline mission to feature one extended crew
presence at the Lunar Gateway with eventual visit to the
lunar surface instead of two short stays at the Lunar Gateway.
Results showed that a 7.0% increase in crew productivity
could be achievable with such a measure. It also allowed for
the operations of modules and crew to reach steady state.

5. FUTURE WORK
MARA is still in prototype stage. Next steps include further
development to the software design in order to increase its
applicability to the largest variety of space missions possi-
ble. Some parameters such as the crew capacity on orbit
are currently fixed. In the future, it should be possible to
dynamically change the number of available crew.

Over the coming months and years, the design of the Artemis
program should become more concrete. We are interested
in updating the current manifest information to reflect higher
fidelity information, thereby increasing the relevancy of the
results produced with MARA.

ACKNOWLEDGMENTS
Support for this work was provided by the NASA Postdoc-
toral Program (NPP) as well as Science and Technology
Corporation (STC).

REFERENCES
[1] J. C. Crusan, R. M. Smith, D. A. Craig, J. M. Caram,

J. Guidi, M. Gates, J. M. Krezel, and N. B. Herrmann,
“Deep space gateway concept: Extending human pres-
ence into cislunar space,” IEEE Aerospace Conference
Proceedings, vol. 2018-March, pp. 1–10, 2018.

[2] S. Go, D. Mathias, H. Nejad, and F. Thomson, “In-
tegrated Risk Assessment for Lunar Surface Systems,”
NASA, Tech. Rep., 2009.

[3] S. Go, D. L. Mathias, F. Thomson, and B. Ramamurthy,
“Mass-Constrained Availability for Lunar Exploration,”
in 10th International Probabilistic Safety Assessment and
Management Conference., 2010.

[4] T. A. Manning, H. Nejad, and C. Mattenberger, “Near-
Earth phase risk comparison of human Mars campaign
architectures,” in Proceedings - Annual Reliability and
Maintainability Symposium, 2013.

[5] NASA, “Explore Moon to Mars,” 2019. [Online].
Available: https://www.nasa.gov/specials/moon2mars

6

[6] O. Lunsdorf and S. Scherfke,
“SimPy,” 2013. [Online]. Available:
https://simpy.readthedocs.io/en/latest/index.html

[7] S. A. Motiwala, D. L. Mathias, and C. J. Mattenberger,
“Conceptual Launch Vehicle and Spacecract Design for
Risk Assessment,” NASA, Tech. Rep. June, 2014.

BIOGRAPHY[

Clemens Rumpf received his Dipl.-Ing.
degree in aerospace engineering from
TU Braunschweig in 2012 and his Ph.D.
in aerospace engineering from the Uni-
versity of Southampton in 2017. Fol-
lowing a NASA Postdoctoral Program
fellowship, he is now working as an
aerospace engineer at NASA Ames Re-
search Center. In addition to mission
analysis, his work covers asteroid im-

pact risk assessment and detecting meteors in weather satel-
lite data as part of the ATAP project. Previously, he has
worked as a navigation engineer at the German Aerospace
Center (DLR) and as a space system engineer at the Euro-
pean Space Agency (ESA).

Oscar Bjorkman currently studies
Computer Science at the University of
California, Berkeley. He graduated in
2019 from Los Altos High School in
Los Altos, California. The summers of
2018 and 2019 he interned in the NASA
Advanced Supercomputing Division at
NASA Ames Research Center. There he
researched future unmanned flight initia-
tives and used Python to perform engi-

neering risk assessment for use of autonomous drones. He
created a GUI using Electron visualizing the risk assessment
of flights over maps and developed a utility for assessing the
viability of a new lunar mission plan.

Donovan Mathias currently serves as
the Deputy Chief of the NASA Advanced
Supercomputing Division at NASA Ames
Research Center. Donovan’s work com-
bines physical and system models for
improved risk assessment in areas of hu-
man spaceflight, sample return missions,
urban air mobility, and asteroid impact
scenarios. Donovan received B.S. and
M.S. degrees in Aeronautical Engineer-

ing from California Polytechnic State University, San Luis
Obispo and a Ph.D. in Aeronautics and Astronautics from
Stanford University.

7

