Cartesian Mesh Simulations and Farfield Propagation Results for the 3rd AIAA Sonic Boom Prediction Workshop

AMS Seminar NASA Ames Research Center 05 March 2020

Wade M. Spurlock

Science and Technology Corp. Computational Aerosciences Branch Moffett Field, CA 94035 <u>wade.m.spurlock@nasa.gov</u>

Michael J. Aftosmis

Computational Aerosciences Branch NASA Ames Research Center Moffett Field, CA 94035 <u>michael.aftosmis@nasa.gov</u>

S Branch

Marian Nemec

Computational Aerosciences Branch NASA Ames Research Center Moffett Field, CA 94035 <u>marian.nemec@nasa.gov</u>

Nearfield CFD Outline

- Cases
 - Biconvex shock/plume interaction
 - C608 full aircraft geometry
- Flow solver & computational resources
- Geometry & grids
- Numerical convergence
- Results
- Challenges
- Conclusions

2020.03.05 ARC/TNA

Biconvex

Wind tunnel model setup to examine shock/plume interaction

Conditions:

- $M_{\infty} = 1.6$
- Power BC's at plenum
- $\frac{p_t}{p_{\infty}} = 8.0$, $\frac{T_t}{T_{\infty}} = 1.768$
- Extract pressure signal at radial location r = 15 in (0.38 m)
- Model is approximately 22 in (0.56 m) long

C608

- Modified version of X-59 Low Boom Flight Demonstrator design iteration
- Full aircraft, complex geometry, multiple inflow/outflow BC's

Conditions:

- $M_{\infty} = 1.4$, Altitude h = 53,200 ft
- Power BC's at engine nozzle $p_t/p_{\infty} = 10.0$, $T_t/T_{\infty} = 7.0$
- Power BC's at bypass nozzle $p_t/p_{\infty} = 2.4$, $T_t/T_{\infty} = 2.0$
- Engine fan inlet p_b/p_{∞} = 2.6 (desired Mach 0.4 flow at engine fan face)
- Environmental Control System vent inlets $p_b / p_{\infty} = 1.4$ (desired Mach 0.35 flow at ECS inlets)
- Extract pressure signal at radial location *L*
- Model is approximately 1080 in (27.43 m) long

2020.03.05

ARC/TNA

Cart3D Software

- Flow solver: Cart3D v1.5.5.3
 - Inviscid Euler equation solver, multigrid acceleration
 - Domain decomposition, highly scalable
 - Current work: steady-state, 4 MG levels
 - Second-order upwind method
 - 5-stage RK scheme, van Leer limiter
- Automatic meshing
 - Multilevel Cartesian mesh with embedded cut-cell boundaries
 - Unstructured surface triangulation with component tagging
- Output-driven mesh refinement
 - Discrete adjoint solution and local error estimate
 - Several different adjoint functionals, including pressure signal Δp
- Computing platform
 - NASA ARC Electra, 1 Skylake node (40 cores, Intel Xeon Gold 6148)
 - Biconvex: 19.9 M cells, 40 min final flow solve, 32 min adaptive meshing (x3 sim's)
 - C608: 29.6 M cells, 60 min final flow solve, 53 min adaptive meshing (x19 sim's)

g (x3 sim's) 19 sim's)

- Biconvex
 - Created surface triangulation from STP and IGS files
 - Diagonalized structured grid where possible
 - Filled in planar and irregularly shaped areas with unstructured cells

2020.03.05 ARC/TNA

- Biconvex
 - Created surface triangulation from STP and IGS files
 - Diagonalized structured grid where possible
 - Filled in planar and irregularly shaped areas with unstructured cells

2020.03.05 ARC/TNA

- Issues with leading edge and trailing edge at tip of airfoil
- Cleaned up geometry by projecting LE and TE onto plane of wing tip

2020.03.05

ARC/TNA

- C608
 - Received unstructured surface triangulation from J. Jensen (NASAARC)
 - 494 k vertices, 987 k triangles

2020.03.05 ARC/TNA

Volume Mesh

- Cartesian cut-cell volume mesh for inviscid flow solver
- Cart3D autoBoom previous SBPW2 work
 - Aligned with Mach angle (with tiny offset to avoid sonic glitch)
 - Roll the model geometry for different off-track φ angles
 - Separate simulation for each off-track ϕ on 1 node, can be run simultaneously
 - Tested different cell aspect ratios in the propagation and spanwise directions
- Adjoint-driven mesh adaptation
 - Line sensor at multiple body lengths away
 - Objective function is integrated pressure $\Delta p/p_{\infty}$
- Final grid sizes for data submittal
 - Biconvex: 4.5, 8.9, 19.9 million cells for coarse, medium, fine
 - C608: 7.1, 14.2, 29.6 million cells for coarse, medium, fine

2020.03.05 ARC/TNA

Volume Mesh

- Adjoint-driven mesh adaptation
 - Line sensor at multiple body lengths away
 - Objective function is weighted integral of $\Delta p/p_\infty$

2020.03.05 ARC/TNA

- Biconvex
 - 550, 600, 700 iterations on coarse, medium, fine grids
 - Submitted adapt cycles 05, 06, 07 (ran 2 more out to 09 to check)

ARC/TNA 2020.03.05

- Biconvex
 - 550, 600, 700 iterations on coarse, medium, fine grids
 - Adapt cycles 05, 06, 07 (ran 2 more out to 09 to check)

2020.03.05 ARC/TNA

- Biconvex
 - 550, 600, 700 iterations on coarse, medium, fine grids
 - Solutions are well converged by adapt 05, 06, 07 cycles
 - Richardson extrapolation used for error estimate

2020.03.05 ARC/TNA

• C608

- 400, 500, 550 iterations on coarse, medium, fine grids
- Submitted adapt cycles 03, 04, 05 (ran 1 more out to 06 to check)

ARC/TNA 2020.03.05

• C608

- 400, 500, 550 iterations on coarse, medium, fine grids
- Adapt cycles 03, 04, 05 (ran 1 more out to 06 to check)

2020.03.05 ARC/TNA

- C608
 - 400, 500, 550 iterations on coarse, medium, fine grids
 - Solutions are well converged by adapt 03, 04, 05 cycles
 - Richardson extrapolation used for error estimate

2020.03.05 ARC/TNA

• Density contours

2020.03.05 ARC/TNA

• Density contours (zoomed in on plume-shock interaction region)

Rho: 0.8

2020.03.05 ARC/TNA

• Pressure coefficient contours

2020.03.05 ARC/TNA

2020.03.05

ARC/TNA

- Separate simulation run at off-track φ every 10° for 19 total simulations
- Five line sensors in each sim at offsets of $\Delta \phi = [-4, -2, 0, +2, +4]$
- Covers full half-cylinder 0 ≤ φ ≤ 180° in increments of 2°

Challenges

- C608
 - Getting outflow BC's to correct desired Mach number
 - Adjusted the back pressure
 - Engine inlet from suggested 2.6 to 2.75
 - ECS inlets from suggested 1.4 to 2.70
 - Consistent closeouts are challenging
 - Plume/shock is difficult to capture
 - Mesh coarsening farther back in plume can create spurious artifacts in pressure signal

ARC/TNA 2020.03.05

Conclusions

- Complex geometry increases computational cost
 - More features to resolve
 - Must take pressure signal farther from body
- Adaptive meshing refines based on solution error and objective function
- Must routinely check for solution quality
 - Numerical convergence and adjoint performance
 - Grid sequencing with coarse, medium, fine grid pressure signal
 - Comparison metrics for multiple off-track φ sim's: mass flow through inflow/outflow boundaries, force & moment coefficients
- Richardson extrapolation shows highest uncertainty in aft portion of signal, which is particularly challenging with propulsion and plumes
- Inviscid simulation can effectively capture supersonic flow features of shocks, expansions, and coalescence

2020.03.05 ARC/TNA

Farfield Propagation Results Using sBOOM

Farfield Propagation Overview

• Preliminaries

- Conventions & propagation primer
- Mesh Convergence & oversampling

Ito for Cases 1 & 2

- Ground signals for Standard Atm. & Required Atm.
- Cutoff angles
- Carpet noise metrics
- Ground Intercepts, boom carpete & raytubes
- Summary & observation

2020.03.05

ARC/TNA

Wind Convention in sBOOM

2020.03.05 ARC/TNA

• sBOOM wind uses *left handed* coord. sys.

- β = heading
- $\beta = 0^{\circ} \text{ A/C pointed East, cw+}$
- sBOOM wind tables are in meters vs m/s
- x and y are wind components ("blows toward")
 (x, y) = (1, 0) is tail wind if heading is East
 - (x, y) = (0, 1) is tail wind if heading is South
- (x, y) = (1, 1) is tail wind if heading is SE

Workshop has aircraft flying E,
 This is 0° heading in sBOOM

- Quasi-1D integration of Burgers' equations occurs in tube along the ray path
- Determines the ground intercept of sound emanating from given trajectory point & azimuth
- Ray path determines time required for signal propagation

2020.03.05

ARC/TNA

Wind Effects

- Only consider crossrange and downrange winds (no up/down drafts)
- Wind can alter path of raytube (ray at $\phi = 0^\circ$ shown)
- Paths are scaled by local raytube area

Sensitivity of noise output to discretization of near field signal

- Propagation code is solving augmented Burgers' via finite difference method
- Need to make sure loudness metrics are sufficiently mesh converged
 - Mesh convergence of propagation is case dependent (on signal, azimuth & atm.)
 - Mesh refinement study done for each near field signal (using Std. and Reqd. Atm.'s)
- Truncation error directly impacts accuracy, resolution requirements are driven by need to minimize error in propagation
 - Initial signal from nearfield CFD typically has < 2000 points
 - Propagation typically requires 40000-100000 points (oversampled by 20-50x)
 - Discrete ASEL filter can be poorly behaved at high sampling frequencies (> ~250kHz)

this limits maximum allowable oversampling

- How much accuracy is needed?
 - Atmospheric variability generally 2-5 dB, but may be ~10 dB in some cases
 - Generally tried to keep propagation error under ±0.2 dB

ARC/TNA

2020.03.05

Sensitivity of noise outputs to refinement of the propagation mesh **Ground Signature** 30 20k pts (81kHz)

- C25P signals at $\phi = 0^\circ$, using from 20k-300k points (80-1230 kHz) for propagation
- Despite similarities in ground signal, mesh convergence of ASEL is quite slow

ARC/TNA 2020.03.05

Forward ASELBuildup

- Despite similarities in ground signal, mesh convergence of ASEL is quite slow

Convergence of BSEL, CSEL & PLdB noise metrics with sampling frequency

- BSEL, CSEL and PLdB all show good mesh convergence (all on 1dB scale)
- FFT used for all metrics except for BSEL, but appears to be well behaved
- C-weighting converges fastest (±0.02 dB @200kHz)
- PLdB converges slowest (approx. ±0.1 dB @200kHz)

2020.03.05

ARC/TNA

Convergence of BSEL, CSEL & PLdB noise metrics with sampling frequency

- To avoid excessive discretization error in propagation used 500-800kHz sampling frequencies for all workshop cases
- Computed noise metrics with FFT in LCASB (adloud) for ASEL, CSEL and PLdB noise metrics
- Used digital BSEL filter in sBOOM (well behaved at 500-800kHz)

ARC/TNA 2020.03.05

Case 1: C25P Powered version of the NASA Concept 25D

Conditions:

 $M_{\infty} = 1.6$ Altitude = 15.760 km (52 k ft)Ground height = 264.069m (866ft) Lprop = 33.53m (110 ft)r/L = 3.0 at signal extraction Ground reflection factor = 1.9 Heading East ($\beta = 0^{\circ}$)

2020.03.05

ARC/TNA

Atmospheric Profiles:

1. Required Atm: with profiles for wind, temp, pressure & humidity 2. Standard Atmosphere

Case 1: C25P Standard Atmosphere

Near field and ground pressure signals

2020.03.05 ARC/TNA

Case 1: C25P Standard Atmosphere

Propagation altitude = 15760m, ground height = 264m

• Near field data provided for half-cylinder {-90°, 90°}, ({-50°, 50°} shown)

Propagation shown used 500kHz sampling frequency (142k pts)

Ground Signature

ARC/TNA

2020.03.05

Case 1: C25P Ground Signatures

Propagation altitude = 15760m, ground height = 264m

• Reqired Atm. has profiles of crosswind, temperature, humidity and pressure – Shows lots of asymmetry, and cutoffs are farther out on both sides

2020.03.05 ARC/TNA

Case 1: C25P Ground Noise

Compare ground noise metrics across the carpet as a function of azimuth

- Azimuthal range of carpet with real atm. is much wider than Standard Atm.
- Real atm. (with wind) reduces peak loudness by ~4 dBA, ~2.5 dBB, ~2 dBC & ~4 PLdB
- Noise at carpet edge drops, but can still be significant

2020.03.05

ARC/TNA

Case 1: C25P Raytubes for Required Atmosphere

Plot 3D raytubes colored by raytube area

- 3D plot of raytubes for real atmosphere
- Shows extremely long propagation times & large raytube areas near edges of the carpet
- Near cutoff, sensitivity to atmosphere increases uncertainty in ground signal

Case 1: C25P Ground Carpet

Project raytube ground intercepts on aircraft ground track

- - at low azimuth angles

 - (800 kHz)

2020.03.05 ARC/TNA

• Cutoff angles: Std. Atm = $[\pm 50.8^{\circ}]$, Req. Atm = $[-78.4^{\circ}, \pm 69.1^{\circ}]$

 Long propagation distances near signal cutoff imply that these raytubes take a long time to reach the ground

- Raytube for $\phi = -78.4^{\circ}$ takes over 6 mins in Required atm.

- Mesh convergence near signal cutoff is not nearly as good as

Higher discretization error due to much longer propagation

Propagation for signal cutoff used higher sampling frequency

Case 2: C609 Preliminary design of X-59 Low Boom Flight Demonstrator

Conditions:

 $M_{\infty} = 1.4$ Altitude = 16.4592 km (54 k ft)Ground height = 110.011 m (361 ft)Lref = 27.43 m (90 ft)r/L = 3 at signal extraction Ground reflection factor = 1.9 Heading East ($\beta = 0^{\circ}$)

Atmospheric Profiles:

- 2. Standard Atmosphere

2020.03.05 ARC/TNA

1. Required Atm: with profiles for wind, temp, pressure & humidity

Case 2: C609 Near Field Signals

- Signals symmetric $\pm \phi$

ARC/TNA 2020.03.05

Subset of Near Field Signals

Metric convergence with sampling frequency (Std. Atm.)

- Using FFT for metric computation get reasonable mesh convergence of ASEL, CSEL and PLdB by 500kHz.
- Discrete BSEL filter appears well behaved as well
- Similar mesh convergence behavior for other azimuths. Used 500kHz sampling frequency away from cutoff.

2020.03.05 ARC/TNA

Case 2: C609 Ground Signals

Propagation altitude = 16460m, ground elevation = 110m

Standard Atmosphere

- Required Atm. includes profiles of crosswind, temperature, humidity and pressure - Very asymmetric, with much wider cutoffs on both sides
- Amplitude of ground signal in real atmosphere significantly reduced from Std. Atm.

2020.03.05

ARC/TNA

Required Atmosphere

Case 2: C609 Ground Noise

Azimuthal range of carpet with Required Atm. is much wider than Standard Atm.

- Despite wind & reduced ground amplitude, Real Atm. and Std. Atm. have similar loudness
- Noise at carpet edge drops significantly in Required Atm.

2020.03.05

ARC/TNA

Case 2: C609 Raytubes for Required Atmosphere

Plot 3D raytubes colored by raytube area

- 3D plot of raytubes for real atmosphere
- Shows extremely long propagation times & large raytube areas near edges of the carpet
- Near cutoff, sensitivity to atmosphere increases uncertainty in ground signal

2020.03.05 ARC/TNA 0000 ቆንጉባታ 0000 ាត្រូលស្រ 0000 N

Case 2: C609 Ground Carpet

Project raytube ground intercepts on aircraft ground track

- - at low azimuth angles

 - frequency (800 kHz)

2020.03.05 ARC/TNA

• Cutoff angles Req. Atm = $[-64.1^{\circ}, 70.6^{\circ}]$, Std. Atm = $[\pm 44.9^{\circ}]$

 Long propagation distances near signal cutoff imply that these raytubes take a long time to reach the ground

- Raytube for $\phi = -64.1^{\circ}$ cutoff takes over 8.5 mins in Reqd. atm. - Mesh convergence near signal cutoff is not nearly as good as

 Higher discretization error due to much longer propagation Propagation for signal cutoff rays used higher sampling

Summary

- Applied sBOOM v2.82 & LCASB to all required and optional steady propagation cases
- Mesh convergence studies across the carpet to ensure accuracy of the ground signal and loudness metrics. Error in noise metrics can be 2-4x higher near signal cutoff.
- Mesh convergence is relatively slow on intricate non-smooth input signals
- Real atmosphere is usually quieter than Standard Atmosphere, (but not always e.g. case 2)
- Ground track of real atmosphere can be nearly 3x wider than Standard day. Crosswinds generally for the second track width and can result in large cutoff azimuths
- On windy days, boom may not arrive off-track for over 5 mins after a/c passes (case 2 took 8 mins!)
- Raytube visualization shows potential for loud off-track azimuths to be blown back under-track

2020.03.05

ARC/TN/

SBPW3 Highlights

- Nearfield CFD
 - Overall, very good agreement among participants
 - Interesting to see clusters of results for adapted grids and workshop-provided grids
 - Progression from first workshop to now
- Propagation
 - More exposure (pun intended!) to propagation methods and noise metric calculations Ray paths, cutoff angles, and underneath carpets agreed well

 - More variation past ±20°, more challenging out toward edges of boom carpet

SBPW3 Highlights

SBPW3 Highlights

• Our results (lines/symbols) and spread over workshop submissions (shaded)

Acknowledgements

- Thanks to James Jensen for surface triangulation of workshop C608 geometry
- Thanks to Sriram Rallabhandi for developing and supporting sBOOM, and to Marian Nemec and David Rodriguez for technical discussions on the various cases
- SBPW3 organizers for their effort in organizing and coordinating the workshop, particularly Melissa Carter, Sriram Rallabhandi, and Mike Park
 - ARMD Commercial Supersonic Technology Project for support of this work and advancing the art in boom prediction over the last decade
- ced Supercomputing Division for providing computing resources
- NASA Ames Research Center contract NNA16BD60 and Science & Technolo apporting Wade Spurlock's involvement

ARC/TNA

2020.03.05

Questions?

Backup

2020.03.05 ARC/TNA

Metric convergence with sampling frequency (Std. Atm.)

- Using FFT for metric computation get reasonable mesh convergence of ASEL, CSEL and PLdB by 500kHz.
- Discrete BSEL filter appears well behaved as well
- Similar mesh convergence behavior for other azimuths. Used 500kHz sampling frequency away from cutoff.

Sampling Frequency (kHz)

Metric convergence with sampling frequency

- Near signal cutoff, mesh convergence degrades
- Used 800kHz sampling frequency at cutoff
- Discrete BSEL filter appears to remain well behaved
- Std. Atm. worse behaved than Required Atm.

PLdB metric convergence with sampling frequency (Required Atm)

Used 800kHz sampling frequency for propagation at outside ±60°

ARC/TNA

2020.03.05