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Nearfield CFD Outline
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• Cases

• Biconvex - shock/plume interaction

• C608 - full aircraft geometry

• Flow solver & computational resources

• Geometry & grids

• Numerical convergence

• Results

• Challenges

• Conclusions
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Biconvex

Wind tunnel model setup to examine shock/plume interaction

•

Conditions:

• M∞ = 1.6

• Power BC’s at plenum

= 8.0 ,
pt Tt = 1.768
p∞ T∞

• Extract pressure signal at radial location r = 15 in (0.38 m)

• Model is approximately 22 in (0.56 m) long

2020.03.05 ARC/TNA

3



C608

• Modified version of X-59 Low Boom Flight Demonstrator design iteration

• Full aircraft, complex geometry, multiple inflow/outflow BC’s

Conditions:

• M∞ = 1.4, Altitude h =53,200ft

• Power BC’s at engine nozzle pt /p∞ = 10.0 , Tt /T∞ = 7.0

• Power BC’s at bypass nozzle pt /p∞ = 2.4 , Tt /T∞ = 2.0

• Engine fan inlet pb /p∞ = 2.6 (desired Mach 0.4 flow at engine fan face)

• Environmental Control System vent inlets pb /p∞ = 1.4 (desired Mach 0.35 flow at ECS inlets)

• Extract pressure signal at radial location L

• Model is approximately 1080 in (27.43 m) long

2020.03.05 ARC/TNA
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Cart3D Software

• Flow solver: Cart3D v1.5.5.3

• Inviscid Euler equation solver, multigrid acceleration

• Domain decomposition, highly scalable

• Current work: steady-state, 4 MG levels

• Second-order upwind method

• 5-stage RK scheme, van Leer limiter

• Automatic meshing

• Multilevel Cartesian mesh with embedded cut-cell boundaries

• Unstructured surface triangulation with component tagging

• Output-driven mesh refinement

• Discrete adjoint solution and local error estimate

• Several different adjoint functionals, including pressure signal Δp

• Computing platform

• NASA ARC Electra, 1 Skylake node (40 cores, Intel Xeon Gold 6148)

• Biconvex: 19.9 M cells, 40 min final flow solve, 32 min adaptive meshing (x3 sim’s)

• C608: 29.6 M cells, 60 min final flow solve, 53 min adaptive meshing (x19 sim’s)
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Geometry

• Biconvex

• Created surface triangulation from STP and IGS files

• Diagonalized structured grid where possible

• Filled in planar and irregularly shaped areas with unstructured cells
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Geometry

• Biconvex

• Created surface triangulation from STP and IGS files

• Diagonalized structured grid where possible

• Filled in planar and irregularly shaped areas with unstructured cells
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Geometry

• Issues with leading edge and trailing edge at tip of airfoil

• Cleaned up geometry by projecting LE and TE onto plane of wing tip
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• C608

• Received unstructured surface triangulation from J. Jensen (NASAARC)

• 494 k vertices, 987 k triangles

Geometry
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Volume Mesh

• Cartesian cut-cell volume mesh for inviscid flow solver

• Cart3D autoBoom - previous SBPW2 work

• Aligned with Mach angle (with tiny offset to avoid sonic glitch)

• Roll the model geometry for different off-track ɸ angles

• Separate simulation for each off-track ɸ on 1 node, can be run simultaneously

• Tested different cell aspect ratios in the propagation and spanwise directions

• Adjoint-driven mesh adaptation

• Line sensor at multiple body lengths away

• Objective function is integrated pressure Δp/p∞

• Final grid sizes for data submittal

• Biconvex: 4.5, 8.9, 19.9 million cells for coarse, medium, fine

• C608: 7.1, 14.2, 29.6 million cells for coarse, medium, fine



• Adjoint-driven mesh adaptation

• Line sensor at multiple body lengths away

• Objective function is weighted integral of Δp/p∞

2020.03.05 ARC/TNA

Volume Mesh

Initial mesh

After adaptation  

(coarse mesh)
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Numerical Convergence

• Biconvex

• 550, 600, 700 iterations on coarse, medium, fine grids

• Submitted adapt cycles 05, 06, 07 (ran 2 more out to 09 to check)
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Numerical Convergence

• Biconvex

• 550, 600, 700 iterations on coarse, medium, fine grids

• Adapt cycles 05, 06, 07 (ran 2 more out to 09 to check)
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• Biconvex

• 550, 600, 700 iterations on coarse, medium, fine grids

• Solutions are well converged by adapt 05, 06, 07 cycles

• Richardson extrapolation used for error estimate

2020.03.05 ARC/TNA

Numerical Convergence
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• C608

• 400, 500, 550 iterations on coarse, medium, fine grids

• Submitted adapt cycles 03, 04, 05 (ran 1 more out to 06 to check)
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Numerical Convergence
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Numerical Convergence

• C608

• 400, 500, 550 iterations on coarse, medium, fine grids

• Adapt cycles 03, 04, 05 (ran 1 more out to 06 to check)
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Numerical Convergence

• C608

• 400, 500, 550 iterations on coarse, medium, fine grids

• Solutions are well converged by adapt 03, 04, 05 cycles

• Richardson extrapolation used for error estimate
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Results: Biconvex

• Density contours

ɸ = 0°
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Results: Biconvex

• Density contours (zoomed in on plume-shock interaction region)

ɸ = 0°
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Results: Biconvex

• Pressure coefficient contours

ɸ = 0°
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Results: Biconvex
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• Separate simulation run at off-track ɸ  

every 10° for 19 total simulations

• Five line sensors in each sim at offsets of  

Δɸ = [-4, -2, 0, +2, +4]

• Covers full half-cylinder 0 ≤ ɸ ≤ 180° in  

increments of 2°

2020.03.05 ARC/TNA

Results: C608

ɸ
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Results: C608
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Results: C608

ɸ

60°

3000 3500 5000 55004000 4500

Distance along sensor [in]

-0.025

-0.01

-0.015

-0.02

-0.005

0.015

0.01

0.005

120°

0

d
p

 /
p

phi = 60

phi = 70

phi = 80

phi = 90

phi = 100

phi = 110

phi = 120

24



2020.03.05 ARC/TNA

Results: C608
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Results: C608
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Challenges

• C608

• Getting outflow BC’s to correct desired Mach number

• Adjusted the back pressure

• Engine inlet from suggested 2.6 to 2.75

• ECS inlets from suggested 1.4 to 2.70

• Consistent closeouts are challenging

• Plume/shock is difficult to capture

• Mesh coarsening farther back in plume can create spurious artifacts in pressure signal
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Conclusions

• Complex geometry increases computational cost

• More features to resolve

• Must take pressure signal farther from body

• Adaptive meshing refines based on solution error and objective function

• Must routinely check for solution quality

• Numerical convergence and adjoint performance

• Grid sequencing with coarse, medium, fine grid pressure signal

• Comparison metrics for multiple off-track ɸ sim’s: mass flow through inflow/outflow boundaries,  

force & moment coefficients

• Richardson extrapolation shows highest uncertainty in aft portion of signal, which is particularly  

challenging with propulsion and plumes

• Inviscid simulation can effectively capture supersonic flow features of shocks, expansions, and  

coalescence



Farfield Propagation Results Using sBOOM



Farfield Propagation Overview

30

• Preliminaries

– Conventions & propagation primer

– Mesh Convergence & oversampling

• Results for Cases 1 & 2

– Ground signals for Standard Atm. & RequiredAtm.

– Cutoff angles

– Carpet noise metrics

– Ground Intercepts, boom carpets & raytubes

• Summary & observations
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y
β = 90°

0° x
β

+y

+x
Left–handed

• sBOOM wind uses left handed coord. sys.

• β = heading

• β = 0° A/C pointed East, cw+

• sBOOM wind tables are in meters vs m/s

• x and y are wind components (“blows toward”)

(x, y) = (1, 0) is tail wind if heading is East  

(x, y) = (0, 1) is tail wind if heading is South  

(x, y) = (1, 1) is tail wind if heading is SE

Wind Convention in sBOOM

31

• Workshop has aircraft flying E,

– This is 0° heading insBOOM
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Propagation Primer

Ray that sound  

travels along

Sound  

generated

Sound heard
•

µ
π – µ
2

µ = sin- 1 ( 1

M

• Quasi-1D integration of Burgers’ equations occurs in tube along the ray path

• Determines the ground intercept of sound emanating from given trajectory point & azimuth

• Ray path determines time required for signal propagation
32
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• Only consider crossrange and downrange winds (no up/down drafts)

• Wind can alter path of raytube (ray at ϕ=0° shown)

• Paths are scaled by local raytube area

Wind Effects

Raytube from SBPW2 axibody
33
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Mesh Convergence

Sensitivity of noise output to discretization of near field signal

• Propagation code is solving augmented Burgers’ via finite difference method

• Need to make sure loudness metrics are sufficiently mesh converged

• Mesh convergence of propagation is case dependent ( on signal, azimuth &atm.)

• Mesh refinement study done for each near field signal (using Std. and Reqd. Atm.’s)

• Truncation error directly impacts accuracy, resolution requirements are driven by  

need to minimize error in propagation

• Initial signal from nearfield CFD typically has < 2000 points

• Propagation typically requires 40000-100000 points (oversampled by 20-50x)

• Discrete ASEL filter can be poorly behaved at high sampling frequencies (> ~250kHz)

➛ this limits maximum allowableoversampling

• How much accuracy is needed?

• Atmospheric variability generally 2-5 dB, but may be ~10dB in some cases

• Generally tried to keep propagation error under ±0.2 dB

34
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Mesh Convergence
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Case1, C25P: ϕ = 0°

80 100 120

• C25P signals at ϕ = 0°, using from 20k-300k points (80-1230 kHz) for propagation

• Despite similarities in ground signal, mesh convergence of ASEL is quite slow
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ASELBuildup

• C25P signals at ϕ = 0°, using from 20k 300k points (80-1230 kHz) for propagation

• Despite similarities in ground signal, mesh convergence of ASEL is quite slow

Case1, C25P: ϕ = 0°
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Mesh Convergence

Convergence ASEL noise metric with sampling frequency
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• ASEL converges slowly

– Need ~600kHz (~150k pts)to  

converge ASEL to ±0.01dB

• However, discrete ASEL filter  

starts to have issues at ~250kHz,  

and blows up ~500kHz

• On this case (C25P) hard to  

guarantee ASEL error < ± 0.1dB

• Discrete BSEL and CSEL remain  

well behaved till ~1 & 10 MHz  

(respectively), so generally easier  

to mesh converge
Case1, C25P: ϕ = 0°
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37
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Mesh Convergence

Convergence of BSEL, CSEL & PLdB noise metrics with sampling frequency

Case1, C25P: ϕ = 0°
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BSEL convergence

50000 100000 150000 200000 250000 300000

Number of Samples

CSEL convergence
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PLdB convergence

50000 100000 150000 200000 250000 300000

Number of Samples

• BSEL, CSEL and PLdB all show good mesh convergence (all on 1dB scale)

• FFT used for all metrics except for BSEL, but appears to be well behaved

• C-weighting converges fastest (±0.02 dB @200kHz)

• PLdB converges slowest (approx. ±0.1 dB @200kHz)
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Mesh Convergence

Convergence of BSEL, CSEL & PLdB noise metrics with sampling frequency

• To avoid excessive discretization error in propagation used 500-800kHz sampling  

frequencies for all workshop cases

• Computed noise metrics with FFT in LCASB (adloud) for ASEL, CSEL and PLdB noise  

metrics

• Used digital BSEL filter in sBOOM (well behaved at 500-800kHz)

Case1, C25P: ϕ = 0°
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CSEL convergence
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40

Case 1: C25P
Powered version of the NASA Concept 25D

Conditions:

M∞ = 1.6

Altitude = 15.760 km (52k ft)

Ground height = 264.069m (866ft)

Lprop = 33.53m (110 ft)

r/L = 3.0 at signal extraction  

Ground reflection factor = 1.9

Heading East (β = 0°)

Atmospheric Profiles:

1. Required Atm: with profiles for  

wind, temp, pressure & humidity

2. Standard Atmosphere

2020.03.05 ARC/TNA



Case 1: C25P Standard Atmosphere

Near Field Signals
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35 40

• Near field data provided for half-cylinder {-90°, 90°}, ({-50°, 50°} shown)

ϕ =+40°

41

ϕ = - 40°

Prop. Alt = 15760m

Near field and ground pressure signals

Sign Convention for Azimuth, ϕ
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Case 1: C25P Standard Atmosphere

Ground Signature

Prop. Alt = 15760m

• Near field data provided for half-cylinder {-90°, 90°}, ({-50°, 50°} shown)

• Propagation shown used 500kHz sampling frequency (142k pts)

Propagation altitude = 15760m, ground height = 264m

Near Field Signal
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Case 1: C25P Ground Signatures

• Reqired Atm. has profiles of crosswind, temperature, humidity and pressure

– Shows lots of asymmetry, and cutoffs are farther out on both sides

Required Atmosphere

43

Propagation altitude = 15760m, ground height = 264m

Standard Atmosphere
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Case 1: C25P Ground Noise

• Azimuthal range of carpet with real atm. is much wider than Standard Atm.

• Real atm. (with wind) reduces peak loudness by ~4 dBA, ~2.5 dBB, ~2 dBC & ~4 PLdB

• Noise at carpet edge drops, but can still be significant

Compare ground noise metrics across the carpet as a function of azimuth

Standard Atmosphere RequiredAtmosphere
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Case 1: C25P Raytubes for Required Atmosphere

• 3D plot of raytubes for  

real atmosphere

• Shows extremely long  

propagation times & large  

raytube areas near edges  

of the carpet

• Near cutoff, sensitivity to  

atmosphere increases  

uncertainty in ground  

signal

Plot 3D raytubes colored by raytube area
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Case 1: C25P Ground Carpet
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Project raytube ground intercepts on aircraft ground track

• Cutoff angles: Std. Atm = [±50.8°], Req. Atm = [-78.4°,+69.1°]

• Long propagation distances near signal cutoff imply that  

these raytubes take a long time to reach the ground

– Raytube for ϕ = -78.4° takes over 6 mins in Required atm.

– Mesh convergence near signal cutoff is not nearly as good as  

at low azimuth angles

– Higher discretization error due to much longer propagation

– Propagation for signal cutoff used higher sampling frequency  

(800 kHz)



4

7

Conditions:

M∞ = 1.4

Altitude = 16.4592 km (54k ft)

Ground height = 110.011 m (361 ft)

Lref = 27.43 m (90 ft)

r/L = 3 at signal extraction

Ground reflection factor = 1.9  

Heading East (β = 0°)

Atmospheric Profiles:

1. Required Atm: with profiles for wind,  

temp, pressure & humidity

2. Standard Atmosphere

Preliminary design of X-59 Low Boom Flight Demonstrator

Case 2: C609
2020.03.05 ARC/TNA



Case 2: C609 Near Field Signals
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r/L = 3

Sign Convention for Azimuth, ϕ

Alt = 16459.2 m

Subset of Near Field Signals

ϕ =+40° ϕ = - 40°

20 6030 40 50

Distance Along Sensor (m)

-0.0075
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-0.0025

0.005

0.0025
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p
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Phi = 70°

Phi = 60°

Phi = 50°

Phi = 40°

Phi = 30°

Phi = 20°

Phi = 0°

• Near field signals provided for 23 azimuths from -70° to +70°
ϕ = [0, ±10, ±20, ±30, ±40, ±50, ±60, ±62, ±64, ±66, ±68, ±70]

• Signals symmetric ± ϕ

2020.03.05 ARC/TNA
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Case 2: C609 Sampling Frequency
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• Using FFT for metric computation get reasonable mesh  

convergence of ASEL, CSEL and PLdB by 500kHz.

• Discrete BSEL filter appears well behaved as well

• Similar mesh convergence behavior for other azimuths.  

Used 500kHz sampling frequency away from cutoff.
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Case 2: C609 Ground Signals
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• Required Atm. includes profiles of crosswind, temperature, humidity and pressure

– Very asymmetric, with much wider cutoffs on both sides

• Amplitude of ground signal in real atmosphere significantly reduced from Std. Atm.

Required Atmosphere

Propagation altitude = 16460m, ground elevation = 110m

Standard Atmosphere

2020.03.05 ARC/TNA
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Case 2: C609 Ground Noise
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• Azimuthal range of carpet with Required Atm. is much wider than Standard Atm.

• Despite wind & reduced ground amplitude, Real Atm. and Std. Atm. have similar loudness

• Noise at carpet edge drops significantly in Required Atm.

Compare ground noise metrics across the carpet as a function of azimuth

Standard Atmosphere RequiredAtmosphere

2020.03.05 ARC/TNA
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Case 2: C609 Raytubes for Required Atmosphere

Plot 3D raytubes colored by raytube area

• 3D plot of raytubes for  

real atmosphere

• Shows extremely long  

propagation times & large  

raytube areas near edges  

of the carpet

• Near cutoff, sensitivity to  

atmosphere increases  

uncertainty in ground  

signal

52
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Case 2: C609 Ground Carpet
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Project raytube ground intercepts on aircraft ground track

• Cutoff angles Req. Atm = [-64.1°, 70.6°], Std. Atm = [±44.9°]

• Long propagation distances near signal cutoff imply that  

these raytubes take a long time to reach the ground

– Raytube for ϕ = -64.1° cutoff takes over 8.5 mins in Reqd. atm.

– Mesh convergence near signal cutoff is not nearly as good as  

at low azimuth angles

– Higher discretization error due to much longer propagation

– Propagation for signal cutoff rays used higher sampling  

frequency (800 kHz)



Summary

54

• Applied sBOOM v2.82 & LCASB to all required and optional steady propagation cases

• Mesh convergence studies across the carpet to ensure accuracy of the ground signal and loudness  

metrics. Error in noise metrics can be 2-4x higher near signal cutoff.

• Mesh convergence is relatively slow on intricate non-smooth input signals

• Real atmosphere is usually quieter than Standard Atmosphere, (but not always - e.g. case 2)

• Ground track of real atmosphere can be nearly 3x wider than Standard day. Crosswinds generally  

increase track width and can result in large cutoff azimuths

• On windy days, boom may not arrive off-track for over 5 mins after a/c passes (case 2 took 8 mins!)

• Raytube visualization shows potential for loud off-track azimuths to be blown back under-track

2020.03.05 ARC/TNA



SBPW3 Highlights
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• Nearfield CFD

• Overall, very good agreement among participants

• Interesting to see clusters of results for adapted grids and workshop-provided grids

• Progression from first workshop to now

• Propagation

• More exposure (pun intended!) to propagation methods and noise metric calculations

• Ray paths, cutoff angles, and underneath carpets agreed well

• More variation past ±20°, more challenging out toward edges of boom carpet



SBPW3 Highlights

SBPW1 2014
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SBPW2 2017

SBPW3 2020



SBPW3 Highlights

• Our results (lines/symbols) and spread over workshop submissions (shaded)
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Case 2: C609 Sampling Frequency

• Using FFT for metric computation get reasonable mesh  

convergence of ASEL, CSEL and PLdB by 500kHz.

• Discrete BSEL filter appears well behaved as well

• Similar mesh convergence behavior for other azimuths.  

Used 500kHz sampling frequency away from cutoff.
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Case 2: C609 Sampling Frequency

Sampling Frequency (kHz)
62

• Near signal cutoff, mesh convergence degrades

• Used 800kHz sampling frequency at cutoff

• Discrete BSEL filter appears to remain well  

behaved

• Std. Atm. worse behaved than Required Atm.

ϕ = +44.88°

ϕ = +44.88°
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Case 2: C609 Sampling Frequency

PLdB metric convergence with sampling frequency (Required Atm)
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ϕ = -64.095° (cutoff)
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ϕ = 70.6467° (cutoff)

• Used 800kHz sampling frequency for propagation at outside ±60°
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