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A. PROJECT SUMMARY 

1. Identification and Significance of Innovation 

Unmanned Air Systems (UAS) are no longer coming, they are here, and operators from first responders to 

Google and Amazon are demanding access to the National Airspace System (NAS) for a wide variety of 

missions. This includes a proliferation of small UAS or sUAS that will operate beyond line of sight at 

altitudes of 500 ft and below. A myriad of issues continues to slow the development of verification, 

validation, and certification methods that will enable the safe introduction of UAS to the NAS. These 

issues include the lack of both a consensus in UAS categorization process and quantitative certification 

requirements, including the definition of handling qualities. Because of the wide variety of UAS types 

(fixed wing, rotary wing from traditional helicopters to multirotor configurations, ducted fans, airships, 

etc.) and vehicle size from micro vehicles to the Global Hawk with a wing span similar to that of a 

Boeing 737, there cannot be a one-size-fits-all set of requirements.  

To address these issues, Systems Technology Inc. (STI) has developed the UAS Handling Qualities 

Assessment (UAS-HQ) process and corresponding draft specification that will guide UAS stakeholders 

through a systematic evaluation process. The work described herein builds on the existing, highly 

successful, military rotorcraft handling qualities specifications that features a mission-oriented approach, 

a concept that originated at STI. The vehicle is first identified by a simple weight-based classification and 

then the associated vehicle mission task elements are considered. These missions have specific tasks 

inclusive to them that then dictate the criteria and demonstration maneuvers necessary to evaluate the 

UAS handling qualities. An assessment of both modeled responses and flight test data can then be 

conducted to examine the predicted versus actual handling qualities and, if required, design modifications 

can then be made.  

Mr. David Klyde, Vice President and Technical Director, Engineering Services, served as Principal 

Investigator, while Dr. Natalia Alexandrov served as the NASA LaRC technical representative. In the 

Phase II program, STI was joined by David Mitchell of Mitchell Aerospace Research and the University 

of Minnesota. Mr. Mitchell led the draft specification development effort, while the University of 

Minnesota UAV Lab conducted sUAS flight tests under the direction of Dr. Peter Seiler. 

2. Technical Objectives and Work Plan 

The technical objectives for the Phase II program were as follows: 

 Continuing and expanding upon the processes established in Phase I, engage government, 

industry, and academic stakeholders at regular intervals in Phase II to build support from 

potential end users, respond to relevant questions, and identify means to expand UAS data 

sources to enhance the requirement definition process. 

 Identify and/or define UAS handling qualities metrics/criteria to support each MTE category (i.e., 

precision/aggressiveness levels) and define associated MTE performance requirements that will 

ultimately result in a draft specification. 

 Conduct fixed wing full envelope flight tests with a representative sUAS. Flight tests will include 

system identification at various flight conditions as well as the evaluation of MTEs at various 

levels of precision/aggressiveness. 

 Conduct limited envelope multirotor flight tests with a representative sUAS. Flight test will 

include system identification and the evaluation of MTEs at select hover/low speed flight 

conditions. 

 Using the flight test data acquired in the fixed wing and multi-rotor flight tests, the UAS-HQ 

evaluation process will be assessed against defined success criteria. 
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All work plan tasks were conducted at STI’s facility in Hawthorne, CA, except for those activities 

associated with subcontractors, Mitchell Aerospace Research and the University of Minnesota. Mr. David 

Mitchell conducted his activities in support of this program from his office in Long Beach, CA. The 

University of Minnesota conducted the UAS flight test program. All flights were conducted from the 

UMore Test Range that is located south of the main campus. The University of Minnesota UAV lab has 

obtained the proper Certificates of Authorization (COAs) for legal operation of UAV flights. 

The above technical objectives were addressed through the following Phase II tasks: 

 Task 1 – Stakeholder Engagement: The objective of this task was to engage government, 

industry, and academic stakeholders at regular intervals in Phase II to build support from 

potential end users, respond to relevant questions, and identify means to expand UAS data 

sources to enhance the requirement definition process. 

 Task 2 – UAS handling Qualities Requirements and Draft Specification: The objective of this 

task was to define a set of UAS handling qualities requirements and mission task elements that 

can address the range of UAS vehicles in terms of weight/size, type, and mode of operation. The 

process followed that of current piloted aircraft methods with adjustments for varying levels of 

pilot interaction/autonomy. 

 Task 3 – Fixed Wing UAS Flight Tests: The objective of this task was to conduct a handling 

qualities evaluation flight test program using a fixed wing UAS operated at two unique flight 

conditions. 

 Task 4 – Multi-Rotor Hover/Low Speed Flight Tests: The objective of this task was to conduct a 

limited envelope handling qualities evaluation using a multi-rotor UAS. 

 Task 5 –Process Assessment: The objective of this task was to exercise and evaluate the UAS-HQ 

process with the UAS vehicle models and flight test data from Tasks 3 and 4. Available models 

and data provided a means to demonstrate the effectiveness of the predicted and flight verified 

handling qualities pathways. While the situation is improving, the lack of data across vehicle 

types, whether flight or model generated, remains a limitation of this work. Thus, the Phase II 

analysis conducted in this program represents the first systematic attempt to fully address UAS 

handling qualities. It is important to note that this is a start to the process and not an end as more 

data will be needed to address all MTEs in all UAS weight classes. 

3. Technical Accomplishments 

The specific technical accomplishments in this Phase II program are as follows: 

 UAS Handling Qualities Stakeholders from industry, academia, and government agencies were 

engaged throughout the two-year program. Highlights of this engagement include the three UAS 

Handling Qualities Workshops that were conducted; one at NASA LaRC and two as part of the 

AIAA SciTech conference. All the workshop presentations have been made available to the 

Stakeholders via an easily accessible website hosted by the University of Minnesota. There are no 

restrictions regarding access to this website. 

 A process to define UAS handling qualities was defined, demonstrated, and validated through 

analysis and flight tests. Process validation has also been demonstrated by UAS Handling 

Qualities Stakeholders that conducted their own work in parallel with this program. 

o While it was beyond the scope of this program to quantify new UAS handling qualities 

requirements because of a significant lack of data, there has been a significant growth in 

the data that are now available in the public record.   
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o The use of end-to-end system identification was used to demonstrate UAS model 

validation methods in both the frequency and time domains using both long and short 

duration command inputs. Furthermore, the frequency responses generated from the 

system identification tests were used to extract parameters that are used to predict 

handling qualities. 

o UAS handling qualities verification flight tests were conducted using a set of mission 

task elements defined for both fixed wing and rotary wing mission task elements. 

4. NASA Application(s) 

First, this program directly supports the NASA Air Vehicle Technology topic that “solicits tools, 

technologies and capabilities to facilitate assessment of new vehicle designs and their potential 

performance characteristics” and as specifically called out under Topic A1.05 Physics-Based 

Computational Tools - Stability and Control/High Lift Design Tools, the “definition of handling qualities 

for unmanned aerial systems.” Beyond these specific NASA goals, NASA issued in 2014 a new strategic 

vision for the Aeronautics Research Mission Directorate (ARMD). From this effort came six new 

strategic thrusts. Of these thrusts, several involve the safe expansion of global air operations and are 

therefore directly related to the safe integration of UAS into the air space. The specific thrusts include 

“safe, efficient growth in global operations,” “real-time, system-wide safety assurance,” and “assured 

autonomy for aviation transformation.” This proposal therefore supports NASA’s Integrated Aviation 

Systems Program (IASP) of which the UAS Integration in the National Airspace System (NAS) Project is 

another direct application. In this arena, the Phase II team has supported the UAS Traffic Management 

(UTM) Safety/Risk Analysis Technical Lead from the NASA LaRC Dynamic Systems and Control 

Branch. The support has focused on the definition of UAS hazards and potential mitigations as well as the 

development of mission task elements to assess UAS performance in the presence of hazards. 

5. Non-NASA Commercial Application(s) 

In describing the growing UAS market, Teal Group reported that the worldwide UAS market spending 

will increase from $6.4 billion in 2014 to $11.5 billion in 2024 (Ref. 1). The Teal Group article also states 

that “Our 2014 UAV study calculates the UAV market at 89% military, 11% civil cumulative for the 

decade, with the numbers shifting to 86% military and 14% civil by the end of the 10-year forecast.” 

There is a strong demand for the advancement of UAS handling qualities capability on the military side 

where the Air Force and Navy have long been looking for a path forward in this area. This assertion is 

supported by the active participation of Army Aviation Development Directorate, Naval Air Systems 

Command (NAVAIR), and Air Force Research Laboratory (AFRL) personnel in the three workshops 

conducted in Phase II that included invited stakeholders.  

The team also sees this demand expanding to the growing commercial market, particularly on the sUAS 

side, as the FAA continues to grant access to the NAS to new UAS applications over the coming months 

and years. Note that the proposed team also received feedback from FAA personnel from the Small 

Airplanes Standards Branch/Policy and Innovation Division.  

Outside of the government, this work is generating strong interest from traditional airframers, UAS 

manufacturers, and academia and the UAS Stakeholders participants list now includes over 160 members. 

Further details regarding UAS Stakeholders engagement is covered elsewhere in this report. 
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B. INTRODUCTION 

1. Program Overview 

Unmanned Air Systems (UAS) are no longer coming, they are here, and operators from first responders to 

Google and Amazon are demanding access to the National Airspace System (NAS) for a wide variety of 

missions. This includes a proliferation of small UAS or sUAS that will operate beyond line of sight at 

altitudes of 500 ft and below. A myriad of issues continues to slow the development of verification, 

validation, and certification methods that will enable the safe introduction of UAS to the NAS. These 

issues include the lack of both a consensus UAS categorization process and quantitative certification 

requirements including the definition of handling qualities. The “how to” of safely integrating UAS in the 

NAS raises many questions, and to date, there have been few answers. Perhaps the problem is too big. 

Because of a lack of quantitative data, attempts to address core problems thus far have failed to achieve 

consensus support. A prominent figure at a major UAS manufacturer referred to the current landscape as 

“the new wild west.” That is, many are coming looking for riches, but there is limited law and order to be 

found. Currently this arena includes traditional airframers, established UAS manufacturers, academic 

institutions, and many newcomers such as Amazon, Google, and Facebook that see UAS as a means to 

other commercial ends. The program described herein does not propose to tame the entire verification, 

validation, and certification problem, but instead to address the important need to define UAS handling 

qualities in both piloted and autonomous operations with an end product being the UAS Handling 

Qualities Assessment Process (UAS-HQ), illustrated in Figure 1.  

Figure 1 begins with UAS classification. Because of the wide variety of UAS types (fixed wing, rotary 

wing from traditional helicopters to multirotor configurations, ducted fans, airships, etc.) and vehicle size 

from micro vehicles to the Global Hawk with a wing span like that of a Boeing 737, there cannot be a 

one-size-fits-all set of requirements. Given an appropriate classification, a mission in the form of mission 

task elements (MTEs) (Ref. 2) is next considered. Missions may be as varied as the vehicle types. 

Examples include air-to-air and/or air-to-ground sensor tracking for surveillance, terrain surveying for 

pipelines or agriculture, entertainment or real estate filming, weather monitoring, package delivery, and 

WiFi access. Missions are then broken down into specific task elements that include those elements that 

will be a part of any mission (e.g., takeoff and landing) to those that are mission specific (e.g. precision 

target tracking, high altitude loiter, obstacle avoidance, etc.). These mission task elements are used to 

identify specific criteria that predict handling qualities analytically and test demonstration maneuvers that 

verify handling qualities in flight. 

 

Figure 1: The Proposed UAS Handling Qualities Assessment Process 
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2. Barriers to UAS Certification 

“A drone crashes in the middle of a Capitol Hill hearing on drones,” the Washington Post headline reads 

in a January 21, 2015 on-line article (Ref. 3). Only in passing does the article mention that NASA and 

FAA officials also testified in front of the House Science, Space and Technology Committee, and there is 

no description of the content of this testimony. Even though this “crash” was a non-event, this article does 

reflect the public skepticism regarding UAS integration and use in the NAS.  

Other recent government reports and media articles have highlighted more troubling issues. “FAA Faces 

Significant Barriers to Safely Integrate Unmanned Aircraft Systems into the National Airspace System.” 

This title is taken from a report (Ref. 4) generated by the FAA Office of Inspector General that was 

released on June 24, 2014. The FAA Modernization and Reform Act of 2012 mandated a goal of safe 

integration of unmanned aircraft systems (UAS) into the NAS by 30 September 2015. The report 

identifies “significant technological, regulatory, and management barriers” that will prevent the FAA 

from meeting this rapidly approaching deadline. Of the many shortcomings indicated in the report, two 

related areas are a lack of certification requirements and an identification of safety risks. Perhaps the 

media is addressing the latter as a series of high profile articles from the Washington Post in June 2014 

exposed to the general public the high number of military drone crashes around the world and the 

growing number of crashes here in the US. Many of these crashes resulted from aircraft departures from 

controlled flight that often took the operators by surprise. Below are recorded comments from two 

operators that appeared in the June 23, 2014 Washington Post article by Whitlock (Ref. 5): 

“Drone just pitched up. Drone’s pitching over. Drone is uh, crashed and destructed, at uh, the end of the runway.”  

“This thing’s kind of climbing like a pig. Climb, you pig. . . . Boy, this is going to be tight. . . . Okay, interesting. We 

are falling out of the sky.” 

Piloted fixed wing and rotary wing aircraft must demonstrate appropriate handling qualities through a 

well-defined certification process before access to the NAS is granted. No such process or proven 

requirements yet exist for UAS. Again applying the piloted aircraft analogy, decades of research with 

dedicated variable stability aircraft were undertaken to create the databases necessary to define handling 

qualities requirements. For UAS that as mentioned above range in size from a hand-launched micro air 

vehicle to the Global Hawk with a wingspan akin to a B-737, no such database exists. In fact, it is 

difficult to find consensus for what “handling qualities” of a UAS means. Indeed, in similar fashion, data 

upon which to design flight control systems to meet specified handling qualities, define the ‘safe’ 

envelope in which they are expected to operate, and regulate how the aircraft should respond if those 

bounds are crossed and departure from controlled flight occurs is sparse for UAS, especially so in those 

flight regimes where the vehicle dynamics are nonlinear and sometimes ill-behaved. These are well-

recognized issues, but to date, no focused research efforts have been funded to define UAS handling 

qualities. Instead, piloted aircraft requirements, which may or, more likely, may not be appropriate, are 

often proposed. Even though the FAA has been granting more commercial UAS exemptions in recent 

months, the end result is that validation, verification, and certification of UAS systems including the 

definition of UAS handling qualities remain elusive. 

3. UAS Classification 

To define UAS handling qualities, there must first be an effective classification scheme. Unfortunately, 

this goal also remains elusive, despite past and ongoing efforts. The Navy has been particularly concerned 

with the classification of UAS as part of a larger goal to define quantitative requirements (Ref. 6). The 

Navy approach thus far has been to base classification on those defined in the fixed wing flying qualities 

specifications for piloted aircraft, which classifies based on aircraft size and weight. What’s missing from 

this approach is a consideration of airspeed, a critical factor with regards to assessing safety. Cotting, as 

part of his doctoral dissertation, proposed an approach that classifies by Reynolds number, Mach number, 

and weight (Ref. 7). A more recent NASA-funded study led by Embry-Riddle Aeronautical University 
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used an expert system approach to map UAS characteristics with operational requirements to derive their 

classification scheme (Ref. 8). Based on this approach, the top three weighted system parameters were 

maximum kinetic energy, weight, and wingspan. Given a mission-oriented approach as addressed later in 

this report, UAS classification can be simplified as the mission addresses many of these considerations.  

4. Lessons Learned from Manned Aircraft Requirements 

All of the issues discussed thus far add up to one primary concern – airworthiness of the UAS. That is, the 

UAS must demonstrate through an approved verification, validation, and certification process an 

equivalent level of safety to those other aircraft operating in the NAS. NATO has been evolving 

airworthiness requirements for UAS via its STANAG 4671, “UAV Systems Airworthiness Requirements 

(USAR) for North Atlantic Treaty Organization (NATO) Military UAV Systems.” While there is still a 

lack of supporting data to quantify many of the requirements and the emphasis is on military operations, it 

does provide a roadmap for civilian certification in many ways. Foremost, it defines the broad areas of 

airworthiness disciplines that must be addressed as part of the certification process including flight, 

structures, design and construction, powerplant, equipment, operating limitations and information, 

command and control data link, and control station. It is beyond the scope of this effort to address all of 

these important areas. Instead, the focus herein is on defining UAS handling qualities.  

There is a wealth of literature available regarding the development and application of fixed wing flying 

and handling qualities metrics and criteria. As first described in Ref. 9, there has been a tendency, 

historically, to use the terms “flying qualities” and “handling qualities” interchangeably. For the 

engineering community, there is often no recognized difference between these phrases. To some, 

however, the terms have begun to take on different meanings, and this difference has been reflected, 

where possible, in this work.  The terms are interpreted as follows. 

“Flying qualities” is taken to mean those analytical and empirical parameters or criteria that can be 

measured for a given airplane. All such parameters or criteria can be related to the demands the pilot 

places on the airplane to achieve desired performance. That is, they are open-loop metrics describing 

pilot-in-the-loop operations. 

By contrast, “handling qualities” is meant to describe operations while the pilot is actively in the loop. 

This includes the definition put forth by Cooper and Harper (Ref. 10): “Those qualities or characteristics 

of an aircraft that govern the ease and precision with which a pilot is able to perform the tasks required in 

support of an aircraft role.” For UAS, consideration is also given to the ability of the autonomous system 

to perform the task. 

In this context, the “flying qualities” criteria are open-loop measures by which one attempts to quantify 

the “handling qualities” of the airplane. The most prominent criteria have been included in the several 

incarnations of the military specifications and design standards, including the most recent release of MIL-

STD-1797B Flying Qualities of Piloted Aircraft (Ref. 11), while the rotorcraft criteria can be found in 

ADS-33E-PRF Handling Qualities Requirements for Military Rotorcraft (Ref. 12). A more detailed look 

at the evolution of aircraft flying qualities can be found in Ref. 13. 

For military rotorcraft, handling qualities are specified using a highly successful mission-oriented 

approach. The foundation of the mission-oriented approach (Ref. 2) is that requirements are based on 

realistic MTEs, not Flight Phases. As described in Ref. 9, the goal has been to tie specific flight test 

demonstration maneuvers to these MTEs. Ultimately, a truly mission-oriented specification will have all 

quantitative requirements tied directly to realistic MTEs, and for every MTE, there will be a 

corresponding demonstration maneuver as is done with the rotorcraft design standard. The MTE will be 

what is expected of the aircraft; the demonstration maneuver will be an explicit way of testing suitability 

for performing the corresponding MTE. This is perhaps the most significant “mission-oriented” concept 

and, as such, led to the research reported in Ref. 2. In a sense this is what the FARs and the Flight Test 
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Guide do for the FAA; however, the applicability of the approach is for key requirements limited to the 

traditional aircraft response type, else special conditions must be defined. 

A mission-oriented approach provides for the possibility of different dynamic response characteristics or 

response-types. One shortcoming of several of the requirements of MIL-STD-1797B is that they are not 

applicable to all response-types. As mentioned above, a further significant feature of the mission-oriented 

approach is the inclusion of demonstration maneuvers as an integral part of the standard. It is recognized 

that the quantitative requirements defined by predictive criteria are not comprehensive. Meeting these 

requirements does not guarantee desirable handling qualities or mission performance. Conversely, failing 

one or more of the requirements is not necessarily a guarantee of less than desirable handling qualities 

(although it is highly probable). For this reason, qualitative flight test evaluations by experienced test 

pilots are the fundamental element of the FAA certification process regarding commercial transport flying 

qualities. For UAS operations, a process in which system performance is quantified via flight evaluations 

will be an essential component to defining UAS handling qualities. 

5. Autonomy and Handling Qualities 

Historically, handling qualities are defined for piloted aircraft. UAS operations may be piloted, pilot 

monitored, autonomous, or a combination of the three. It is often asked, how can handling qualities be 

defined for vehicles not directly controlled by a human pilot? When actively engaged in flying an aircraft, 

the pilot provides guidance, navigation, and control functions. Autopilots can provide regulation of some 

of these functions, e.g., speed and altitude hold modes thereby reducing pilot workload, but they are not 

autonomous functions. Autonomous functions feature a decision making capability that attempts to 

replicate or even improve upon piloted operations. Thus, if a UAS mission is to, for example, station keep 

over a given location it matters not in terms of handling qualities whether it is remotely piloted or 

autonomous, the mission requirements will be the same. Of course, some consideration of the 

autonomous systems must be made in the analysis just as consideration is given to the pilot in traditional 

handling qualities. 

6. UAS Stakeholders Engagement 

A key objective of this program was to engage government, industry, and academic stakeholders at 

regular intervals in Phase II to build support from potential end users, respond to relevant questions, and 

identify means to expand UAS data sources to enhance the requirement definition process. This 

engagement process began in Phase I with stakeholders participating in kickoff, midterm, and final 

briefings over the six-month program. In Phase II this engagement continued through a series of UAS 

Handling Qualities Workshops, a growing Stakeholders mailing list, and document sharing via a publicly 

accessible website hosted by the University of Minnesota (https://www.uav.aem.umn.edu/workshops). 

During the Phase II period of performance, three UAS Handling Qualities Workshops were held. The first 

was held as a program kickoff event at NASA LaRC. The next two were held in conjunction with the 

American Institute of Aeronautics and Astronautics (AIAA) SciTech Conferences that were held in 

Kissimmee, FL in 2018 and San Diego, CA in 2019. The workshops were invited sessions sponsored by 

the Atmospheric Flight Mechanics Technical Committee. All three workshops featured presentations 

from the program team and UAS Stakeholders. Based on the engagement activities, the UAS 

Stakeholders participants list now includes over 160 members.  

7. Report Outline 

The report continues in Section C with a discussion of the mission-oriented approach and addresses both 

the mission task element framework and classification considerations. Section D details the process of 

defining candidate requirements including the governing assumptions, introduces a proposed specification 

template, details the stakeholder involvement, and addresses both dynamic scaling and uncertainty 

analysis. The UAS handling qualities process demonstration is described in Section E including details on 

the flight test activities with fixed wing and multirotor vehicles. The program summary and conclusions 

https://www.uav.aem.umn.edu/workshops
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are provided in Section F including next steps. Appendix A contains the draft specification that is 

intended to serve as a preliminary specification and point of discussion for future evolutions of the 

document. The mission task element catalog developed in this effort is provided in Appendix B along 

with contributions from UAS Stakeholders. Appendix C contains a description of the fixed wing system 

identification flight tests. Similar information for the multirotor flight testing is given in Appendix D. 

Finally, Appendix E contains a study concerning the use of dynamic scaling on vehicles to apply existing 

manned vehicle requirements to smaller UAS. 
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C. THE MISSION-ORIENTED APPROACH 

1. Old School – Sorting by Class and Flight Phase 

For decades through the incarnations of the military flying qualities specifications MIL-F-8785 and MIL-

STD-1797, fixed wing requirements for piloted airplanes have been defined by specific classifiers – size, 

weight, and flight phase. The public release of MIL-STD-1797, Version A, defines four fixed wing air 

vehicle classes as follows: 

 Class I: Small, light air vehicles such as light utility, primary trainer, or light observation. 

 Class II: Medium weight, low-to-medium maneuverability air vehicles such as heavy 

utility/search and rescue; light or medium transport/cargo/tanker; early warning/electronic 

countermeasures/airborne command, control, or communications relay; antisubmarine; assault 

transport; reconnaissance; tactical bomber; heavy attack; or trainer for Class II. 

 Class III: Large, heavy, low-to-medium maneuverability air vehicles such as heavy 

transport/cargo/tanker; heavy bomber; patrol/early warning/electronic countermeasures/airborne 

command, control, or communications relay; or trainer for Class III. 

 Class IV: High-maneuverability air vehicles such as fighter/interceptor; attack; tactical 

reconnaissance; observation; or trainer for Class IV. 

Given an identified air vehicle class, requirements are further classified by Flight Phase. MIL-STD-

1797A defines three Flight Phases: 

 Category A: Those nonterminal Flight Phases that require rapid maneuvering, precision tracking, 

or precise flight-path control. Examples include air-to-air combat, reconnaissance, terrain 

following, in-flight refueling (receiver), and close formation flying. 

 Category B: Those nonterminal Flight Phases that are normally accomplished using gradual 

maneuvers and without precision tracking, although accurate flight-path control may be required. 

Examples include climb, cruise, loiter, in-flight refueling (tanker), and aerial delivery. 

 Category C: Terminal Flight Phases are normally accomplished using gradual maneuvers and 

usually require accurate flight-path control. Examples include takeoff, power approach, landing, 

carrier approach, carrier landing, and ground handling. 

On the surface, this appears to be a “tortoise and hare” approach to requirements. That is, the big and slow 

tortoise will naturally have unique requirements from the small and fast hare. Is this always the case? 

Consider the AC-130 gunship and the C-130J transport, both considered Class III aircraft. While the 

airframes are in many ways the same, their missions could not be more different. Does the AC-130’s 

ground attack mission have more in common with the A-10, a much smaller and lighter Class IV aircraft? 

If the answer to this question is “yes,” then should not the handling qualities requirements for the AC-130 

be more akin to the A-10? If the answer is again “yes,” then an approach to defining handling qualities 

based on mission can be more appropriate than an approach based on Class or Flight Phase. This may be 

especially true for UAS where the number of potential classes and flight phases is expansive. 

2. Eliminating Classifications 

The material in this section has been updated from Handling Qualities Demonstration Maneuvers for 

Fixed wing Aircraft, Volume I: Maneuver Development Process (Ref. 9), a project for the USAF Flight 

Dynamics Directorate that was jointly conducted by Systems Technology, Inc. and Hoh Aeronautics, Inc. 

For handling qualities flight test evaluations, it is desirable to categorize segments of the missions into 

handling qualities evaluation tasks. The ability of the aircraft to accomplish these tasks is predicted 

according to the appropriate criteria. Parameters for these requirements are generated first analytically, 
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then via simulation, and finally via flight test. It is not practical, or necessary, to derive a separate set of 

criteria for every defined task.  Instead, the tasks are grouped in terms of the criteria boundaries that apply 

to them. The task definitions included specific desired and adequate performance requirements to 

facilitate evaluation test pilot use of the Cooper-Harper handling qualities rating scale (Ref. 10). In a 

mission-oriented approach to aircraft handling qualities (Ref. 2), requirements are based on realistic 

MTEs, not the general Flight Phases identified above that define the current and long standing approach 

to piloted fixed wing aircraft flying qualities. An MTE therefore defines a specific flight test 

demonstration maneuver. 

Ultimately, a truly mission-oriented UAS specification will have all quantitative requirements tied 

directly to realistic MTEs. The associated MTE requirement will be what is expected of the UAS; the 

MTE itself will be an explicit method of test to verify handling qualities in piloted simulation and flight 

test. This is perhaps the most significant “mission-oriented” concept, and, as such, led to the research 

effort reported in Ref. 9. This fixed wing research was based on the mission-oriented approach to 

handling qualities that was successfully established for military rotorcraft via ADS-33.  

In the mission-oriented approach, references to Class are removed. A number of the requirements in MIL-

STD-1797A have different values depending upon aircraft size, defined in terms of four the Classes of 

aircraft, particularly the modal requirements that were defined in MIL-F-8785 and that have remained 

through the current version of the fixed wing standard. This division is actually somewhat arbitrary, and is 

sometimes irrelevant. For example, if a particular mission requires a high level of aggressiveness and 

precision, it should not matter if the airplane proposed for that mission is small or large. Only the mission 

requirements should set handling qualities. It is recognized that, in some cases, this may lead to 

unreasonable demands on very large airplanes.  Returning to the previous transport example, if the AC-

130 is required to perform ground attack, then the Level 1 roll performance limits stated for Class IV 

fighters may be unachievable without the use of extremely fast actuators and the possible introduction of 

very high lateral accelerations at the pilot’s station. In this case, it should be obvious that either (1) a new 

MTE, such as transport ground attack, with relaxed mission demands needs to be defined, or (2) it is 

simply not possible to build a Level 1 transport for the ground attack task. Because the AC-130 has been 

highly successful in the ground attack mission, the former is the more likely scenario.  

A mission-oriented approach provides for the possibility of different dynamic response characteristics or 

flight control system response-types. One shortcoming of several of the requirements of MIL-STD-1797A 

is that they are not applicable to all response-types. For example, aircraft with an attitude response-type 

such as pitch attitude command/attitude hold dynamics should not be evaluated using the control 

anticipation parameter (CAP) criteria for short-term response. The number of different response types 

possible for fixed wing airplanes is not extensive, so this amounts, in essence, to simply amplifying the 

guidance to the user. For UAS that can feature many unique response types and levels of autonomy, 

requirements that are not specific to these elements of the design are needed. 

Finally, one of the most significant features of the mission-oriented approach is the inclusion of MTEs as 

an integral part of the standard. This was done for rotorcraft in ADS-33 and an initial fixed wing catalog 

of maneuvers (Ref. 14), but these maneuvers have not yet been incorporated into the fixed wing standard. 

It is recognized that the quantitative requirements of MIL-STD-1797A are not now, and can never hope to 

be, completely comprehensive. Meeting the diverse requirements of the fixed wing standard does not 

guarantee desirable handling qualities. Conversely, failing one or more of the requirements is not 

necessarily a guarantee of less than desirable handling qualities (although it is highly probable). 

Therefore, qualitative flight test evaluations by trained evaluators that are familiar with the handling 

qualities rating process as established by Cooper and Harper (Ref. 10) should be made an integral part of 

the handling qualities assessment process. For the evaluation of UAS handling qualities it is recognized 

that modifications to the rating process including alternate rating scale versions will be required based on 

the role of the pilot/operator. 
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The addition of MTEs allows for two separate methods for assessing the Levels of UAS handling 

qualities: 

 Predicted Levels based on handling qualities parameters. Here, comparisons are made with 

quantitative boundaries of handling qualities parameters. When establishing compliance, the 

parameters of the UAS are determined and compared with the boundaries appropriate to the MTE 

requirements. These criteria are inherently single-axis. A Level 1 UAS must meet the Level 1 

standards for all of the criteria. The quantitative criteria are based on previous experiments and 

analyses, and hence result in predicted Levels of handling qualities. When using a given 

requirement, users should have a good understanding of the theory behind a particular 

requirement and the supporting data that were used to define the quantitative requirements.      

 Assigned Levels based on flight test maneuvers. The second method of establishing Levels is to 

perform a set of well-defined flight test maneuvers (i.e., the defined MTEs) using a team of at 

least three test pilot/operator evaluators. These evaluators assign Cooper-Harper Handling 

Qualities Ratings or HQRs (Ref. 10) to the aircraft for each maneuver. The collective HQR 

determines the Level for each maneuver and a Level 1 aircraft must be rated Level 1 for all of the 

maneuvers designated as appropriate to its operational requirements. As mentioned above, 

evolutions of this rating process will be needed for UAS evaluations. The flight test maneuvers 

may be either single- or multi-axis by design, though it may be appropriate to evaluate the aircraft 

one axis at a time first before moving to multi-axis evaluations. Compliance with the flight test 

maneuvers is based on piloted evaluations, and therefore results in assigned Levels of handling 

qualities. These pilot/operator evaluations will provide the ultimate check of UAS handling 

qualities. 

3. Mission Task Elements (MTEs) 

It is desirable to categorize segments of the mission into specific tasks. The ability of the aircraft to 

accomplish these tasks is measured according to the appropriate requirements. The mission tasks in the 

mission-oriented specification are more formally defined as “Mission Task Elements” or MTEs. It is 

intended that the MTEs be specified in detail, including performance requirements. Furthermore, flight 

phase categories are defined in terms of the level of precision and aggressiveness required of the UAS. 

Four MTE categories are defined as follows:  

a. Non-Precision, Non-Aggressive 

Non-precision tasks that require only a moderate amount of remote pilot or autonomous system control 

fall in this category. Example tasks from this category include: 

 Heading and altitude changes to optimize on-board sensor performance; and 

 Non-precision station keeping (e.g., weather monitoring, wildfire monitoring, internet access 

provider, etc.).  

b. Non-Precision, Aggressive 

This category is intended to include the large amplitude maneuvering MTEs that emphasize control power 

over crisp dynamics. It is true, however, that a reasonably good dynamic response is inherently necessary 

to effectively utilize a large amount of control authority, i.e., to stop and start the large amplitude 

maneuvers with some precision (recall the old control power vs. damping plots). The moderate- and 

large-amplitude maneuvering requirements will be of primary interest for these MTEs. This category will 

invoke some of the existing control power criteria, as well as other agility criteria. Example tasks from 

this category include: 

 Ground-based or air-based obstacle avoidance; and 
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 Gross acquisition of air or ground targets. 

c. Precision, Non-Aggressive 

This category includes tasks where considerable precision is required, but without the aggressive control 

activity. The dynamic response requirements for these tasks are expected to be less stringent than for 

Precision, Aggressive, but significantly greater than for Non-Precision, Non-Aggressive. Example tasks 

from this category include: 

 Precision landings; 

 Precision path following at altitude (e.g., border patrol, highway/roadway/railway monitoring, 

etc.); 

 Precision station keeping; 

 Precision hover; 

 Precise pitch attitude and bank angle captures; and  

 Final approach and landing for package delivery. 

d. Precision, Aggressive 

This category includes precision tasks, where an extremely crisp and predictable response to control 

inputs is required. The results of not achieving the required precision are usually significant in terms of 

accomplishing the mission or safety of flight. Example tasks in this category include: 

 Air-to-air and air-to-ground fine tracking, and  

 Low altitude precision path following (e.g., crop dusting/monitoring, pipeline scanning, etc.). 

e. MTE Categories and Candidate UAS Handling Qualities Requirements 

The intent of the MTE categories is that the requirements in a given category are sufficiently similar so 

that a single criterion boundary will apply. For example, the Bandwidth criterion (Ref. 13) should have a 

form similar to that shown in Figure 2. As described elsewhere in this paper, data are required to properly 

define these boundaries for UAS applications. 

 

Figure 2: Relationship between MTE Categories and Specification Boundaries for Aircraft Bandwidth 

Criterion (Ref. 9) as Defined by Phase Delay (p, sec) versus Bandwidth Frequency (BW, rad/s)  
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4. Classification 

a. Background 

Building on the material in the Introduction, the common denominator in all of the past classification 

approaches is size, weight, and airspeed. Clearly size and weight are tied together, although examples of 

very large but lightweight and very small but dense UAS examples can be identified. Neglecting the 

fringe examples, however, a combined weight (or mass) and speed classifier is attractive. Such an 

approach can be applied to vehicles defined as sUAS or small UAS that are designed to fly at relatively 

low speeds and low altitudes (i.e., < 500 ft) and weigh less than 55 pounds and UAS that are designed to 

operate at higher altitudes assigned to the NAS and weigh more than 55 pounds though they currently 

typically operate in restricted airspace. A small sampling of the wide variety of UAS is shown in Figure 3. 

 

 

 

a) WASP III 1 lbs (USAF Photo) 

 

b) FASER 19.72 lbs (NASA Photo) 

 

c) AirSTAR 49.6 lbs (NASA Photo) 

 

d) MQ-8B Fire Scout 3,150 lbs (USN Photo) 

 

e) Ikhana Predator B, 10,500 lbs (NASA Photo) 

 

f) Global Hawk, 25,600 lbs (NASA Photo) 

Figure 3: Example UAS 
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b. Consideration of Class and the Pilot/Operator 

Throughout 2016, the FAA has been moving more rapidly to develop rulemaking for UAS. The focus 

thus far has been on those small UAS that weigh 55 pounds or less and are designed to operate primarily 

at altitudes below 500 feet. Rules for operating vehicles in this class were released on June 21, 2016 (Ref. 

15). Operational limitations include the following: 

 Visual line-of-sight operations only; 

 Daylight-only operations; 

 Maximum groundspeed of 100 mph (87 knots) and a maximum altitude of 400 feet AGL; and 

Operator must hold or be under the direct supervision of someone who holds a remote pilot certificate. 

Above this UAS class, the sizes and weights of current vehicles including those exemplified in Figure 3 

are significantly larger and significantly heavier. Furthermore, these vehicles are designed to operate at 

much higher altitudes and much greater speeds than the under 55 pound vehicles. While the majority of 

these vehicles only operate in restricted airspace, the FAA has recently awarded the General Atomics 

Aeronautical Systems Predator C Avenger an Experimental Certificate (EC) that enables this vehicle to 

perform “routine operations” within the NAS. This is the first jet-powered remotely piloted aircraft to 

receive an FAA EC. 

A unique group of UAS vehicles that falls below the under 55 pound weight is the micro UAS. The FAA 

is currently considering rules for this weight class that is defined as 250 grams (0.55 pounds) or less (Ref. 

16). These vehicles are small enough to operate indoors as well as outdoors. With configurations that can 

vary significantly (e.g., flapping wing designs, vehicles with perching capabilities, etc.) and feature 

unique dynamic modes, it is beyond the scope of this Phase I project to address these vehicles, but they 

will be considered in Phase II. 

While one can consider further weight classifications, the following weight classifiers will be used herein 

as a starting point: 

 UAS (Weight > 55pounds); 

 sUAS (0.55 < Weight < 55 pounds); and 

 UAS (Weight < 0.55 pounds). 

Other classifiers such as speed, type (e.g., fixed wing, rotary wing, ducted fan, etc.) will be captured by 

vehicle mission as discussed next. 

The role of the pilot is an important factor in defining UAS handling qualities. For a remote pilot that is 

actively engaged in flying the vehicle, issues such as latency in pilot inceptor to vehicle response may be 

an important factor and must be reflected in the requirements. On the other hand, an autonomous system 

can be considered an on-board “pilot” where the impact of the guidance, navigation, and control functions 

of the software must be considered in the handling qualities assessments. Thus, the role of the 

pilot/operator will be reflected in the requirements that are linked to a given MTE. 

Historically, handling qualities are defined for piloted aircraft. UAS operations may be: 

 Remotely Piloted; 

 Remote Pilot Assisted (delegated or supervised);  

 Fully Autonomous; or  

 A combination of the three.  
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The above correspond with the four levels of autonomy as defined in the DoD Unmanned Systems 

Integrated Roadmap (Ref. 17). These definitions are repeated below: 

 Level 1 – Human Operated: The human operator makes all decisions. The system has no 

autonomous control of its environment although it may have information-only responses to 

sensed data. 

 Level 2 – Human Delegated: The vehicle can perform many functions independently of human 

control when delegated to do so (e.g., autopilot functions). This level encompasses automatic 

controls, engine controls, and other low-level automation that must be activated or deactivated by 

human input and must act in mutual exclusion of human operation. 

 Level 3 – Human Supervised: The system can perform a wide variety of activities when given 

top-level permissions or direction by a human. Both the human and the system can initiate 

behaviors based on sensed data, but the system can do so only if within the scope of its currently 

directed tasks. 

 Level 4 – Fully Autonomous: The system receives goals from humans and translates them into 

tasks to be performed without human interaction. A human could still enter the loop in an 

emergency or change the goals, although in practice there may be significant time delays before 

human intervention occurs. 

When actively engaged in flying, the pilot provides GNC functions. Autopilots can provide regulation of 

some of these functions, but they are not autonomous functions, they are regulators. Autonomous 

functions feature a decision making capability that attempts to replicate or even improve upon piloted 

operations. If a UAS mission is to, for example, station keep over a given location it matters not in terms 

of handling qualities whether it is remotely piloted or autonomous, the mission requirements will be the 

same. 

As introduced herein, a number of classification techniques of varying complexity were considered. 

Because UAS handling qualities was defined using the mission-oriented approach, a simple classification 

technique based on FAA weight classifications was employed. Further classifications will come naturally 

from the MTE selection that will then identify handling qualities requirements or flight test procedures 

that will be used to predict handling qualities via the analysis path and verify handling qualities via test. 

5. Selected sUAS Mission Task Elements 

To demonstrate the Figure 1 process, example mission task elements (MTEs) were defined for the fixed 

wing and multirotor flight tests that were conducted by the University of Minnesota and at NASA LaRC. 

Detailed descriptions of these MTEs and those provided by UAS Stakeholders are in Appendix B. The 

format for the MTEs is as shown below: 

MTE Name (Precision/Aggressiveness Level) 

Autonomy Level 

 Should specify expected operator intervention. 

 If MTE can be flown with differing amounts of intervention, and any part of the MTE changes as 

a result, consider creating separate MTEs for the different levels of autonomy. 

Task Objectives 

 Approximately two to four high-level bulleted items that will help the user determine why this 

MTE should be used, and the expected outcomes. 
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Task Description 

Brief but explicit description of the task, including test course layout and specialized equipment/displays 

needed. Keep the MTE simple in operation. If it becomes too elaborate, consider breaking it into two (or 

more) MTEs. Be careful setting time as a task parameter. Consider whether time is a part of the task 

description (meaning it must be met) or a performance limit (meaning it is a measure of goodness). 

Desired Performance 

 Bullet list of the expected level of task performance for a UAS that is satisfactory without 

improvement. 

 List those parameters you think are important, even if the limits for now are just listed as “TBD.” 

Adequate Performance 

 Bullet list of the expected level of task performance for a UAS that has deficiencies that warrant 

improvement. 

 List those parameters you think are important, even if the limits for now are just listed as “TBD.” 

Notes for developing this MTE: 

1. Any additional comments are provided here. 

Included in Appendix C are the following fixed wing MTEs: 

 Flightpath Regulation in the Presence of a Discrete Gust  

 Flightpath Regulation in the Presence of a SOS Disturbance 

o Altitude Disturbance 

o Attitude Disturbance 

 Waypoint Following 

 Precision Offset Landing 

Also included in Appendix C are the following rotary wing MTEs: 

 Precision Hover 

 Lateral Reposition 

 Vertical Reposition 

 Landing. 

MTEs provided by UAS Stakeholders include the following: 

 Unusual Attitude Recovery, Nose-High provided by Dr. Nate Richards of Barron Associates, Inc. 

 Scaled ADS-33E-PRF Rotary Wing MTEs provided by Dr. Christina M. Ivler, University of 

Portland, and Chad Goerzen, U.S. Army 

 Hover MTE under First Person View Cueing provided by William Geyer, US Navy Test Pilot 

School 
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D. REQUIREMENTS IN A UAS HANDLING QUALITIES SPECIFICATION 

A significant portion of this technical effort has been devoted to the development of a specification for 

UAS that can be used for design, verification, validation, and airworthiness. It was recognized from the 

outset that the quantitative documentation to finalize such a specification simply does not exist, so the 

version included in Appendix A is a proposed format for the final specification. While it has been 

extensively improved and modified over the duration of the contract, it is still lacking in many details. 

1. Assumptions 

Several assumptions were made before the specification development work even began. The most 

important of these are as follows. 

a. Breadth of Application 

An “Unmanned Aircraft System” can consist of multiple elements: the air vehicle, the ground control (or 

monitoring) station, and the operator (or observer). The degree of autonomy determines the details of 

each of these elements. It was recognized from the start that the creation of a specification to cover 

requirements for both the air vehicle and the ground station would be an overwhelming task, so the 

specification limited in scope to the air vehicle alone. 

For this reason, the subject of the draft specification is limited to the Unmanned Aircraft, abbreviated UA. 

The “UA” designation is not common in practice, but is in keeping with a military-based flight control 

systems document issued by the SAE, Aerospace Recommended Practice ARP94910, titled “Aerospace - 

Vehicle Management Systems - Flight Control Design, Installation and Test of, Military Unmanned 

Aircraft, Specification Guide For” (Ref. 18). 

The abbreviations “UAS” and “UAV” are also used in the draft specification, but in the following 

context: UA refers only to the Unmanned Aircraft, the airborne element of a larger Unmanned Aircraft 

System. In this usage, UA is synonymous with the abbreviation UAV, Unmanned Aerial Vehicle. UAS 

can include a Control Station (CS) and other elements. Some requirements in the draft specification have 

an implicit impact on the CS for manually controlled UA; time delay in response to manual control 

commands is one example. Work must be performed to fully define the requirements for the CS, but that 

work is not in the scope of this effort. 

b. Mode of Operation 

UA for which this draft specification is intended are likely to be operated autonomously for at least part of 

their intended missions. This is considered to be the biggest challenge to setting “handling qualities” 

requirements, as those requirements must of necessity look unlike most that are used in military and civil 

specifications for flying qualities or airworthiness of piloted aircraft. Instead of focusing on inner-loop, 

angular attitude/rate/acceleration control, the emphasis is more on outer-loop flight path control and 

regulation, areas not commonly considered to be high-priority for pilot-in-the-loop handling qualities. 

These areas are, however, critical for the completion of an autonomous mission. 

c. Configuration 

Most commercial UA, at least in the near future, are likely to be powered-lift for at least a portion of their 

normal operation. For missions as envisioned by commercial operators such as Amazon and Google, 

fixed wing airplanes will not do the job: package delivery or loitering in confined spaces requires the 

ability to hover and maneuver in those spaces. Variable-configuration platforms such as tilt-rotor or tilt-

wing designs are not going to be needed if travel distances are kept reasonably small: there will be no 

advantage to converting between vertical-takeoff-and-landing (VTOL) and airplane modes if forward 

flight speed is not a priority. Longer distances will dictate wing-borne lift for speed and efficiency, so 

while the focus here is on VTOL UA, some provision has also been made for conventional aircraft, and 

for variable-configuration aircraft. 



 

 

 

 

 

 

 

18 

d. Operating Airspace 

Small commercial UA may be expected to operate within the National Airspace System (NAS), but will 

most likely spend their lifetimes operating below NAS ( 500 ft), in urban, suburban, or rural 

environments. The consequence of this assumption is that much tighter control of position will be 

required to fly around obstacles (e.g., foliage, buildings, power lines, birds, other UA, etc.), and for more 

of the flight time in a typical mission, than is required to cruise at altitude with only a fraction of the flight 

spent near the ground. 

e. Focus of the Requirements 

Focus is limited to dynamic response, as opposed to design guidance or performance. The intent of this 

specification is verification of satisfactory flight characteristics of UA. In deference to the myriad of UA 

types already in operation, or in final design stages, we have made a conscious effort to avoid, to the 

extent possible, the adoption of any requirements that will inhibit or favor one design over another. While 

we intend this specification to be adopted and applied at the start of any new design process, we do not 

wish to direct the course of the design. 

As UA handling qualities requirements are defined they should meet the following three criteria: 

1) Validity – Validity implies that the metrics are associated with properties and characteristics that 

define the environment of interest. Specifically, in this application, valid metrics will differentiate 

between desirable, acceptable, and unacceptable handling qualities. 

2) Selectivity - Selectivity demands that the metric differentiate sharply between “desirable” 

systems and those that are merely “acceptable.” This assures that there will be no question at all 

about selecting between “desirable” and “unacceptable” per se. 

3) Ready Applicability – Ready applicability simply requires that the metric be easily and 

conveniently applied. Its expression in terms of readily available system parameters should be 

compact; procedures for its analytical evaluation should be convenient; and it should be easily 

measured in terms of either simulation models and/or empirical operations on the actual airplane 

and its systems. 

f. Limitations to the Current Specification 

There are two clear limitations to the content of the draft specification. 

1) It deals almost entirely with quantitative requirements; development of Mission Task Elements (MTEs) 

has been a separate effort. Integration of the quantitative requirements with relevant MTEs will be done 

once both areas are better defined. Placeholders for tentative MTEs have been included to allow 

integration when they are available. 

2) There are no values stated for any of the quantitative requirements. While the contract has provided for 

the assembly of a limited set of dynamic response characteristics, the data base required to set any of the 

limiting values defined in the specification simply does not yet exist. The hope is that, as this draft 

specification is disseminated among the user community, the necessary data will become available, and in 

the not-too-distant future a realistic and useful set of criterion values will be incorporated. 

2. Format of the Draft Specification 

There are two published and accepted flying qualities specifications in use today. Both, however, are 

written specifically for piloted aircraft, assuming the pilot is actually onboard the aircraft. Those 

specifications are: 

1) MIL-STD-1797B, “Department of Defense Interface Standard, Flying Qualities of Piloted Aircraft” 

(Ref. 11), released in 2006. This document has a limited distribution, and while it is intended for almost 

any aircraft – including fixed wing airplanes, V/STOLs, and rotorcraft – the contents are geared almost 
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entirely toward fixed wings, and in particular fighter airplanes. In addition, the detailed requirements are 

now twenty years old, or more, and lack coverage for very highly-augmented or highly-automated 

airplanes. So the fact that access to MIL-STD-1797B is limited has had little impact on its application 

here; more, it is that the requirements are simply not very relevant. 

2) ADS-33E-PRF, “Aeronautical Design Standard, Performance Specification, Handling Qualities 

Requirements for Military Rotorcraft” (Ref. 12), is a US Army-developed document for rotorcraft. This 

specification is much more aligned with the intent of the UA specification, and the format of the 

specification and of many of the detailed requirements meshes with the UA specification. In particular, 

ADS-33E-PRF incorporates both quantitative requirements and qualitative flight tasks (mission task 

elements, MTEs) and gives them equal weighting in the determination of handling qualities. We have 

adopted this philosophy in the development of the Appendix A specification – with the obvious exception 

that our MTEs will of necessity be more quantitative than qualitative in form, since there may not be a 

pilot in the loop to assess handling qualities. Unlike MIL-STD-1797B, the quantitative requirements in 

ADS-33E-PRF are suited for both unaugmented and highly-augmented aircraft, meaning they are 

amenable to the range of operation we wish to cover in the final UA specification. It is for these reasons 

that we have in general structured our draft UA specification in the format of ADS-33E-PRF. 

In addition, it is recognized that many UAVs, and perhaps in the not-too-distant future, all UAVs, will be 

controlled entirely by onboard sensing and command systems. The implications for overall airworthiness 

– the ability, for example, to safely operate in civil airspace and execute guidance and navigation 

commands that comply with FAA requirements – are that more than just dynamic response requirements 

are needed. Fortunately, there is a document that has been beneficial in drafting airworthiness 

requirements into the draft UA specification. That document is SAE Aerospace Recommended Practice 

ARP94910, “Aerospace - Vehicle Management Systems - Flight Control Design, Installation and Test of, 

Military Unmanned Aircraft, Specification Guide For,” mentioned above (Ref. 18). A number of the 

proposed requirements in the draft UA specification are based on similar statements in ARP94910. 

3. Stakeholder Involvement 

Several versions of the draft specification were distributed to UAV stakeholders and interested parties. 

Comments and critiques were solicited; to the extent possible, all suggestions for improvement have been 

incorporated into the specification in Appendix A. Where the changes were deemed to be less relevant, 

mention of the suggested changes is included in the background discussion in the appendix. 

The variety and detail of suggested changes that were received reflects the intense interest in this topic. 

Because the draft specification is just a start, and real data are needed to formalize the requirements, it 

was not possible to incorporate every suggested change or addition proposed by the reviewers. Those 

changes have not been discarded, by any means, and it is the intent of the authors of this report that the 

collected stakeholder comments be retained and revisited when sufficient real data, and sufficient 

funding, can be obtained. 

Successful development of the final specification depends entirely on continued interaction with members 

of the UAV community. It is hoped that the draft specification will continue to evolve, and as it does, 

more inputs will be received from the user community. 

4. Dynamic Scaling 

Decades of criterial development based on piloted simulation and flight test evaluations were used to 

create the piloted handling qualities specifications and standards described herein. Thus, there is a strong 

desire to use this foundational work as a basis for establishing UA requirements. To this end, work is 

underway, including by UAS Stakeholders that have presented results at the workshops hosted as part of 

this program and elsewhere, to explore the use of dynamic scaling with existing handling qualities criteria 
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and mission task elements. Use of scaling methods was briefly explored as part of this program the results 

of which can be found in Appendix F. 

The overall conclusion from these analyses is that the dynamics of UltraStick family of UAS, flown in 

this program as described in later sections of this report, is qualitatively very similar to the Cessna 172 

aircraft. The mass properties scale well between the aircraft, and subsequently, modal frequencies and 

damping are shown to be qualitatively close under appropriate flight conditions. The Froude scaling 

process is also validated by scaling the UltraStick120 down by 66% and compared to the known 

dynamics of UltraStick25e. The second part of the analysis involved scaling in the opposite direction, 

where the dynamics of both UltraStick vehicles are scaled up to the dimensions of the Cessna 172 aircraft. 

This analysis was primarily carried out in order to evaluate the flying/handling qualities of UltraStick120 

and 25e using standards and requirements established for Cessna-sized (Class I as described in Ref. 11) 

aircraft. The analysis shows that the UltraStick vehicles met or exceeded all Level 1 requirements in the 

longitudinal as well as lateral-directional axes. 

This analysis (carried out for cruise – Category B as described in Ref. 11) can be extended to Category C 

flight conditions that include terminal flight conditions, landing and take-off. Further research using data 

from different UAS and manned aircraft can help establish Froude-scaling based analysis as an important 

step for evaluating handling qualities for small UAS. 

5. Overview of Uncertainty Analysis Methods Applied to Handling Qualities 

The entirety of this section is derived directly from Ref. 19, which documents previous work conducted 

by STI for NASA regarding the analysis of robust flutter boundaries. 

Traditional handling qualities prediction uses a deterministic rigid body simulation model with 

parameters representing the “as designed” aircraft to calculate metrics such as Aircraft Bandwidth as a 

function of mission task (i.e., levels of precision and aggressiveness) to predict handling qualities. While 

not incorrect, outside of the simulation environment, nothing is exactly “as designed.” Flight control 

system command path and feedback path elements including nonlinearities all add uncertainty to the 

predicted handling qualities. Thus, handling qualities level boundaries become a confidence interval, 

rather than an absolute bound. 

At its most basic level, the purpose of uncertainty analysis is the estimation of the “degree-of-confidence” 

of the output of a system or model based on known uncertainties in the inputs and system characteristics 

or model parameters. Input and parameter uncertainties are propagated through a model and the 

distribution of the model outputs constitute the uncertainty. 

Traditional stochastic uncertainty analysis techniques require making multiple, and often many simulation 

runs. The number of required runs typically scales by a power law based on the number of inputs and 

parameters with defined uncertainty. Analysis quickly becomes time prohibitive for all but the shortest 

simulation runs. Therefore, goals are to produce efficient, yet still accurate, models and to reduce the 

number of required simulation runs. This is accomplished with the use of Design of 

Experiments/Response Surface Methods and Robust Stability/-analysis. The widely accepted Monte 

Carlo approach is also utilized as an effective, but brute force method. Overview descriptions of each 

uncertainty analysis method follow. 

a. Traditional Stochastic Monte Carlo Methods 

Monte Carlo methods describe a class of computational algorithms that use repeated random sampling to 

compute results. These methods primarily involve simulating a physical system repeatedly while 

randomly changing parameters that the system is dependent on for each simulation. Results are collected 

and can be analyzed statistically to determine means, standard deviations, maxima, minima and other 

statistical parameters. With several simulation runs, the results of Monte Carlo approach a continuous 
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surface. The optimal number of runs is that which is a minimum number but produces relatively identical 

statistical results if more runs are made. By this manner, that minimal amount of runs represents the 

results as if infinite runs were made. Monte Carlo analysis is used when it is impossible or infeasible to 

compute exact results with a deterministic approach. 

Monte Carlo methods provide a reliable means to analyze problems that are concerned with uncertainty. 

Uncertain parameters of a physical system are randomly sampled over several runs and the results 

represent system behavior subject to these uncertainties. Sensitivity to the uncertain parameters is realized 

by the statistical analysis of the Monte Carlo results. The drawback of these methods is the large amount 

of runs can be computationally burdensome. If the physical system being modeled is complex and takes a 

relatively large amount of computational time to run, this burden is amplified by the large amount of 

simulation runs required to obtain meaningful statistical results. 

b. Design of Experiments and Response Surface Methods (DOE/RSM) 

Any system can be described as an input/output relationship. The outputs of a system are dependent on 

the system inputs and independent parameters. With highly complex or empirical systems that feature 

large amounts of uncertainty, the input/output relationship of the system in question may be difficult to 

determine. Response Surface Methods (RSM) are used as an accurate approximation to characterize a 

system’s outputs based on variations of the system’s inputs and parameters. The Design of Experiments 

(DOE) /RSM technique is used to determine an accurate approximate model of a system with minimal 

sets of input required. The resulting analytical model described by the Response Surface Equation (RSE) 

is, in most cases, in a simpler form (usually a polynomial) than the original model and is thus more 

efficient while retaining a level of accuracy. 

DOE (Ref. 20) and RSM (Ref. 21) are used to significantly reduce the number of full model simulation 

runs. While Monte Carlo generates random values within the range of input and parameter values, DOE is 

used to purposely select input and parameter values in order to maximize the information available from 

the output. 

RSEs are used to characterize a system’s outputs (referred to as “targets”) based on variations in its inputs 

and parameters (referred to as “factors”). The DOE/RSM technique chooses a RSE that is appropriate for 

characterizing a particular system, and then designs a set of experiments that will yield maximal 

information for the regression analysis to fit the RSE to the data. This is the fundamental difference 

between DOE/RSM and Monte Carlo: Monte Carlo makes no assumption about the relationship between 

the model output and its inputs/parameters, while DOE/RSM does. The down side for DOE/RSM is when 

the form of the RSE is poorly selected, it yields poor or misleading information. The advantage is that, 

with the properly selected RSE, the number of full model runs required is cut by an order of magnitude or 

more. 

c. -analysis Methods 

-analysis can be used to determine a mathematically guaranteed robust stability point (e.g., handling 

qualities boundary) subject to a specified bounded uncertainty. Robust stability and -analysis deal with 

the stability of the interconnections of stable operators. The Small Gain Theorem serves as a basis for the 

determination of stability of the interconnections of stable operators. The small gain theorem states that a 

closed-loop feedback system of stable operators (Figure 4) is internally stable if the loop gain of those 

operators is stable and bounded by unity (Ref. 22). 
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Figure 4: Closed-Loop Feedback System of Stable Operators 

In Figure 4, the operators P and  can be represented by stable transfer function operators. By direct use 

of the small gain theorem and properties of the norm it can be shown that the interconnection is robustly 

stable if Eq. (1) is satisfied. 
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In the above equation, 


 denotes the infinity norm. Robust stability is analyzed with respect to a set of 

perturbations. The stability of the interconnection involves a known nominal plant and unknown bounded 

perturbations (or uncertainties) to that plant. Figure 4 represents a general feedback interconnection of 

stable operators. Without loss of generality, the known nominal plant dynamics can be represented by P 

and the unknown perturbations to that plant can be represented by . The true plant is assumed to be a 

known nominal plant value with perturbations that represent the plant’s uncertainty. The small gain 

theorem can be used to analyze the stability of the interconnection if the operators are stable and bounded 

by unity. Although the small gain theorem guarantees stability of the system, it is overly restrictive since 

the structure of the uncertainty is not considered. The  block, representing the uncertainty in the nominal 

plant, has a known structure and given this knowledge of the uncertainty structure, a less conservative 

measure of the robust stability of the system, which is based on the small gain theorem, can be 

formulated. This referred to as : the structured singular value (Eq. (2)). 

 
 

1
( )

min ( ) : det( ) 0
P

I P





   


 (2) 

In the above equation,  represents the maximum singular value and I is the identity matrix. Equation (2) 

is an exact measure of robust stability for any system with a known structured uncertainty since it only 

considers uncertainty of the form defined by , which represents the bounded space of all possible 

uncertainty descriptions under the known structure. Given the system in Figure 4, the plant P is robustly 

stable with respect to the set  if and only if Eq. (3) is satisfied. 

 1
( )P




   (3) 

 (Eq. (3)) is equivalent to the small gain theorem (Eq. (1)) if the uncertainty is unstructured. One 

problem with  is that it is often difficult to compute. Closed form solutions exist for only a small number 

of uncertainty structures. Due to this, upper and lower bounds are computed to represent worst and best 

case  values for generalized uncertainty structures. 

It is necessary to utilize the upper bound on  as a basis for analyzing the smallest  matrix that drives the 

interconnection unstable since the upper bound is guaranteed. The lower bound is not guaranteed and may 

produce a  matrix that drives the plant unstable. In practice, computing upper and lower  bounds is an 

optimization problem and is described extensively in public domain literature (Refs. 23, 24, and 25).  
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E. UAS HANDLING QUALITIES PROCESS DEMONSTRATION 

1. Fixed Wing UAS 

a. University of Minnesota Laboratory and Flight Test Facilities 

1. Aircraft Description 

The UAS laboratory at UMN maintains the UltraStick series of fixed wing UAS to serve as testbeds in 

several ongoing research projects such as control law design, navigation and guidance and fault detection, 

isolation and reconfiguration (Ref. 26). The series consists of the UltraStick120, UltraStick25e and the 

UltraStick mini. The laboratory also supports UAS related research of other organizations by providing 

flight-testing services on these testbeds. Two vehicles were flown as a part of this test campaign, the 

UltraStick25e and the UltraStick120 and are shown in Figure 5. The flight data shown and discussed here 

are from the UltraStick120 only. While only the UltraStick120 results are reported on here, this vehicles 

design is widely used in the sUAS industry and is representative of a broad category of vehicles. 

 

Figure 5: UltraStick120 (center) and UltraStick25e Aircraft 

The UltraStick120 was a commercially available, RC hobbyist airframe. The UMN UAS Lab converts 

these airframes into UAS platforms for research. Relevant size and performance values for the 

UltraStick120 are included in Table 1. 

Table 1: UltraStick120 Aircraft Parameters 

Wingspan 1.92 m 

Chord 0.43 m 

Length 1.73 m 

Airframe Weight 6.0 kg 

Max Weight 10.0 kg 

Cruise speed 23 m/s (typical) 

Stall speed at Max Weight 13 m/s 

Airspeed range 10-41 m/s 

The aircraft is equipped with a commercial RC hobbyist control system (propulsion system, batteries, 

receiver, and servos) for manual control as well as additional systems for data collection and autonomous 

flight modes. A system-level design has been implemented that allows the pilot to take manual control of 
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the aircraft. Further, the manual control system failsafe defaults to a descending, power-off spiral to keep 

the aircraft contained within the test range. 

It is powered by an electric motor and has removable wings for transport. The UltraStick120 has a 

conventional horizontal and vertical tail with rudder and elevator control surfaces. The aircraft has a 

symmetric airfoil wing with aileron and flap control surfaces. The rudder and elevator are actuated by 

Hitec HS5245MG servos. The flaps and ailerons use Hitec HS5625MG servos. The aircraft is propelled 

by a 1900W Actro 40-4 brushless electric motor with a Graupner 14 x 9.5 folding propeller. Power for the 

motor comes from two 5000mAh 5-cell lithium polymer batteries connected in series. The servos are 

powered by a separate 1350 mAh 3-cell lithium polymer battery. The main internal payload bay is located 

in the fuselage, directly under the wing; additional payloads may be accommodated in the aft fuselage or 

externally. The UltraStick120 aircraft has space aft of the avionics bay for additional sensors or payloads. 

sUAS with these general specifications and configuration are typical of the sUAS community at large 

2. Goldy3 Flight Control System 

The Goldy3 flight control system was designed to integrate with a RC hobbyist control system and allow 

complete autopilot functionality. The system was developed in house by the UMN UAV Lab. The system 

allows for data collection and autonomous flight modes. A system-level design has been implemented 

that allows the pilot to take manual control of the aircraft via a programmed micro-controller. A 

functional diagram of this system is in Figure 6. 
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Figure 6: Avionics Functional Diagram, Based on UltraStick25e Installation 

Commands are sent to the aircraft via a hobbyist RC transmitter and receiver. The receiver sends 

commands and communicates with the FMU via a SBUS-2 protocol. The FMU controls the “safety/auto” 

switch; in “safety” mode, commands from the receiver are forwarded to the servo actuators. In “auto” 

mode, commands from the flight computer are sent to the servo actuators. The flight computer receives 

flight data from sensors including GPS, Inertial Measurement Unit (IMU), and pressure transducers. Data 

from the flight computer is downlinked through a radio modem to a ground control station where 

researchers can monitor its operation. 
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At any time, the pilot can revert to the “safety” mode via the “safety/auto” switch. Additionally, failsafe 

commands are set in the RC receiver and FMU such that in the event of a lost link, the receiver switches 

the aircraft to “safety” mode, cuts power to the motor, and puts the aircraft in the previously mentioned 

descending spiral. 

3. System Architecture 

For system identification analysis, the system architecture shown in Figure 7 was used. The bare-airframe 

(or plant) is noted by A/C, the actuators are identified by ACT, and any flight control system or feedback 

compensators are defined by C and FB respectively. Each of A/C, ACT, C, and FB are in general multi-

input-multi-output systems. The pilot commands are defined by the vector r and denote commanded 

aircraft states (e.g., pitch-command or roll-command). In some cases, the computer may command some 

of the r inputs (e.g., for velocity or speed-command inputs). The commands to the actuators are defined 

by the vector u. The vector defines the bare-airframe control surface deflections. Both u and  also 

include the throttle command and input. The uex signal is the location where computer-commanded input 

excitations are applied. 

 

Figure 7: System Architecture 

4. University of Minnesota Flight Test Facilities 

The flight test facilities, shown in Figure 8, consist of the UAV laboratory on the UMN campus and the 

airfield located at the UMore Park Test Range. The aircraft maintenance and pre-flight checkouts 

(simulation-in-the-loop, hardware-in-the-loop, etc.) occur in the UAV laboratory. The flight tests took 

place at the UMore Park Test Range near Rosemount, MN. The Test Range is located on sparsely 

populated agriculture fields owned by the UMN. Flights are conducted year-round. A winter flight is 

shown in Figure 8. 

The UMore Park Test Range is located within Class G airspace. The test aircraft must remain within the 

area centered at 44o 43’32.71”N and 93o 4’44.49”W, with a radius of 0.28 NM and a ceiling of 400 feet 

Above Ground Level (AGL). All flights are coordinated with the Rosemount Research and Outreach 

Center Manager. In addition, the University of Minnesota UAV lab has obtained the proper Certificates of 

Authorization (COAs) for legal operation of UAS flights at the UMore Test Range. Non-participants are 

kept clear of this zone during operations. The dimensions comply with the 1-mile lateral and 400 foot 

ceiling limits and were created to avoid structures and major roadways while staying within direct line of 

sight of the operations crew. Restriction to the flight research zone minimizes risk to non-participants. 

The Operations Lead, Pilot, and Observer ensure that the aircraft remains within the flight research zone 

and will abort the mission if there is a risk of exiting the area. Failsafes on the aircraft ensure that the 

aircraft will remain in the test area in the event of link loss. Launch and recovery are conducted from a 

900 foot by 60 foot turf runway aligned in an East-West direction. A right pattern is used when 
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launching/recovering in an east-bound direction and a left pattern is used when launching/recovering in a 

west-bound direction. These patterns are used to avoid overflying the operations crew. 

 

a) Laboratory 

 

b) Airfield 

Figure 8: UAS Flight Test Facilities at the University of Minnesota 

b. Model-based Prediction of Handling Qualities 

Dynamic models that can provide complete system output to command input responses are used to predict 

handling qualities as illustrated in Figure 9. A description of the UltraStick120 model provided by UMN 

is included next. 

 

Figure 9: Predicted Handling Qualities 

1. UltraStick120 Model 

The UMN laboratory provided MATLAB/Simulink-based (Ref. 27) simulation models for the UltraStick 

series. These models are typically used to obtain linear state-space models at different trim conditions, to 

enable control/navigation and other function software design, and to carry out simulations in closed loop 

with the developed software before actual flight-testing. Depending on the UltraStick UAS simulated, 

these models have nonlinear rigid body dynamics coupled with either a linear, coefficient-based 

aerodynamic model or a look-up-table-based nonlinear aerodynamic model. Data for the look-up table 

have been obtained from a wind tunnel test of the UltraStick mini and other additional and extensive 

testing of the UltraStick120.  

The Matlab/Simulink UAS simulation package provided by UMN is capable of modeling 3 different 

airframes: 1) UltraStick120, 2) UltraStick25e and 3) miniMUTT (flex wing UAS). The simulation 

package consists of different Simulink models and accompanying Matlab scripts, .mat files and Simulink 

Library blocks. The Library blocks are key to maintaining consistency across the different models and 

making it easier to modify or swap different blocks.  
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The UltraStick120 bare airframe models feature standard aircraft inputs, states, and outputs. The inputs 

include throttle, elevator, rudder, left/right aileron, and left/right flaps. The states include the attitudes, 

rates, velocities of the vehicle, and Earth relative position. The outputs include the body attitudes, rates, 

accelerations, airspeed, angle of attack, flight path angle, sideslip, and altitude. 

A simple first-order model is used or the elevator, aileron, rudder, and flap actuator control surfaces. The 

throttle is non-dimensional and limited to 0-1. The original actuators models for each control surface are 

given in Table 2. 

Table 2: Actuator Models 
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The aircraft controller implements a simple pitch and bank attitude tracker. The pitch attitude tracker is 

shown in Figure 10. The internals of the Pitch Tracker block are shown in Figure 11. The Roll Tracker 

block is an exact duplicate, but with unique gains. A yaw damper was included as a simple washout filter 

in the yaw rate to rudder feedback loop. As flown with the UltraStick120, the pitch axis featured an 

attitude command system with speed hold, while the roll axis featured an attitude command, and the yaw 

axis featured a rate command system. 

 

Figure 10: Pitch Attitude Tracker 

 

Figure 11: Representative Tracker Block 
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2. Exemplar Model Frequency Responses 

The UltraStick120 model provided by the University of Minnesota was exercised to generate the pitch 

attitude to pitch attitude command frequency responses shown in Figure 12 for both the cruise and 

approach flight conditions. In the figure the solid lines represent the magnitude response, while the 

dashed lines represent the phase response with colors selected to match the Nominal case (blue), Aft CG 

case (black), and Added Time Delay case (red) as indicated in the plot legend. The magnitude responses 

of all three cases indicate the signature of an attitude command system with zero dB magnitude at low 

frequencies. The added time delay cruise case indicates reduced closed-loop stability via the lightly 

damped magnitude response peak and the dramatic phase roll off. This characteristic is present, but less 

pronounced in the approach case. 

 

a) Cruise, 23 m/s 

 

b) Approach, 17 m/s 

Figure 12: UltraStick120 Model Pitch Attitude to Attitude Command (/c) Frequency Responses 

3. Exemplar Handling Qualities Metric – Aircraft Bandwidth 

The Aircraft Bandwidth criteria, measured from a frequency response (Bode plot) of attitude to control 

input (position or force), were developed for the evaluation of handling qualities of highly-augmented 

airplanes where more conventional criteria could not be easily applied (Ref. 28). These criteria are 

included in MIL-STD-1797A and formed the basis of the US Army’s rotorcraft airworthiness standard 

ADS-33E-PRF. The fixed wing requirements for handling qualities levels as published in MIL-STD-

1797A have been found to be much too stringent and have been adjusted significantly, especially given 

the addition of a requirement on pitch rate overshoot. Furthermore, the requirements have also been 

adapted to the prediction of PIO susceptibility (Ref. 29), as will be documented shortly. 

The fundamental theory behind “Aircraft Bandwidth” – which is not the “classic bandwidth” that is used 

in other control systems applications – is that the principal stability characteristics of the aircraft can be 

described by the frequency response of angular attitude for control inputs. This is true, at least, for 

continuous closed-loop control of attitude by the pilot, and when attitude is used as an inner loop to 

generate changes in load factor or flight path. The concept is that the aircraft should have good inherent 

stability, whether from basic design or by augmentation with a SAS. The lower this inherent stability, the 

more stability the pilot must provide to perform required tasks, resulting in increasing workload, degraded 

performance, poor flying qualities, and ultimately, PIO. 

There are three measures in the criteria that capture the basic pitch attitude characteristics of the aircraft 

(Figure 13).  The first is the “phase margin Bandwidth frequency,” the lowest frequency for which there 

is a phase margin of 45 degrees. The higher this frequency, the better attitude follows control inputs: if 

phase margin is 180 degrees, that is, phase angle is zero, then output follows input exactly.  At the 

frequency for 0 degrees phase margin – the “neutral-stability” or 180-degree frequency – attitude is 

exactly out of phase with inputs. If the phase margin Bandwidth frequency is very low, the pilot must 

generate lead to improve the overall response of the pilot-plus-aircraft system in order to do a task. 
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The second measure is the “gain margin Bandwidth frequency,” and it is basically the same type of 

measure, except it determines the change in effective-aircraft dynamics the pilot will encounter if closed-

loop gain is increased by a factor of 2 (6 decibels). 

The third measure, inappropriately named “Phase Delay,” is really a measure of how rapidly the phase 

angle of attitude/control inputs degrades at high frequencies. The assumption is that, if the pilot should 

find it necessary to operate at higher frequencies – which can be done with closed-loop stability only if 

the pilot generates lead compensation – a gradually-degrading phase curve is much better than a rapidly-

degrading one.  

 

Figure 13: Parameters for Attitude Bandwidth and Phase Delay 

There are aircraft where PIO is unlikely on the basis of the attitude Bandwidth characteristics alone. In 

some instances, high pitch rate overshoot is a contributor, and limits are placed on the frequency-domain-

based metric, G(q) (Figure 14). In others inadequate flight path control is the culprit, so limits are placed 

on flight path Bandwidth frequency,


BW . 

 

Figure 14. Pitch Rate Overshoot Parameter 
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4. Predicted Aircraft Bandwidth Parameters from UltraStick120 Model 

The UltraStick120 model frequency responses were used to identify the Aircraft Bandwidth parameters 

for the three configurations. The resulting phase delay versus bandwidth frequency plots are shown in 

Figure 15. As indicated in Figure 13, for an attitude command system, the bandwidth frequency is the 

measured phase bandwidth frequency. All three configurations feature higher bandwidth frequencies than 

traditionally seen with piloted aircraft – a dynamic scaling effect as discussed in Appendix F. The phase 

delay of the Added Time Delay case at both flight conditions is approaching a region where impact on 

mission performance could be a concern. There is an overall decrease in bandwidth frequencies for all 

three cases in the approach flight condition. 

 

a) Cruise, 23 m/s 

 

b) Approach, 17 m/s 

Figure 15: Aircraft Bandwidth Model Parameters for the UltraStick120  

c. System Identification Flight Tests 

A series of system identification flights were conducted to revise the vehicle models based on flight test 

data. As illustrated in Figure 16, this also provides the means to update the predicted handling qualities 

using the revised vehicle models. 

 

Figure 16: Predicted Handling Qualities from Models Revised from Flight Test 

1. Test Description 

A nominal baseline configuration and two additional off-nominal configurations were flown. All 

configurations included the same flight control system feedback augmentation response types as 

identified above. The off-nominal configurations were: 1) added delay and 2) a configuration with an 

unfavorable c.g. shift. Two airspeed flight conditions were flown. The primary cruise airspeed for all 

evaluation tasks was 23 m/s and the primary approach airspeed for all evaluation tasks was 17 m/s. The 

primary altitude for all cruise and approach evaluation tasks was approximately 50 m. The defined 
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“approach” condition is not a true approach condition because it was flown at a constant altitude, but at a 

lower airspeed, with 50% flap deflections to reflect a true approach condition. Maintaining a constant 

altitude for the defined approach condition was done to simplify and minimize risk for system 

identification flight test points and to preserve the desired test conditions. No specific flight patterns were 

required, other than to remain in visual line of sight. The vehicle was flown in circuits around the test area 

with 700 m straight legs and 45o turns at the constant 50 m altitude. All evaluated test conditions were 

flown by the on-board flight computer, emulating an autonomous or semi-autonomous system. The test 

inputs were preprogrammed into the flight computer and initiated by the remote UAS operator. The 

operator limited his inputs to small, low frequency commands that were intended to maintain the test 

condition. A summary of the system identification flights is provided in Table 3.   

Table 3: UltraStick120 System Identification Flight Test Run Log 

Flight Flight Type Speed Condition 

03 SysID 23 m/s Cruise Normal CG No Added Delay 

04 SysID 17 m/s Approach Normal CG No Added Delay 

05 SysID 23 m/s Cruise Aft CG No Added Delay 

06 SysID 17 m/s Approach Aft CG No Added Delay 

07 SysID 23 m/s Cruise Normal Added Delay* 

08 SysID 23 m/s Cruise Normal Added Delay* 

09 SysID 23 m/s Cruise Normal Added Delay* 

10 SysID 23 m/s Cruise Normal CG Extra Delay 80ms 

11 SysID 17 m/s Approach Normal CG Extra Delay 80ms 

*Added Delay – In these flights, the added delay was placed in the feedback path rather than command path. 

All system identification (SysID) flights flew the same test card, which can be seen in detail in Table 20 

of Appendix D, but generally the test excitation signals described next were used.  

2. Excitation Signals 

This section provides descriptions of each of the input profiles and includes sample time histories of both 

the excitation command, the shaped command that was sent to the actuator, and the attitude responses. 

The profiles were uniform across each axis. Here, pitch axis examples are shown. These examples 

represent the computer-generated inputs and the resulting vehicle responses. Each of the sample 

commands includes both a plot of the original excitation command uex (red dashed line), and the resultant 

shaped surface command u (solid blue line). 

Multi-Sine: The orthogonal multi-sine (OMS) (Ref. 30) input profiles are mutually orthogonal in the time 

and frequency domains and completely uncorrelated. These OMS were applied to each axis 

independently, the elevator and aileron in combination, and all three axes in combination, elevator, 

aileron and rudder. Each OMS was 20 seconds long, had a 4 deg amplitude and covered a frequency 

range from 1-50 rad/s. Example pitch command and attitude responses are provided in Figure 17. 

Frequency Sweep: The frequency sweep input excitation was designed to be 20 seconds in duration, have 

an amplitude of 4 deg, and cover a frequency range of 1 to 50 rad/s. This was applied to each axis 

independently, and the aileron and elevator in combination.  For the input to the elevator and aileron in 

combination, the pitch excitation had increasing frequencies over time, while the roll excitation started at 
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high frequency and decreased to the lower frequency limit over time. This provided separation in the 

frequencies between the axes. Example pitch command and attitude responses are given in Figure 18. 

 

a) OMS Command Time History 

 

b) Pitch Attitude Time History 

Figure 17: Example Orthogonal Multi-Sine Input and Resulting Aircraft Output 

 

 

a) Frequency Sweep Command Time History 

 

b) Pitch Attitude Time History 

Figure 18: Example Frequency Sweep Input and Resulting Aircraft Output 

Doublet: The doublet excitation profile was designed to have a 4 deg amplitude. The pulse width varied 

based upon the axis of the input. For every axis, the pulse width (half of the total doublet width) was 

designed to target a particular frequency through the following relation: 0.7/(2*target frequency). The 

target frequency is in Hz. For pitch, the target frequency was the short period mode, estimated at 1.51 Hz. 

For the aileron and rudder doublet, the Dutch roll frequency was targeted and estimated to be 0.65 Hz, 

Example pitch command and attitude responses are given in Figure 19. 

Pulse: The pulse input was designed to have a 4 deg amplitude. The pulse width was defined in the same 

manner as the doublet. Example pitch command and attitude responses are given in Figure 20. 

3-2-1-1: The 3-2-1-1 input is a set of pulses of varied widths. A base width, the “1” in 3-2-1-1, is defined 

in the same manner as the pulse and doublet widths, based on the short period and Dutch roll frequencies 

for the pitch and roll axis, respectively. The “2” and “3” are then double and triple the base width pulses. 

For example, if the base width was 1 second, the first pulse would be 3 seconds wide, the next 2 seconds 

wide, followed by two pulses of 1 second each. Each new pulse reverses direction from the prior one. 

Example pitch command and attitude responses are given in Figure 21. 
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a) Doublet Command Time History 

 

b) Doublet Pitch Attitude Time History 

Figure 19: Example Doublet Input and Resulting Aircraft Output 

 

a) Pulse Command Time History 

 

b) Pulse Pitch Attitude Time History 

Figure 20: Example Pulse Input and Resulting Aircraft Output 

 

a) 3-2-1-1 Command Time History 

 

b) 3-2-1-1 Pitch Attitude Time History 

Figure 21: Example 3-2-1-1 Input and Resulting Aircraft Output 

d. Model Revisions Based on Flight Test Results 

The model update process is a key component of any handling qualities assessment program, manned or 

otherwise. As accurate as models can be, they are only representations of the true flight vehicle. The 

process defined below was conducted to both validate and update, if required, the existing analytical 

models, based upon the newly collected data. The identification of each set of data was performed using 

STI’s FREquency Domain Analysis (FREDA) software (Ref. 31). The flight test data in this section are 
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from a baseline configuration flight test conducted in straight and level flight, 23 m/s airspeed and 100m 

altitude. The UltraStick120 model used in the comparison was trimmed at these flight conditions. Using 

the system identification flight test results, the revised models based on the analysis described above were 

used to update the handling qualities parameter predictions as illustrated in Figure 15. 

1. Revised Control Surface Actuator Models 

The following process was used to modify and update the actuator dynamic models:  

 Compare the frequency response identified from the flight test data of the actuator (actuator 

command to actuator position) with the frequency response of the actuator model, a 1st order 

transfer function with added delay. The magnitude response was matched first by modifying the 

inverse time constant of the actuator model until a suitable overlay of the identified data was 

found. This also included adjustments to the actuator gain as well. 

 The phase response was then modified by adding delay to the transfer function in the form of 
ste  

where t is the added delay. With the phase response matched, the flight data and the actuator 

model were compared once again to ensure a desired fit was found. 

The adjustments to the elevator actuator model are shown in Figure 22. The updated elevator transfer 

function is also shown. 
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Figure 22: Original and Updated Elevator Actuator Models Compared with Flight Test 

2. Revised Bare Airframe Dynamics 

The process for updating the bare airframe dynamics of the UltraStick120 was as follows: 

 Compare the frequency response identified from the flight test data with the original 

UltraStick120 model.  

 The bare airframe dynamics were identified from the flight test data using the following 

input/output time histories: 

o Pitch: Input – Measured elevator actuator position; Output – Measured pitch rate 
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o Roll: Input – Measured aileron actuator position; Output – Measured roll rate 

o Yaw: Input – Measured rudder actuator position; Output – Measured yaw rate 

 Identify any model discrepancies relative to the flight test data and adjust the modal parameters in 

each axis as appropriate to achieve an improved match to the flight test data. Adjust the model 

gain as required. The relevant modal parameters are discussed below. 

For the longitudinal axis, the phugoid and short period frequency and damping ratio were considered for 

adjustment though most conditions only required adjustments to the short period. For the lateral-

directional axis, the roll mode and the Dutch roll frequency and damping were considered for adjustment. 

Most lateral-directional cases only required adjustments to the roll mode. 

The changes in the bare airframe model were made to the pitch rate to elevator (q/e) transfer function. A 

comparison of the original plant model, new plant model, and the flight test frequency response generated 

from a chirp input is shown in Figure 23a. Note that the gain of new model represents an increase of 1.5 

times the original model value. Only the short period dynamics were altered, increasing the frequency 

slightly, while reducing the damping. The response of the longitudinal system, including aircraft and 

actuator dynamics is shown in Figure 23b. 

 

a) Bare Airframe 

 

b) Bare Airframe + Actuator 

Figure 23: Original and Updated q/δe Responses Compared with Flight Test 

To validate the updated model, simulated time history responses of the model were compared against 

flight test responses generated from short duration inputs for the same test condition. These short 

duration inputs were the same doublets, pulses, and 3-2-1-1s described above. The actual flight test 

inputs were used to generate the model responses, so a true one-to-one comparison could be performed.  

The short duration responses are shown in Figure 24. Two sets of data dropouts from ~7-11 seconds 

and ~12-15 seconds region affected the later portion of the doublet maneuver, Figure 24a. Even in the 

presence of these dropouts, the model response for the doublet excitation exhibited a close match to the 

excitation flight data. The pulse and 3-2-1-1 excitation response demonstrated a good model fit as well; 

however, there is a modest amount of amplitude mismatch. This mismatch, which occurs for the lower 

frequency inputs, is likely due to system nonlinearities, such as actuator free play. As a whole, these 

responses validate the model updates made above and the process used to generate the model revisions. 
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a) Doublet Input Response 

 

b) Pulse Input Response 

 

c) 3-2-1-1 Input Response 

Figure 24: Time Response Comparisons 

3. Revised Handling Qualities Predictions 

As described above, the data generated from the system identification flight tests were used to revise the 

vehicle models. Using the pitch axis as an example, the revised frequency responses for the three test 

conditions (i.e., Nominal, Aft CG, and Added Time Delay) were compared with the original models for 

both the cruise and approach flight conditions as shown in Figure 22 and Figure 23, respectively. The key 

observations are that the Nominal and Aft CG cases were actually quite similar in flight and both 

displayed reduced closed-loop damping when compared the original model. The time delay cases, on the 

other hand, displayed more closed-loop damping in flight. All cases display added phase lag due to the 

revised actuator model.  

In Figure 27, the updated pitch attitude Aircraft Bandwidth parameters as derived from the flight revised 

vehicle models are compared with the original model parameters. Here, the revised actuator model results 

in a significant increase in phase delay for all cases. As planned, the Added Time Delay cases display a 

further increase in phase delay. This also results in a further drop in bandwidth frequency. Finally, as 

observed with the frequency responses, the Nominal and Aft CG cases were effectively equivalent cases 

in flight. Hence, one would anticipate that the handling qualities would be similar for these cases when 

assessed via a given mission task element. 
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a) Nominal 

 

b) Aft CG 

 

c) Added Time Delay 

Figure 25: Comparison of UltraStick120 Model versus Flight Cruise (23 m/s) Frequency Responses 

  

Original Model 
Flight Revised Model 

Original Model 
Flight Revised Model 

Original Model 
Flight Revised Model 
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a) Nominal 

 

b) Aft CG 

 

c) Added Time Delay 

Figure 26: Comparison of UltraStick120 Model versus Flight Approach (17 m/s) Frequency Responses 

 

Original Model 
Flight Revised Model 

Original Model 
Flight Revised Model 

Original Model 
Flight Revised Model 
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a) Cruise, 23 m/s 

 

b) Approach, 17 m/s 

Figure 27: Aircraft Bandwidth Parameters for the UltraStick120 Model and Flight 

e. Mission Task Element Flight Tests 

1. Overview 

Using the fixed wing MTEs described in Appendix B, a series of MTE evaluation flights were conducted 

by the University of Minnesota from November 2018 through March 2019 using the UltraStick120. A run 

log for the four evaluation flights is provided in Table 4. 

Table 4: UltraStick120 MTE Flight Test Run Log 

Flight Flight Type Speed Condition 

12 MTE 23/17 m/s Cruise/Approach Normal CG No Delay/Added Delay 

13 MTE 23/17 m/s Cruise/Approach Normal CG No Delay/Added Delay 

14 MTE 23/17 m/s Cruise/Approach Normal CG No Delay/Added Delay 

16 MTE 23/17 m/s Cruise/Approach Normal CG No Delay/Added Delay 

All four MTE flights flew a combination of 4 MTEs: 

 Flightpath Regulation in the Presence of a Discrete Gust 

 Flightpath Regulation in the Presence of a Sum-of-Sines Disturbance 

o Altitude Disturbance (non-precision, non-aggressive) 

o Attitude Disturbance (precision, non-aggressive) 

 Waypoint Tracking 

 Precision Lateral Offset Landing 

Below is the list of MTE flights and the tasks that were flown: 

 Flight 12 

o Flightpath Regulation in the Presence of a Discrete Gust  

 (1-Cosine) excitation to pitch rate 

o Flightpath Regulation in the Presence of a Sum-of-Sines Disturbance  

 Non-Precision, Non-Aggressive (Altitude) 

o Precision Lateral Offset Landing 
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 Flight 13 

o Flightpath Regulation in the Presence of a Discrete Gust  

 (1-Cosine) excitation to pitch rate 

o Flightpath Regulation in the Presence of a Sum-of-Sines Disturbance  

 Non-Precision, Non-Aggressive (Altitude) 

o Precision Lateral Offset Landing 

 Flight 14 

o Flightpath Regulation in the Presence of a Discrete Gust  

 (1-Cosine) excitation to pitch rate 

o Flightpath Regulation in the Presence of a Sum-of-Sines Disturbance  

 Non-Precision, Non-Aggressive (Altitude) 

o Waypoint Following 

o Precision Lateral Offset Landing 

 Flight 16 

o Flightpath Regulation in the Presence of a Sum-of-Sines Disturbance  

 Precision, Non-Aggressive (Attitude) 

o Waypoint Following 

o Precision Lateral Offset Landing 

2. Flightpath Regulation Tasks 

Flightpath Regulation in the Presence of a Discrete Gust: An example flightpath regulation task is shown 

in Figure 28. These tasks were flown in a “pseudo” autonomous mode where in the remote pilot placed 

the vehicle on condition, while the on-board controller responded to the disturbance. The aggressiveness 

of the task can be adjusted based on the size of the input. For this example, the aggressiveness level was 

set by a 1-Cosine gust disturbance based on a 2 r/s pitch rate disturbance for the 23 m/s cruise flight 

condition. Note that a turn is initiated just prior to the 1370 second time index as seen in the heading 

response (Figure 28d). Desired and adequate performance requirements are indicated by the green and 

yellow bands, respectively. Prior to the turn, the vehicle maintains airspeed and altitude within desired 

tolerances, however, the pitch attitude response often falls out of the adequate bounds. The UltraStick120 

attitude flight control system was known to have a low-bandwidth control response, so this result was not 

unexpected. With this limitation in mind, the MTE was successful in exposing the handling qualities 

deficiencies associated with the aircraft controller. More work is needed with other fixed wing vehicles to 

properly size inputs and refine performance requirements, but this MTE shows promise for inclusion in a 

UAS handling qualities specification. 

Flightpath Regulation in the Presence of a Sum-of-Sines Disturbance (Altitude): Two sum-of-sines 

disturbance regulation tasks were considered in this program. Both feature the same Fibonacci-based 

sum-of-sines signal as defined in Appendix C. The first was introduced as an altitude disturbance of ±10 

meters. The aggressiveness of the task can be adjusted by sizing the input. Example flight test results 

from Flight 14 are shown in Figure 29. Because of the flight test course visual line of sight limitations, 

many of the runs were cut short due to the need to remain within the test area as was the case here (see 

Figure 29d). Before the turn is initiated, the vehicle was able to maintain altitude and airspeed within 

mostly the desired performance bounds. There were more issues with the pitch attitude performance, 

however, the current requirements on this parameter may be too stringent for a non-precision, non-

aggressive task. Again, more work is needed with other fixed wing vehicles to properly size inputs and 

refine performance requirements, but this MTE shows promise for inclusion in a UAS handling qualities 

specification. With a more consistent MTE set (i.e., fewer heading changes while responding to the 
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disturbance), a complete controller-vehicle system analysis can be conducted because of the known 

disturbance input. 

  

a) Pitch Attitude b) Airspeed 

 
 

c) Altitude d) Heading 

Figure 28: Flight 14 Flightpath Regulation in the Presence of a Discrete Gust MTE 
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a) Altitude b) Airspeed 

  
c) Pitch Attitude d) Heading (ψ) 

Figure 29: Flight 14 Flightpath Regulation in the Presence of a Sum-of-Sines Altitude Disturbance MTE 

Sum-of-Sines Attitude Disturbance: The attitude sum-of-sines disturbance signal, seen in Figure 30a, is 

added to the reference signal of the attitude controller (see Figure 7). This task was also flown as a 

“pseudo” autonomous task. Unlike the altitude disturbance task, this MTE is intended to be a precision, 

non-aggressive task. For the example case included herein, the aircraft is flying straight and level for the 

beginning portions of the maneuver, and then the aircraft banks, e.g., see Figure 30b, to initiate a turn to 

remain within the desired test area. MTE performance plots are shown in Figure 30. During the section of 

the maneuver where the aircraft is straight and level, the altitude performance generally meets desired 

performance requirements, while airspeed meets adequate performance requirements. Because of the turn, 

it is difficult to assess the key performance indicator – pitch attitude, but it does seem likely that at least 

adequate performance may have been attainable. As with the previous examples, this fixed wing MTE 

shows promise, but further refinements are likely needed before it is ready for inclusion in the UAS 

handling qualities specification. 
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a) Pitch Attitude Disturbance b) Bank Angle 

Figure 30: Flight 16 Example Sum-of-Sines Attitude Disturbance 

 

  

a) Altitude b) Airspeed 

  
a) Pitch Attitude b) Heading 

Figure 31: Flight 16 Flightpath Regulation in the Presence of a SOS Attitude Disturbance MTE, No Delay 
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3. Waypoint Following 

The Waypoint Following task was flown as a completely autonomous MTE. A description of the MTE is 

provided in Appendix C. The MTE featured a square x-y course with altitude changes. Example x-y 

trajectories are shown in Figure 32 for the Nominal (blue trajectory) and Added Delay (red trajectory) 

configurations. Note that there is little difference between the two cases. Furthermore, the vehicle does 

not meet even a generous set of performance requirements, ±50 ft/±100 ft, though in this case the 

waypoints are generally met within adequate bounds. No refinements to the controller were made to 

improve upon this performance and as discussed earlier, there were known limitations. An important 

question regarding the performance requirements will ultimately determine precision and aggressiveness 

levels. Specifically, is the vehicle required to meet the performance requirements throughout its trajectory 

or only in the vicinity of the waypoints? Despite these questions, this MTE also shows great promise. 

With refinements, this MTE will likely be a good discriminator of UAS handling qualities. 

 

a) ±10 ft/±20 ft 

 

b) ±25 ft/±50 ft 

 

c) ±50 ft/±100 ft 

Figure 32: Flight 16 Waypoint Following 

4. Precision Lateral Offset Landing 

Line of Sight MTE: As defined in Appendix C, the Precision Lateral Offset Landing task was executed as 

a pilot line of sight task. Figure 33 shows all Flight 16 runs of the offset landing. In total, there were 4 

offset landing attempts flown. Most of the runs missed the adequate box where the center of the desired 

and adequate boxes is 50ft to the left and 10 ft back of the operator’s position (runway). The centerline of 

the adequate and desired boxes was marked with one or two cones in the middle of the field.  The Pilot 

noted that it was difficult to setup the offset landing task with the snow bank and 24 inches of snow on the 

ground. Furthermore, the pilot also mentioned that he did not have a great sight line to establish an initial 

approach. He also noted that the case with 160 ms of added delay was flyable, and the landing task was 

feasible with this delay present.  

The results from all four MTE evaluation flights showed similar results. That is, without adequate cueing 

present, and this may not be feasible to consistently attain in a line of sight task, the task performance was 

effectively random. A “good” handling configuration may miss the mark, while a “poor” handling 

configuration ends up in the box. Thus, when flown in this manner, the MTE will not properly expose 

UAS handling qualities. There may still be value in an offset landing task if an aircraft point of view 

display is available with proper cueing such as was used in the AirSTARS flight test program. This is 

discussed further below. 
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Figure 33: Flight 16 Precision Lateral Offset Landing Ground Tracks 

Point of View MTE: While the UltraStick120 test results with the precision lateral offset landing task 

clearly exposed the limitations of the MTE as a visual line of sight task, previous work at NASA Langley 

with the AirSTARS vehicle was more successful. In this case, the task was flown as pilot point-of-view 

(POV) task from a ground station using a synthetic head-up display. In this application, the MTE was 

successfully executed and did expose handling qualities variations between aircraft configurations. 

The maneuver is conducted at a nominal altitude of 1000 feet to avoid any damage to the aircraft and 

provide the safety pilot with ample window to recover the aircraft from any unexpected situation (e.g., a 

loss of control departure). The runway is ‘simulated’ 100 feet below the aircraft, at a longitudinal distance 

of 1800 feet and a lateral offset of 100 feet towards starboard side of the aircraft. The simulated landing is 

carried out by projecting a virtual runway on the head-up display (HUD) of the research pilot. A 

screenshot of the HUD, taken from Ref. 32, is provided in Figure 34 for reference. 

The task was to land within a target touchdown reference location on the runway after performing an ‘S’ 

maneuver to align with the runway centerline. Performance of the pilot-vehicle system was evaluated 

using a set of desired and adequate performance requirements. Performance analysis is discussed next for 

all the three runs. 
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Figure 34: Head-Up Display (HUD) for the Research Pilot Depicting Virtual Runway (Ref. 32) 

The desired and adequate performance requirements for the offset landing task are provided in Ref. 32 

and are reproduced in Table 5 for convenience. 

Table 5: Performance Requirements for Offset Landing Task (Ref. 32) 

Parameter Target Desired Adequate 

Bank Angle (deg) 0 ±10º ±20º 

Flightpath Angle (deg) -3 ±1º ±3º 

Lateral Offset (feet) 0 ±12 ±24  

Longitudinal Offset (feet) 0 ±164  ±363  

 

The task is to touchdown within a pre-defined target touchdown zone. To begin the maneuver, the UAS is 

located at a lateral offset position with respect to the runway. To meet performance requirements, the 

touchdown should occur with bank angle, longitudinal offset, and lateral offset within the bounds 

specified in Table 5. The bank angle in mode 1 for runs 1-3 is shown in Figure 35. The run-to-run signals 

were adjusted to be plotted on the same time axis. Since all the three runs have a duration between 

13.86s-14.2s, the signals were shortened to the same duration without any significant loss of data. 

 

 

Figure 35: Bank Angle Performance for Example AirSTARS Runs 
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From Figure 35 the bank angle performance is largely in the adequate range across the entire time 

interval, with run 3 showing the largest overshoots beyond the desired bounds. It should be noted that 

since an ‘S’ maneuver is required to align the aircraft with the runway centerline, thus the bank angle 

requirement is applied from the centerline capture to touchdown. Beyond 12s, all three runs have bank 

angles that fall within the desired range. 

Next, the longitudinal and lateral offset performance is considered. All of the runs start with the virtual 

target touchdown point located at a lateral right shift of 100 feet and 1800 feet in front of the aircraft. 

Lateral and longitudinal offset specifications are provided to illustrate the performance at touchdown. The 

objective is to land as close to the reference touchdown point as possible. Figure 36 shows the lateral and 

longitudinal performance of the aircraft for runs 1-3 during the offset landing maneuver.  

 

Figure 36: Lateral and Longitudinal Offset Performance, Runs 1-3, Flight 44, Card 86  

The position of the aircraft with respect to the runway is not directly available as a data signal. Therefore, 

the lateral and longitudinal positions were computed using heading angle data and airspeed data available 

during the run. From heading angle and airspeed, lateral and longitudinal components of aircraft velocity 

are found. Positions can then be determined by integrating the velocities in a discrete manner. Figure 36 

shows that of the three runs, only run 3 meets the performance requirements; in fact, run 3 meets the 

desired specifications very well. Run 2 is the possibly the most interesting in this regard, since the aircraft 

goes off-course just as it approaches the target touchdown area. In general, the AirSTARS results indicate 

a POV Precision Lateral Offset Landing MTE can be an appropriate discriminator of UAS handling 

qualities.  

2. Multirotor UAS MTE Flight Test Evaluations 

a. Introduction 

Four low speed multirotor MTEs were tested at the Autonomy Incubator (AI) at NASA Langley Research 

Center in April 2018. Four remotely piloted visual line-of-sight MTEs were evaluated: Precision Hover, 

Lateral Sidestep, Vertical Reposition, and Landing. Complete descriptions of the four MTEs are provided 

in Appendix B. The flight tests were conducted at the AI on a course defined by hover boards positioned 
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according to each MTE description. Three pilots participated in the flight evaluations. Pilot 1 was an 

expert sUAS pilot, Pilot 2 was an experienced sUAS test pilot, and Pilot 3 was a sUAS pilot with limited 

test experience. Two multirotors, shown in Figure 188, were used in the evaluations: a Tarot X6 

hexacopter and a Tarot 650 Sport quadcopter. 

 

a) Tarot X6 

 

b) Tarot 650 Sport 

Figure 37: Multirotor Test Vehicles 

Two sets of data and video were generated for each set of flight test evaluation runs. The video consists of 

a stationary video that captures the entire test range and an over-the-shoulder video of the pilot to capture 

pilot perception and line-of-sight. The AI is equipped with a Vicon system that provides precision 

position tracking of vehicles. Both multirotors were outfitted with Vicon tracking nodes. These data in 

concert with the over-the-shoulder video can and will be used to calculate performance metrics for these 

tests. In addition, the aircraft carry Pixhawk autopilots that record GPS, IMU, pilot command, and control 

deflection data. The GPS data are not accurate in the indoor AI environment and cannot be used for 

measuring performance, but the IMU, pilot command, and control deflection data will be valuable in 

understanding the pilot-vehicle system and how that affects performance. 

A complete analysis summary for all four MTEs is provided in Appendix D. The Lateral Sidestep MTE is 

used here to exemplify the analysis process. 

b. Lateral Sidestep 

1. MTE Description 

Autonomy Level 

 Remotely piloted with visual line-of-sight. 

 Autonomous variations are possible. 

Objectives 

 Assess roll axis and heave axis response during moderately aggressive maneuvering. 

 Identify undesirable coupling between the roll controller and the other axes. 

Description 

From a stabilized hover at an altitude of 5 ft with the longitudinal axis of the multi-rotor sUAS oriented 

90 degrees to a reference line marked on the ground, initiate a lateral acceleration to approximately 5 kts 

groundspeed followed by a deceleration to laterally reposition the vehicle to a stabilized hover 12.5 ft left 

of the starting point as indicated by another ground marker all while maintaining the initial heading 

throughout the maneuver. The acceleration and deceleration phases shall be accomplished as single 

smooth maneuvers. The reposition capture is complete when a stabilized hover is achieved as indicated by 

the vehicle position in front of the hover boards, left or right depending on course position.  
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The center of the (left and right) hover boards will be placed 5 ft above ground and approximately 25 ft 

apart laterally, equally spaced left and right of the starting point. (In the NASA LaRC Autonomy 

Incubator, the starting point was 20 ft aft of the precision hover board.) The hover board will have distinct 

boundaries indicating desired and adequate performance requirements.  

Desired Performance 

 ±1 vertical deviation from hover board center at each capture point. 

 ±1 ft lateral deviation as indicated by the hover board center at each capture point. 

 ±1 ft longitudinal (fore/aft) deviation from ground marker. 

 ±5° heading deviation from reference heading. 

Adequate Performance 

 ±2 vertical deviation from hover board center at each capture point. 

 ±2 ft lateral deviation as indicated by the hover board center at each capture point. 

 ±2 ft longitudinal (fore/aft) deviation from ground marker. 

 ±10° heading deviation from reference heading. 

 

Figure 38: Lateral Reposition (mini course)  

2. Lateral Sidestep Test Overview 

For the Lateral Sidestep MTE, the pilots were instructed to fly the vehicle laterally in one direction, 

capture and hold a static position, then sidestep in the other direction to capture and hold the original 

position. In most cases, the pilot first flew the aircraft to a hover board approximately 6.5 feet to the right 

of the takeoff point and then sidestepped towards a hover board about 15 feet to the left of the takeoff 

point. The lateral sidestep was then repeated several times (see example in Figure 194). Most flights 

consisted of 5 or 6 sidesteps with Pilot 1 performing 8. The time spent hovering in position after 

completing the lateral movement was short, lasting 10-25 seconds depending on the preference of the 

pilot. In general, the pilots had a higher degree of success with the right sidestep.  
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The pilots were effective at maintaining desired performance during the right lateral maneuver. They also 

performed the left sidestep well, though they were prone to under- or overshooting the target. This under- 

and overshooting the target can be attributed to depth perception and line-of-sight issues. The right 

sidestep end position was much closer to the pilot making it easier to judge vehicle’s position relative to 

the hover board and adequate/desired bounds. In terms or maintaining altitude, the pilots had moderate 

success with small dips when beginning the sidestep. 

 

Figure 39: Tarot 650 Sport Lateral Sidestep MTE, Pilot 1, Batch 1 – Inertial Position 

3. Qualitative Individual Pilot Assessment 

Pilot 1 performed very well during each individual sidestep maneuver. He completed 8 different lateral 

repositions, starting by sidestepping to the right. Aside from the first left sidestep, he finished the entire 

run in the desired area. In the altitude portion of the task, he remained in the desired zone for the duration 

of the run but deviated by a few inches every time a lateral reposition was initiated. This deviation was 

then corrected during each quick hover at the sidestep point. For the longitudinal position, Pilot 1 was 

unable to complete the aft reposition 5 feet behind the origin, and instead held a very unsteady position 3-

4 feet behind. He was, however, able to return the vehicle to landing zone at the conclusion of the task.  

Pilot 2 faced some difficulty in performing sections of the sidestep maneuver. While piloting the Tarot 

650 Sport he made multiple altitude overcorrections and was unable to achieve a steady hover during any 

left lateral repositions. He found more success in the right sidestep maneuver, consistently achieving a 

desired position. He also attempted to perform a 5 foot aft reposition that was unsuccessful and resulted in 

erratic longitudinal position changes between 2 and 5 feet behind the origin. While piloting the Tarot X6-

2, he encountered many similar problems as he did with the Tarot 650 Sport, but with the additional 

variable of increased air circulation. There was a glass panel near the right hoverboard which allowed the 

air circulation from the powerful hex rotors to bounce off it, disturbing the air around it causing 

fluctuations in altitude and lateral position. 

Pilot 3 proved to be adept at maintaining lateral positioning of each of his vehicles. Additionally, unlike 

the other two pilots, he was able to successfully perform the aft reposition five feet behind the origin.  

Despite the correct repositioning of the vehicle, Pilot 3 still exhibited similar oscillatory behavior in the 

longitudinal axis to Pilot 2, although his perturbations mostly fell within the desired and adequate areas. 

His performance piloting the Tarot 650 Sport and the Tarot X6-2 were very comparable, but 

understandably, the were more jarring and frequent movements during the Tarot X6-2 runs due to its 

bulkier size.  
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4. Performance 

Summary performance scores are shown in Table 6. Pilots excelled at staying in the desired region for 

altitude with a desired performance of 94.33% and an adequate performance of 99.94%. Holding altitude 

between hover positions was an easy task for the pilots with an average of 87% desired performance score 

with a near 100% adequate score. Lateral position was relatively easy for the pilots to control with a 

desired performance of 85.21% and an adequate performance of 96.95%. Average heading angle 

performance was 65.52% desired and 97.47% adequate. Longitudinal position performance was just 

39.08% desired and 70.87% adequate.  

Comparing the two vehicles, there are small differences in performance measures. In altitude during 

hover, the Tarot 650 Sport has a desired performance over 12% higher at 97.64% than the Tarot X6-2 at 

85.35%. In lateral position, the pilots achieved a higher desired performance with the Tarot X6-2 at 

87.83%, 10% higher than with the Tarot 650 Sport. However, this can be explained by Pilot 2’s poor 

performance flying the Tarot 650 Sport while Pilot 3 performed slightly worse with the Tarot X6-2. 

Heading angle performance was nearly identical between the two vehicles. This lack of consistency in 

one vehicle performing better than the other means that a claim cannot be made for an evidence-based 

difference in vehicle performance. 

Table 6: Lateral Sidestep MTE Pilot Performance Averages 

Average Pilot Performance for Lateral Sidestep MTE 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1 100.00 100.00 43.85 78.32 90.28 99.34 27.26 94.58 

2 97.62 99.81 15.62 39.72 72.75 91.52 92.03 99.67 

3 85.38 100.00 57.76 94.57 92.60 100.00 77.27 98.16 

AVG 94.33 99.94 39.08 70.87 85.21 96.95 65.52 97.47 
 

 

Average Pilot Performance for Lateral Sidestep MTE Using Tarot 650 Sport 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1 100.00 100.00 43.85 78.32 90.28 99.34 27.26 94.58 

2 96.78 99.63 8.82 30.36 56.24 84.27 88.62 99.35 

3 98.51 100.00 69.54 98.58 98.80 100.00 77.20 98.58 

AVG 98.43 99.88 40.74 69.09 81.78 94.53 64.36 97.50 
 

 

Average Pilot Performance for Lateral Sidestep MTE Using Tarot 650 Sport without Pilot 1 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1                 

2 96.78 99.63 8.82 30.36 56.24 84.27 88.62 99.35 

3 98.51 100.00 69.54 98.58 98.80 100.00 77.20 98.58 

AVG 97.64 99.81 39.18 64.47 77.52 92.13 82.91 98.97 
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Average Pilot Performance for Lateral Sidestep MTE Using Tarot X6-2 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1                 

2 98.46 100.00 22.42 49.08 89.25 98.77 95.45 100.00 

3 72.24 100.00 45.97 90.56 86.40 100.00 77.33 97.74 

AVG 85.35 100.00 34.20 69.82 87.83 99.38 86.39 98.87 
 

 

Average Pilot Performance for Altitude Hold Translation 

Vehicle Desired (%) Adequate (%) 

Tarot 650 Sport 87.66 100.00 

Tarot X6-2 85.51 99.91 

Average 87.02 99.97 
 

5. Left/Right Hover Performance 

When capturing and hovering at the left and right hover boards at the ends of the Lateral Sidestep MTE 

course, there is a noticeable difference in performance as listed in Table 58, though it is not consistent 

between aircraft. This is surprising since the left hover board is 15 ft from the pilot and the right hover 

board is only 5 ft from the pilot, which one would think would make the left more difficult to cue from. 

However, when flying the Tarot X6-2, there is a 10% difference in the average performance of hovering 

at the left hover board as compared to the right, which reflects the perceived difficulty in precisely 

capturing and hovering this aircraft at a distance. There is only a 3% difference when flying the Tarot 650 

Sport with capturing and hovering near the left hover having higher performance. This could be due to 

visual feedback and the faster dynamics of the smaller vehicle at close range compared to long range, but 

more data for more multi-rotor vehicles are needed to draw a confident conclusion.  

Table 7: Left/Right Hover Performance Averages 

Pilot Lateral Sidestep Direction Comparison Tarot 

650 Sport 

  Desired (%) Adequate (%) 

AVG Right 70.40 88.71 

AVG Left 73.36 92.34 
 

Pilot Lateral Sidestep Direction Comparison Tarot 

X6-2 

  Desired (%) Adequate (%) 

AVG Right 78.40 91.59 

AVG Left 68.49 92.45 
 

 

Pilot Lateral Sidestep Direction Comparison 

  Desired (%) Adequate (%) 

AVG Right 73.60 89.86 

AVG Left 71.41 92.38 
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c. Pilot Evaluations of the MTEs 

1. Pilot Questionnaire 

The questionnaire developed for the Lateral Sidestep MTE is shown below. Similar questionnaires were 

created for the other three MTEs. Each evaluation pilot completed a set of questionnaires as part of the 

flight test debrief process. 

 

Strongly 

Disagree 
Disagree 

Neither 

Agree Nor 

Disagree 

Agree 
Strongly 

Agree 

The Remote Piloted Lateral Sidestep 

MTE is representative of an operational 

task element. 

     

The MTE is well defined.      

The MTE is repeatable and easy to 

perform. 
     

Entry/exit conditions for the MTE were 

easy to establish.  
     

The course markers used were easy to 

follow and provided all the information 

required to perform the MTE.  

     

The MTE is able to effectively expose 

the aircraft characteristics identified in 

the task objectives. 

     

The MTE is valid for defining nominal 

UAS performance.  
     

 

What changes if any would you recommend to the MTE objectives or description? 

 

What changes if any would you recommend for the desired and adequate performance requirements? 

 

What changes if any would you make to the course markers to aid your task performance (sketches are 

welcome)? 

 

2. Summary of Questionnaire Results for all Four MTEs 

After completing all four MTEs with the checkout vehicle, each piloted answered a debrief questionnaire 

the results of which are presented in Figure 198. The three pilots all agreed or strongly agreed that the 

MTEs were representative of an operational task element, well defined, and repeatable and easy to 

perform. They also agreed or strongly agreed that the MTEs had entry/exit conditions that were easy to 

establish and had course markers that were easy to follow. All agreed or strongly agreed that the MTEs 

effectively exposed aircraft characteristics and that the MTEs were valid for defining nominal 

performance. Note that one exception was that Pilot 3 neither agreed nor disagreed that the precision 

hover task was valid for defining nominal performance.  
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Q2: The MTE is well defined.
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Q3: The MTE is repeatable and easy to perform.
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Q5: The course markers used were easy to follow and 

provided all the information required to perform the MTE.
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Q6: The MTE is able to effectively expose the aircraft 

characteristics identified in the task objectives.
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Q7: The MTE is valid for conducting handling qualities 

evaluations. 

 

 

 

 

 

 

 

 

 

 

Legend: (Precision Hover, Vertical Reposition, Lateral 

Sidestep, Landing) 

Figure 40: Debrief Questionnaire Results 
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3. Additional Multirotor sUAS Flight Test Activities 

a. Multirotor UAS MTEs in the Presence of Steady Winds 

At the end of March 2019, the four multirotor MTEs originally flown in the AI were evaluated in the 

NASA LaRC 14 foot by 22 foot wind tunnel. The MTEs were conducted in steady winds from 0 to 25 

mph. When available, analysis results will be made available to NASA via the technical point of contact 

for this program. 

b. UMN System Identification Flights 

1. Vehicle Description 

The UMN multirotor is shown in Figure 41 with key parameters defined in Table 8. 

 

Figure 41: UMN Multicopter 

Table 8: UMN Multicopter Parameters 

Parameter Value 

Length 14.5 inches 

Width  14.5 inches 

Height 9.0 inches 

Weight with Battery 1280 g 

Weight without Battery 800 g 

Battery Type 5100mAh 4s 35c 

Motors DJI 2312E 960 kv 

ESC DJI 430 LITE 4S 30 A 
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2. Status of Flight Tests 

The UAV lab personnel at UMN have been upgrading the multirotor flight control laws, so that they can 

better execute the system identification test plan. While not available to include in this report, the test plan 

will be conducted, and the analysis results will be made available to NASA via the technical point of 

contact for this program when available. 

  



 

 

 

 

 

 

 

57 

F. PHASE II SUMMARY AND CONCLUSIONS 

1. Summary 

The program described herein addressed the important need to define UAS handling qualities in both 

piloted and autonomous operations. The overall objective was to validate a UAS handling qualities 

assessment process via analysis to predict handling qualities and flight test to verify handling qualities. 

An end product of this program was the UAS Handling Qualities Assessment Process (UAS-HQ) and 

corresponding draft specification that is intended to guide UAS stakeholders through the systematic 

evaluation process defined herein.  

The specific technical accomplishments, as repeated from the Project Summary, were as follows: 

 UAS Handling Qualities Stakeholders from industry, academia, and government agencies were 

engaged throughout the two-year program. Highlights of this engagement include the three UAS 

Handling Qualities Workshops that were conducted; one at NASA LaRC and two as part of the 

AIAA SciTech conference. All the workshop presentations have been made available to the 

Stakeholders via an easily accessible website hosted by the University of Minnesota. There are no 

restrictions regarding access to this website. 

 A process to define UAS handling qualities was defined, demonstrated, and validated through 

analysis and flight tests. Process validation has also been demonstrated by UAS Handling 

Qualities Stakeholders that conducted their own work in parallel with this program. 

o While it was beyond the scope of this program to quantify new UAS handling qualities 

requirements because of a significant lack of data, there has been a significant growth in 

the data that are now available in the public record.   

o The use of end-to-end system identification was used to demonstrate UAS model 

validation methods in both the frequency and time domains using both long and short 

duration command inputs. Furthermore, the frequency responses generated from the 

system identification tests were used to extract parameters that are used to predict 

handling qualities. 

o UAS handling qualities verification flight tests were conducted using a set of mission 

task elements defined for both fixed wing and rotary wing mission task elements. 

o Dynamic scaling methods show promise to preserve use of appropriate handling qualities 

criteria and mission task elements from piloted handling qualities specifications and 

standards. 

2. Process Success Criteria 

The following success criteria were used to evaluate the approach, methods, and process for defining 

UAS handling qualities: 

 A simplified classification system and mission descriptions appropriately guide the user to the 

analytical requirements and analysis steps necessary to define predicted handling qualities and the 

mission task elements with defined performance requirements to establish flight-verified handling 

qualities. 

 The candidate handling qualities metrics included in the toolbox and draft specification (e.g., 

aircraft bandwidth) satisfied the three prerequisites; validity, selectivity, and ready applicability. 

 UAS flight test evaluations were conducted with fixed wing and multirotor exemplar aircraft to 

expand the available database, explore system identification methods as a means to update 



 

 

 

 

 

 

 

58 

predicted handling qualities, and define and evaluate mission task elements as a means to 

characterize UAS handling qualities in flight. 

3. Conclusions and Next Steps 

Based on the results of this Phase II program, the following conclusions are made: 

 The extensive UAS Stakeholder outreach including three workshops with invited presentations 

from government, industry, and academic representatives achieved the desired “buy-in” of the 

community to the proposed evaluation process. Of significant importance was the complimentary 

work conducted by the Army Aviation Development Directorate as presented at all three 

workshops and in other published works. 

 The handling qualities assessment process defined in this program provides the means to 

analytically predict UAS handling qualities using appropriate vehicle models and verify handling 

qualities via well-defined mission task elements. 

 Established handling qualities metrics such as Aircraft Bandwidth that are response-type agnostic 

are well-suited for UAS applications as demonstrated in this program. Significantly more data are 

needed, however, to firmly establish desired/adequate, pass/fail, etc. requirements. Aircraft 

Bandwidth was also found to meet the requirements of validity, selectivity, and ready 

applicability. 

 While more work is needed to refine descriptions and performance requirements, the fixed wing 

and rotary wing MTEs evaluated in this program provide an effective means to assess UAS 

handling qualities. The one exception was the visual line of sight precision lateral offset landing 

task that was not found to be an easily repeatable with the given the cueing environment. A pilot 

point of view precision lateral offset landing task, however, is a feasible MTE.  

 Use of dynamic scaling should be explored further to more quickly establish handling qualities 

requirements and mission task elements for all categories of UAS. 

Based on the results of this Phase II program, the following conclusions are made regarding the mission 

task elements attempted: 

 Fixed Wing MTEs flown under remote pilot control, semi-autonomous control, and fully 

autonomous control. 

o The flightpath regulation in the presence of a discrete gust or SOS disturbance MTEs 

show promise. The limitations of the relatively low bandwidth attitude command loop 

closure of the UltraStick120 was clearly exposed by the tasks. This was a positive result 

as it clearly showed that the MTEs can expose handling qualities deficiencies. More work 

is also needed to properly size disturbance inputs and to more concretely define desired 

and adequate performance requirements. 

o The waypoint following task worked well as a fully autonomous MTE. Furthermore, this 

task also exposed the limitations of the UltraStick120 controller bandwidth. Because of 

these limitations, however, specific desired and adequate performance requirements 

remain a work in progress. 

o As a piloted task the precision offset landing requires more clearly defined reference 

points that may be difficult to create in a repeatable manner using standard visual line of 

sight references. 

 Multirotor MTEs flown as piloted visual line of sight tasks. 
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o All four low speed piloted tasks worked well as evaluated in the NASA LaRC Autonomy 

Incubator. The low speed tasks are well suited to visual line of sight operations. 

 The hover boards provided well-defined performance requirement references. 

 The tasks can be readily applied to autonomous operations. 

Given these technical accomplishments, the next steps in defining UAS handling qualities are as follows: 

 Increase the available handling qualities flight test database beyond the limited sUAS data 

generated in this program. It will not be possible to accurately define predictive handling qualities 

requirements without a much larger flight test database. 

 As the available database expands, address the “to be determined” elements of the draft 

specification with quantitative requirements. 

 Expand the catalog of mission task elements to cover a wider design space of vehicle types and 

missions. 

 Continue to explore dynamically scaling as a means to use existing requirements and mission task 

elements to a wider range of UAS weight classes. 
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Appendix A – Emerging Handling Qualities Specification 
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A. INTRODUCTION 

This appendix contains initial recommendations for establishing flying characteristics for Unmanned 

Aircraft (UA). It is intended to be a very preliminary specification that will promote discussion, 

eventually leading to a set of requirements that is accepted and applied throughout the UAS community. 

Requirements proposed here follow the structure documented in Table 1 of the Phase I final technical 

report (Ref. 33). Some minor modifications have been made to that structure, but in general the format is 

as defined in the Phase I work. 

Requirements are structured to follow the format of the SAE Aerospace Recommended Practices (ARP) 

94910 (Ref. 34), “Aerospace - Vehicle Management Systems - Flight Control Design, Installation and 

Test of, Military Unmanned Aircraft, Specification Guide For.” It is not necessarily meant to suggest that 

we will use that structure, but for now it helps assure that we do not overlook any critical requirements for 

the proposed specification. For the most part, the requirements have been based on ARP94910, ADS-

33E-PRF for piloted military rotorcraft (Ref. 35), MIL-STD-1797B for piloted military airplanes (Ref. 

36), and FAA Title 14 Code of Federal Regulations (CFR) Parts 23 through 29 (the “FARs”) and related 

Advisory Circulars. Sources are listed for the requirements; additional explanations are included, 

especially in cases where the requirements have been modified from their source document. 

Because MIL-STD-1797B is a limited-distribution document (Distribution Statement D, DoD and DoD 

Contractors Only), requirements will not be quoted verbatim here. Supporting graphics have been taken 

from reports with unlimited distribution. 

B. TABLE OF DRAFT REQUIREMENTS 

A list of the draft quantitative requirements is given in Table 9. A status of “Complete” is not meant to 

imply that no further input is desired. It simply reflects the subjective level of maturity for the proposed 

requirement, at this time, given our best assessment. 

Table 9. Proposed Requirements and Current Status 

Requirement Rationale Source Ref(s) Status 

1. Scope States scope of the specification. Based on Ref. 34 Complete 

2. References and 

Definitions: 2.1 

Applicable Documents; 
2.2 Abbreviations, 

Acronyms, Symbols 

and Their Definitions  

Required information for a formal spec; will be 

filled in as the spec is developed. 

Only later parts of 

2.3 (Definitions) 

have details at this 

time (see specific 

entries below) 

Most TBD, major 

emphasis in current 

SBIR Phase II 

research work; 2.3 

in relatively good 

shape 

2.3.1.1 Flight Phase 

Categories 

Currently a placeholder that will be replaced by a 

logical MTE-based structure 

TBD TBD – prefer to 

delete 

2.3.1.2 Classification Class depends upon mission more than any other 

factor; will be set with MTEs. 

Weight 

classification from 

ref. 33  

Tentative; may be 

able to add more 

details 

2.3.1.3 Modes of 

Operation 

Follows established definitions. Ref. 34 Complete 

2.3.1.4 Human Operator Specifies what is meant by “operator.” Ref. 34 Complete 

2.3.1.5 Flight 

Envelopes 

Divisions used in military specs, adopted by the 

FAA to allow for degradations in Flight 

Characteristics for uncommon wind, turbulence, 

and failure conditions. 

Ref. 36  Complete 

2.3.1.6 Flight 

Characteristics 

Meant to encompass Stability & Control, Flying 

Qualities, Handling Qualities, Automatic 

Control, in concise terms. 

Ref. 36  Complete 

2.3.1.7 Levels of Flight 

Characteristics 

Defines Levels 1, 2, and 3. Ref. 36 Complete 

2.3.1.8 Predicted and Overall handling qualities requires both Ref. 35 Confirm wording 
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Requirement Rationale Source Ref(s) Status 
Demonstrated Levels analytical and practical evaluations 

2.3.1.8.1 Predicted 

Levels 

Checks against the quantitative requirements of 

Section 3 

Ref. 35 Might need 

tweaking 

2.3.1.8.2 Demonstrated 

Levels 

Checks against the MTEs of Section 3 Ref. 3 Might need 

tweaking 

2.3.1.9 UA Control 

Systems and Functions 

Definitions to help with interpretation of the 

requirements of the spec. Might prove 

unnecessary, but a placeholder for now. 

TBD TBD 

3. Requirements Detailed response requirements, separated by 

axis 

  

3.1 Trim and Stability Trimmability is essential for safe flight; basic 

stability margin limits must be specified. 

Based on Refs. 34, 

35, and 36 

Consider more 

detailed stability 

margin limits 

3.1.5 Residual 

Oscillations 

Need some upper limit on frequency and 

amplitude of residual oscillations, especially for 

ops near obstacles or people: can’t have a LCO 

that endangers property. 

Ref. 35 Needed more for 

confidence in 

stability than for 

controllability; 

deserves 

investigation 

3.2 Pitch Axis 

Requirements 

   

3.2.1 Pitch Axis 

Dynamic Response to 

Control Inputs 

(Bandwidth) 

The primary short-term requirement to assure 

good stability; for Manual ops, it will be a 

measure of the attitude response to manual 

control inputs; for others, it will be the response 

to onboard control commands 

Appears in Refs. 

35 and 36; limits 

for conventional 

UA from Refs. 37 

and 40 

Need considerable 

research to establish 

limits; TBD for now 

3.2.2 Pitch Axis 

Damping 

Bandwidth and Stability Margin should provide 

good damping; this is needed for instances where 

one or the other of those requirements is relaxed 

Damping value 

from Ref. 35; 

pitch rate 

overshoot from 

Ref. 40 

Complete 

3.2.3 Pitch Axis Control 

Power 

Verify that UA is capable of operating 

throughout its expected flight regime when pitch 

is the primary axis of control 

Based on Ref. 35 Complete 

3.2.4 Pitch Attitude 

Hold 

Sets limits on pitch control if pitch attitude is a 

primary control method 

Ref. 34 Need to verify limits 

3.3 Roll Axis 

Requirements 

   

3.3.1 Roll Axis 

Dynamic Response to 

Control Inputs 

(Bandwidth) 

The primary short-term requirement to assure 

good stability; for Manual ops, it will be a 

measure of the attitude response to manual 

control inputs; for others, it will be the response 

to onboard control commands 

Ref. 35; proposed 

limits for 

conventional UA 

in Ref. 37 

For piloted aircraft, 

roll BW is higher 

than pitch; we don’t 

expect this to be true 

for autonomous UA: 

probably 

symmetrical 

3.3.2 Roll Axis 

Damping 

Same rationale as for pitch axis (3.2.2) Damping value 

from Ref. 35 

Complete 

3.3.3 Roll Axis Control 

Power 

Verify that UA is capable of operating 

throughout its expected flight regime when 

attitude is the primary control method 

Based on Ref. 35 Complete 

3.3.4 Roll Attitude Hold Sets limits on roll control if roll attitude is a 

primary control method 

Ref. 34 Need to verify limits 

3.4 Yaw Axis 

Requirements 

   

3.4.1 Yaw Axis 

Dynamic Response to 

Control Inputs 

(Bandwidth) 

Yaw control will be important for hovering UA, 

not so much for UA that fly like conventional 

airplanes 

Ref. 35 provides 

numbers that are 

much too high for 

any aircraft 

Detailed limits TBD 

3.4.2 Yaw Damping Precise nose pointing is required for some ops; Similar to pitch  
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Requirement Rationale Source Ref(s) Status 
may be a very limited application and roll 

3.4.3 Yaw Control 

Power 

Similar in format to the pitch and roll 

requirements, with added wording for crosswind 

operations 

Refs. 34 and 36 

for conventional 

aircraft 

Basic wording in 

place; need limits, 

MTEs 

3.4.4 Heading Hold Wording similar to pitch and roll paragraphs Same as pitch and 

roll (for now) 

First draft 

3.5 Vertical (Heave) 

Axis Requirements 

   

3.5.1 Dynamic 

Response to Control 

Inputs  

Two requirements depending upon primary 

vertical-axis control method 

  

3.5.1.1 When a Direct 

Vertical Control 

Effector is Provided 

This is a version of the helicopter vertical control 

requirements: need to assure rapid and precise 

vertical-axis control 

  

3.5.1.1.1 Short-Term 

Response (Bandwidth) 

Heave-axis Bandwidth and Phase Delay are a 

direct counterpart to requirements in other axes 

Tentative limits in 

a study for piloted 

V/STOL38 

Flight testing needed 

to define limits 

3.5.1.1.2 Vertical-Axis 

Control Power 

Some form of control power is justified, but 

details are still TBD 

Using hover 

requirement from 

ADS-33 

Limits from ADS-33 

may be sufficient 

3.5.1.2 When a Direct 

Vertical Control 

Effector is Not 

Provided 

Flight path response for conventional aircraft: 

control h with elevator 

  

3.5.1.2.1 Short-Term 

Response (Bandwidth) 

Assure rapid flightpath control with attitude 

changes 

Concept based on 

requirement in 

1797B36 

Need to confirm 

limits from MIL 

standard 

3.5.1.2.2 Vertical-Axis 

Control Power 

Ability to arrest sink rate, and to climb if needed, 

is essential for normal operations of any UA  

Studied in Air 

Force report for 

powered-lift 

STOLs44 

Format is 

reasonable; confirm 

numbers from MTE 

tests 

3.6 Transition 

Between Powered-Lift 

and Wing-Borne 

Flight 

Studies with piloted V/STOLs have shown that 

there are stability and control power issues 

during transitions between vertical powered lift 

and purely wing-borne lift 

Piloted-aircraft 

requirements 

developed in 

simulations39 

Some research 

required just to 

determine scope of 

the issue for UA 

3.6.1 Pitch Stability 

During Transition 

Rapid shift in CG and CP during thrust rotation 

can create momentary instability; combined with 

large power changes, control margins can also be 

lost (V-22 experiences) 

  

3.6.1.1 Transition to 

STOL 

This should be a very brief, but highly dynamic, 

portion of a typical flight profile 

Ref. 39 allows 

momentary 

instability for 

Levels 2 & 3 

Based on piloted 

VSTOL study;39 

may be unnecessary 

for augmented UA 

3.6.1.2 Transition to 

Hover 

For a typical UA mission, hover will be a critical 

phase of flight; there should not be a loss of 

stability during the transition 

Ref. 39 suggests 

stability be 

maintained 

through the hover 

May end up with 

different pitch 

requirements (3.1) 

for hover; will need 

to reword this to 

reflect it 

3.6.1.3 Coupling 

Between Pitch Attitude 

and Power 

Pitch/power coupling is a common issue with 

some V/STOL designs; need to ensure no loss of 

control 

  

3.7 Transients 

Between Command 

Sources 

UA that can be both manually and autonomously 

controlled should not exhibit undesirable 

dynamic responses during the transition in 

Modes of Operation; similarly, changes in 

waypoints should not cause undesirable 

responses 

  

3.7.1 Mode Switching Switching between Manual, Assisted, and ARP9491034 Taken with 
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Requirement Rationale Source Ref(s) Status 
Autonomous Modes should not result in large 

transients 

modification from 

Ref. 34; needs 

verification 

3.7.2 Guidance and 

Navigation Commands 

Generation of new waypoints, switching from a 

Hold mode to waypoint tracking, or vice versa, 

should be relatively seamless 

New requirement Needs verification 

3.8 Response to 

Turbulence and Gusts 

Need to assure that the UA is stable in presence 

of gusts; for high turbulence, a performance 

degradation is allowed as long as control can be 

retained 

  

3.8.1 Dynamic 

Response to Turbulence 

With no pilot onboard, the concern is more loss 

of control than ride qualities  

Qualitative 

statement only at 

this time 

Need flight data and 

detailed study of 

models of 

turbulence 

3.8.2 Response to a 

Unit Gust 

Flight path deviations and ability to recover to 

initial course will be paramount 

Gust based on that 

defined in MIL-

STD-1797B36 

Needs mod to be 

time-based, not 

distance-based 

3.9 Response to 

Failures 

This will be a substantial effort to undertake; 

considerable insight can be gained from SAE 

ARP-9491034, ADS-33E-PRF35, and MIL-STD-

1797B36 

Qualitative 

statement only at 

this time 

Need flight data 

4. Mission Task 

Elements 

Practical demonstration of capability, using well-

defined maneuvers that represent small portions 

of a typical mission, will carry equal importance 

to the requirements in section 3. 

TBD Flight testing is 

ongoing to define 

suitable MTEs 
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C. RECOMMENDED REQUIREMENTS 

1. SCOPE 

This document establishes recommended practices for the specification of general performance, design, 

test, development, and quality assurance requirements for the flying and handling qualities of Unmanned 

Aircraft (UA), the airborne element of Unmanned Aircraft Systems (UAS). The document is written for 

unmanned aircraft intended for use primarily in civilian operational areas. The document also provides a 

foundation for considerations applicable to safe flight in all classes of airspace. 

2. REFERENCES 

2.1 Applicable Documents 

2.2 Abbreviations, Acronyms, Symbols and Their Definitions 

[To be assembled.] 

2.3 Definitions 

2.3.1 UA Design and Operational Categorization Schemes 

2.3.1.1 Flight Phase Categories 

[To be developed.] 

2.3.1.2 Classification 

UA shall be classified according to weight, mission, and modes of operation (2.3.1.4). The UA shall be 

classified according to the following weight ranges: 

Weight Class I: weight ≤ 0.55 pounds (µUA) 

Weight Class II: 0.55 < weight < 55 pounds (sUA) 

Weight Class III: weight ≥ 55 pounds (UA) 

For this classification, “weight” refers to the heaviest expected weight of the vehicle during its normal 

flight operation. 

2.3.1.3 Modes of Operation 

MANUAL: Those modes of operation wherein the operator provides, in at least one phase of flight, direct 

and continuous control of the UA, acting as an element of the UA control inner loop by directly 

manipulating control force effectors and engine power setting and employing visual cues, video feedback 

or other sensory feedback, in combination or individually. The onboard UA control system may still be 

augmenting stability but the trajectory of the vehicle is completely dependent upon continuous control 

inputs from the operator. 

ASSISTED: Those modes of operation wherein the operator periodically adjusts UA outer loop controlled 

states such as airspeed, altitude, heading, climb/descent rate, etc., and determines or adjusts the waypoints 

the vehicle should fly to. In the absence of new inputs, the UA control system maintains the last 

controlled states. 

AUTONOMOUS: Those modes of operation wherein the UA executes a pre-planned mission and the 

operator plays no part in the UA control outer loop but may provide decision-making, supervisory or 

initiation and termination inputs. In this mode of operation, the UA may also generate waypoints 

independently of the mission plan or otherwise alter trajectory autonomously based on decisions made 

aboard the vehicle. 
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NOTE: At the time of writing, competing schemes exist defining Levels of Autonomy (LOA) and no 

single standard has been generally adopted. The higher levels of mission autonomy, when defined and 

employed, are not expected to require levels of VMS capability beyond those presently defined by this 

specification. 

2.3.1.4 Human Operator 

The human being responsible for controlling, directing or supervising the operation of the UA from a 

remote CS. The operator is responsible for the safe, orderly flight of one or more UA, as related to this 

physical control capability. The operator is often trained and identified by a government agency as a pilot. 

In the civil field the term is often used for the organization responsible for the UA but it is never used in 

this manner in this document. The term Operator is analogous to the term Pilot in Command, for a 

manned aircraft. 

2.3.1.5 Flight Envelopes 

For the purpose of this specification, the flight envelopes are defined as follows: 

Operational Flight Envelopes: The Operational Flight Envelopes define the boundaries in terms of speed, 

altitude, and normal acceleration within which the aircraft must be capable of operating in order to 

accomplish the required missions. Envelopes for each applicable Flight Phase are defined by the prime 

contractor in the UA Detail Specification. 

Service Flight Envelopes: For each Aircraft Normal State, the prime contractor defines, in the Aircraft 

Detail Specification, Service Flight Envelopes showing the combinations of speed, altitude, and normal 

acceleration derived from aircraft limits, as distinguished from the mission requirements. For each 

applicable Flight Phase and Aircraft Normal State, the boundaries of the Service Flight Envelopes can be 

coincident with or lie outside the corresponding Operational Flight Envelopes, but in no case do they fall 

inside those Operational Boundaries. 

Permissible Flight Envelope: The prime contractor defines Permissible Flight Envelopes, which 

encompass all regions in which operation of the aircraft is both allowed and possible. These envelopes 

define boundaries in terms of speed, altitude, and normal acceleration. From all points in the permissible 

flight envelope, it should be possible to consistently return to the service flight envelope. 

2.3.1.6 Flight Characteristics 

Defined in terms of measures based upon the expected response to human operator control inputs. For 

operations in all three modes, flight characteristics consist of Flying Qualities metrics; for manual control, 

and in some conditions assisted control, additional requirements are based on Handling Qualities 

evaluations by a trained operator. 

FLYING QUALITIES are defined as the stability and control characteristics that have an important 

bearing on the safety of flight and on the ease of operation of the air vehicle in steady flight and in 

maneuvers. They are defined in terms of measurable analytical and empirical parameters or criteria that 

can be measured for a given UA. 

HANDLING QUALITIES are those qualities or characteristics of a UA that govern the ease and 

precision with which an operator or autonomous system is able to perform the tasks required in support of 

the UA’s role. 

2.3.1.7 Levels of Flight Characteristics 

Three levels of UA flight characteristics are defined. The levels are as follows: 

Level l: Flight characteristics clearly adequate for the Mission Task Element. 
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Level 2: Flight characteristics adequate to accomplish the Mission Task Element, but some degradation in 

mission effectiveness exists. 

Level 3: Flight characteristics such that the aircraft can be controlled safely, but mission effectiveness is 

inadequate. Category A Mission Task Elements can be terminated safely, and Category B and C Mission 

Task Elements can be completed. 

2.3.1.8 Predicted and Demonstrated Levels 

The overall UA Level of handling qualities shall be a combination of the two distinct methods of 

assessment, Predicted Levels and Demonstrated Levels. 

2.3.1.8.1 Predicted Levels 

To obtain the Predicted Levels of handling qualities, the UA’s handling qualities parameters shall be 

determined and compared with the criteria limits appropriate to the UA’s operational requirements. For 

the predicted Level of handling qualities to be Level 1, the UA shall meet the Level 1 standards for all of 

the criteria. Violation of any one requirement is expected to degrade handling qualities. Violation of 

several individual requirements (e.g., to Level 2) could have a synergistic effect so that, overall, the 

handling qualities degrade to Level 3, or worse. 

2.3.1.8.2 Demonstrated Levels 

To determine the Demonstrated Level of handling qualities, the UA shall perform all designated MTEs. 

Meeting or exceeding the Desired performance limits for all designated MTEs shall be considered to 

demonstrate Level 1 handling qualities. Meeting or exceeding the Adequate performance limits for any 

designated MTE shall demonstrate Level 2 handling qualities. Failure to achieve at least Adequate 

performance for any designated MTE shall be considered Level 3 handling qualities. 

2.3.1.9 UA Control Systems and Functions 

[To be defined.] 

3. REQUIREMENTS 

3.1 Trim and Stability 

3.1.1 Trim for Hovering UA 

It shall be possible to achieve a stable hover in calm air, and in a steady wind of up to 15 kt from the most 

critical direction. 

3.1.2 Trim for Manually Controlled UA 

It shall be possible to trim all operator effector forces to zero for any airspeed in the Operational Flight 

Envelope. 

3.1.3 Stability 

All transients from trimmed flight shall be stable for any airspeed expected to be encountered in flight. 

3.1.4 Aerodynamic Closed-Loop Stability Margins 

An aerodynamic loop is one which relies on aerodynamics and/or thrust vectoring for loop closure such as 

stability augmentation.  For automatic modes, the stability requirement applies only to the airspeed range 

of operation of these modes. In multiple loop systems, variations should be made with all feedback paths 

held at their nominal values except for the path under investigation. A path is defined to include those 

elements connecting feedback sensors to a force or moment effector. The loop breaks for analysis should 

be made at the input to the mixer or control allocation. 
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For all flight conditions within the Operational and Service Flight Envelopes, aerodynamic closed-loop 

stability margins shall be at least 6.0 dB gain margin and 45 degrees phase margin. These margins may be 

relaxed for failure cases and for flight in the Permissible Flight Envelopes provided the closed-loop 

system meets the requirement of 3.1.3. 

3.1.5 Residual Oscillations 

Any sustained oscillations in any axis in calm air shall not interfere with the UA’s ability to perform the 

specified Mission-Task-Elements. For Level 1, oscillations in attitude and in acceleration greater than 0.5 

degrees and 0.05g shall be considered excessive for any Response-Type and Mission-Task-Element. 

Residual motions that are classified as a vibration shall be excluded from this requirement. Residual 

motions that are to be classified as vibrations shall be subject to Government approval. 

3.2 Pitch Axis Requirements 

3.2.1 Pitch Axis Dynamic Response to Control Inputs (Bandwidth) 

If angular attitude is used as a primary controller, the pitch attitude response to longitudinal control inputs 

shall meet the limits specified in Table 10. The Aircraft Attitude Bandwidth (ωBW) and Phase Delay (τp) 

parameters shall be obtained from frequency responses as defined in Figure 42. 

Table 10: Pitch Aircraft Attitude Bandwidth and Phase Delay Limits 

Flying Qualities Level Minimum Bandwidth, 
ωBW (rad/s) 

Maximum Phase 
Delay, τp (s) 

Level 1 TBD TBD 

Level 2 TBD TBD 

 

3.2.2 Pitch Axis Damping 

All oscillatory modes resulting from aerodynamics or flight control system functions shall have a 

damping ratio of at least 0.3. For UA where precise nose pointing is required, the limit is increased to 0.7. 

In addition, the pitch rate overshoot parameter ΔG(q), defined in Figure 43, shall be less than TBD dB for 

Level 1 and TBD dB for Level 2. 

3.2.3 Pitch Axis Control Power 

The effectiveness of the pitch control shall not affect performance of any of the required tasks of the UA. 

Further, if angular attitude is used as a primary controller, pitch control power shall be sufficient to 

achieve the range of airspeeds required for normal operation, with sufficient control margin to counter 

gusts and upsets that might be encountered in normal operation. 

3.2.4 Pitch Attitude Hold 

If pitch Attitude Hold is provided as an operator workload relief function, or as a normal operational state 

for Assisted or Autonomous UA, pitch attitude shall be maintained in smooth air with a static accuracy of 

±1.0 degree pitch attitude with respect to the reference attitude. Accuracy requirements shall be achieved 

and maintained within 5 s of mode engagement for a 5 degree attitude disturbance. Upon completion of 

an operator-controlled maneuver, the aircraft attitude maintained by the VMS shall be the aircraft attitude 

at the time the commanded forces were removed, if this attitude is within the limits of the Attitude Hold 

mode. 
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Figure 42: Definitions of Aircraft Attitude Bandwidth and Phase Delay 

 

 

Figure 43: Definition of Pitch Rate Overshoot 
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3.2.5 Pitch Responses to Turbulence and Gusts 

To be developed. 

3.2.6 Pitch Response to Failures 

TBD. 

3.3 Roll Axis Requirements 

3.3.1 Roll Axis Dynamic Response to Control Inputs (Bandwidth) 

If angular attitude is used as a primary controller, the roll attitude response to lateral control inputs shall 

meet the limits specified in Table 11. The Aircraft Attitude Bandwidth (ωBW) and Phase Delay (τp) 

parameters shall be obtained from frequency responses as defined in Figure 42. 

Table 11: Roll Aircraft Attitude Bandwidth and Phase Delay Limits 

Flying Qualities Level Minimum Bandwidth, 
ωBW (rad/s) 

Maximum Phase 
Delay, τp (s) 

Level 1 TBD TBD 

Level 2 TBD TBD 

 

3.3.2 Roll Axis Damping 

All oscillatory modes resulting from aerodynamics or flight control system functions shall have a 

damping ratio of at least 0.3. For UA where precise nose pointing is required, the limit is increased to 0.7. 

3.3.3 Roll Axis Control Power 

The effectiveness of the roll control shall not affect performance of any of the required tasks of the UA. 

Further, if angular attitude is used as a primary controller, roll control power shall be sufficient to achieve 

the range of airspeeds required for normal operation, with sufficient control margin to counter gusts and 

upsets that might be encountered in normal operation. 

3.3.4 Roll Attitude Hold 

If roll Attitude Hold is provided as an operator workload relief function, or as a normal operational state 

for Assisted or Autonomous UA, roll attitude shall be maintained in smooth air with a static accuracy of 

±1.0 degree roll attitude with respect to the reference attitude. Accuracy requirements shall be achieved 

and maintained within 5 s of mode engagement for a 5 degree attitude disturbance. Upon completion of 

an operator-controlled maneuver, the aircraft attitude maintained by the VMS shall be the aircraft attitude 

at the time the commanded forces were removed, if this attitude is within the limits of the Attitude Hold 

mode. 

3.3.5 Roll Response to Turbulence and Gusts 

To be developed. 

3.3.6 Roll Response to Failures 

TBD. 

3.4 Yaw Axis Requirements 

3.4.1 Yaw Axis Dynamic Response to Control Inputs (Bandwidth) 
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If angular attitude is used as a primary controller, the yaw attitude response to directional control inputs 

shall meet the limits specified in Table 12. The Aircraft Attitude Bandwidth (ωBW) and Phase Delay (τp) 

parameters shall be obtained from frequency responses as defined in Figure 42. 

Table 12: Yaw Aircraft Attitude Bandwidth and Phase Delay Limits 

Flying Qualities Level Minimum Bandwidth, 
ωBW (rad/s) 

Maximum Phase 
Delay, τp (s) 

Level 1 TBD TBD 

Level 2 TBD TBD 

 

3.4.2 Yaw (Heading) Axis Damping 

All oscillatory modes resulting from aerodynamics or flight control system functions shall have a 

damping ratio of at least 0.3. For UA where precise nose pointing is required, the limit is increased to 0.7. 

3.4.3 Yaw Control Power 

The effectiveness of the yaw control shall not affect performance of any of the required tasks of the UA. 

Further, yaw control power shall be sufficient to achieve the range of airspeeds required for normal 

operation, with sufficient control margin to counter gusts and upsets that might be encountered in normal 

operation. Takeoff, approach, and landing in crosswinds up to TBD knots shall not be limited by yaw 

control power. 

3.4.4 Heading Hold 

If Heading Hold is provided as an operator workload relief function, or as a normal operational state for 

Assisted or Autonomous UA, heading shall be maintained in smooth air with a static accuracy of ±1.0 

degree heading error with respect to the reference heading. Accuracy requirements shall be achieved and 

maintained within 5 s of mode engagement for a 5 degree heading disturbance. Upon completion of an 

operator-controlled maneuver, the aircraft heading maintained by the VMS shall be the aircraft heading at 

the time the commanded forces were removed. 

3.5 Vertical (Heave) Axis Requirements 

3.5.1 Vertical (Heave) Axis Dynamic Response to Control Inputs 

3.5.1.1 When a Direct Vertical Control Effector is Provided 

3.5.1.1.1 Short-Term Response (Bandwidth) 

Short-term heave response to vertical control inputs shall meet the limits specified in Table 13. The 

Aircraft Vertical-Axis Bandwidth (ωBW) and Phase Delay (τp) shall be obtained from frequency responses 

as defined in Figure 44. 

Table 13: Vertical Response Bandwidth and Phase Delay Limits 

Flying Qualities Level Minimum Bandwidth, 
ωBW (rad/s) 

Maximum Phase 
Delay, τp (s) 

Level 1 TBD TBD 

Level 2 TBD TBD 
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Figure 44: Definition of Vertical-Axis Bandwidth and Phase Delay 

3.5.1.1.2 Vertical-Axis Control Power 

From a spot hover with the wind vector from the most critical speed and direction at a velocity of up to 35 

knots, and with the most critical loading and density altitude, for Level 1 it shall be possible to achieve a 

vertical rate of at least TBD ft/min, 1.5 seconds after initiation of a rapid displacement of the collective 

control from trim. The minimum vertical rates shall be TBD ft/min for Level 2 and TBD ft/min for Level 

3. Pitch, roll, and heading shall be maintained essentially constant. 

3.5.1.2 When a Direct Vertical Control Effector is Not Provided 

3.5.1.2.1 Short-Term Response (Bandwidth) 

The relation of flight path response to changes in pitch attitude following control inputs shall be such that 

the flight path Bandwidth frequency is greater than TBD rad/sec but less than TBD rad/sec for Level 1. 

These limits are TBD rad/sec and TBD rad/sec, respectively, for Level 2. Flight path Bandwidth is 

defined as the frequency at which the response of flight path angle, measured at the center of gravity, lags 

control inputs by 135 degrees. 

3.5.1.2.2 Vertical-Axis Control Power 

It shall be possible to achieve a steady-state flight path angle change as specified in Table 14 without 

reconfiguring the UA. 

Table 14: Minimum Achievable Flight Path Angle Change 

MTE Level Minimum Flight Path Angle Change (from Trim) (deg) 

Up Δγ Down Δγ 

Landing 
Approach 

1 

2 

TBD 

TBD 

TBD 

TBD 

Offset 
Landing 

1 

2 

Level Flight + TBD deg 

Level Flight + TBD deg 

TBD 

TBD 

 

3.6 Transition Between Powered-Lift and Wing-Borne Flight 

3.6.1 Pitch Stability During Transition 

3.6.1.1 Transition to STOL 
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For Level 1, the requirements of 3.2 shall be met during the transition from forward flight to STOL. For 

Levels 2 and 3, any loss of pitch stability in this flight regime shall not result in a time to double pitch 

attitude of less than TBD seconds for Level 2 and TBD seconds for Level 3. 

3.6.1.2 Transition to Hover 

There shall be no degradation in pitch stability in the transition from STOL to hover. 

3.6.1.3 Coupling Between Pitch Attitude and Power 

Changes in power (thrust level) shall not result in excessive changes in pitch attitude. The maximum 

coupling between power and pitch attitude shall be less than TBD deg change in peak pitch attitude per 

change in percent thrust for Level 1. For Levels 2 and 3, changes in power shall not result in 

unrecoverable changes in pitch attitude. 

3.7 Transients Between Command Sources 

3.7.1 Mode Switching 

With the UA in trimmed, level flight, switching between Modes shall not result in exceedance of the 

Operational Flight Envelope. In addition, transients resulting from Mode switching during Precision, 

Aggressive MTES shall not be greater than ±0.05 g and ±1 degree bank. For all other MTEs, transients 

shall not be greater than ±0.5 g and ±10 degrees bank angle. 

3.7.2 Guidance and Navigation Commands 

Switching between waypoints or Hold modes shall not result in exceedance of the Operational Flight 

Envelope. This includes introduction of new waypoints, whether from a manual operator or from onboard 

guidance, and switching to or from Heading or Altitude Hold and waypoint navigation. 

3.8 Response to Turbulence and Gusts 

3.8.1 Dynamic Response to Turbulence 

When flying in the Operational Flight Envelope, the UA shall be capable of countering any turbulence 

that may be encountered in normal maneuvering. Turbulence that results in a momentary incursion out of 

the OFE shall not result in loss of positive control, and return to the OFE shall always be achievable 

following the excursion. 

3.8.2 Response to a Unit Gust 

The UA shall be capable of safely responding to a unit gust applied in the most critical direction. 

The gust shall have a “1 – cosine” shape as shown in Figure 46. The gust shall be applied to the most 

direct controller for vertical flight path (e.g., elevator for a conventional UA or rotor RPM/collective for a 

VTOL UA), with magnitude vm selected to provide an altitude change of at least 10 ft in one second after 

application, determined for the UA with outer-loop hold modes (or pilot intervention, for manually 

controlled) inactive. The distance dm shall be tuned to the estimated rigid-body short-term response mode 

of interest. It is acceptable to replace the “1 – cosine” shape with a discrete gust. 

The “1 – cosine” gust has the following shape: 
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Figure 45: “1 – cosine” Shape for Discrete Gust 

3.9 Response to Failures 

For flight in the Operational Flight Envelope, no single failure of the flight control system, including 

propulsion and powered lift components, shall result in loss of control. Momentary excursions outside the 

OFE are permitted, provided the UA returns to stable flight within the OFE within a reasonable time. 

Occurrence of more than one failure shall not result in loss of control of the UA; it is acceptable, 

however, that the handling qualities degrade outside the OFE for the duration of the flight, provided the 

limits of the Permissible Flight Envelope are not exceeded. 

4. MISSION TASK ELEMENTS 

TBD.  
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D. RATIONALE FOR REQUIREMENTS  

1. SCOPE 

This overarching statement, adopted from Ref. 34, will set the breadth – and define the limitations – of 

the document as it evolves. ARP94910 specifically calls out military aircraft; in this case we are directing 

the requirements toward civil aircraft, but many of the requirements are applicable in either case. 

2. REFERENCES AND DEFINITIONS 

2.1 Applicable Documents 

2.2 Abbreviations, Acronyms, Symbols and Their Definitions 

To be assembled. 

2.3 Definitions 

2.3.1 UA Design and Operational Categorization Schemes 

2.3.1.1 Flight Phase Categories 

This designation may not be applied to the specification at all. As discussed in the Phase I final report 

(Ref. 33), the intent is to move to MTEs as the driving force instead of Flight Phases and Categories. This 

paragraph is a placeholder in the event that it is discovered during the Phase II research that some 

definition is still justified. 

2.3.1.2 Classification 

Another definition that may be eliminated in an MTE-driven specification. What should matter most is 

the intended use of the UA, but there is a precedent for keeping some other classification for operation in 

civil airspace, so a weight-based classification is currently proposed. 

2.3.1.3 Modes of Operation 

Specification requirements – especially those dictated by MTEs – must acknowledge the degree of 

operator interactions in the performance of vehicle missions. This set of definitions comes from 

ARP94910 and provides a method for specifying that degree of interactions. 

As the note in this paragraph states, “[a]t the time of writing, competing schemes exist defining Levels of 

Autonomy (LOA) and no single standard has been generally adopted.” Various documents divide LOA 

into four – and up to as many as 11 – different autonomy levels. For specification of UA handling 

qualities, the proposed levels in ARP94910 seem sufficient; there is no “fully-autonomous” mode in this 

document as it is felt that UA that operate entirely autonomously must have equivalent dynamic response 

characteristics of those that may receive operator-based waypoint guidance. Inner-loop stabilization and 

outer-loop guidance responses should be generated onboard and not from a ground operator. 

There is an obvious challenge, of course: many UA are intended to be autonomous for a portion of their 

missions, with some degree of operator interaction at other times. It is incumbent on the procuring activity 

and the designer to come to agreement on the specific modes of operation to be applied for specific 

MTEs. Such an agreement should be set in advance of initial design. 

2.3.1.4 Human Operator 

In concert with the Modes of Operation, this paragraph, taken from ARP94910, clarifies what is meant by 

“human operator.” 
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2.3.1.5 Flight Envelopes 

Commensurate with levels of flight characteristics, envelopes where the UA could operate must also be 

specified. There is no reason to demand the same response characteristics in calm winds and in winds at 

the limit of control for the UA. 

2.3.1.6 Flight Characteristics 

These are the MIL-STD-1797B (Ref. 36) definitions of flying qualities and handling qualities. They are 

as applicable for unpiloted aircraft as for piloted ones. 

2.3.1.7 Levels of Flight Characteristics 

Unlike requirements that dictate airworthiness, where the goal is to insure a reasonable level of flight 

safety, the requirements on flight characteristics must have a wider application. It is possible that the UA 

will be entirely “safe” (to a well-established probability), but may not be able to fully perform its intended 

mission; or it may be suitable to complete a mission, but with heightened attention on the part of the 

operator. Levels of flight characteristics allow for degraded operations with some loss of efficiency or 

performance, or an increase in risk of failure for completing the mission entirely, without simply applying 

“go” or “no go” criteria. 

Conditions of failed states, increased turbulence or winds, etc., can lead to degraded task performance 

even if the aircraft itself is functioning as intended. These external variables can also cause a reduction in 

the level of flight characteristics. 

The Levels stated are taken directly from MIL-STD-1797B,36 but we have replaced “mission flight phase” 

with “Mission Task Element,” in keeping with our objective of using MTE as the mission driver. 

2.3.1.8 Predicted and Demonstrated Levels 

2.3.1.8.1 Predicted Levels 

2.3.1.8.2 Demonstrated Levels 

Assessment of handling qualities is not limited to analysis, nor to flight testing. Analysis is critically 

important, of course, and with a validated simulation model, it is possible to quickly check compliance 

with the quantitative requirements in Section 3 for a myriad of flight conditions and configurations. 

Flight demonstration, by contrast, is much more challenging and, or necessity, limited in scope. The 

MTEs in Section 4 are intended to be methods of test for demonstrating handling qualities, but the range 

of conditions and configurations will be much more narrow than is possible for analytical study. 

This set of definitions is taken, with slight modification, from ADS-33E-PRF (Ref. 35). That specification 

for rotorcraft is the first attempt to acknowledge that neither analysis nor flight test is a complete method 

for compliance, and that overall assessment of handling qualities is a logical combination of the two 

methods. The most significant changes are renaming “Assigned Levels” to “Demonstrated Levels,” and 

removal of any mention of pilot-assigned handling qualities ratings. In the UA specification, consistent 

demonstration of MTEs is sufficient to confirm Levels of handling qualities. 

2.3.1.9 UA Control Systems and Functions 

2.3.2 Flight Control Functional Classifications 

Appearing in ARP94910 (Ref. 34), these sections define the Mission and Vehicle Management Systems 

and the Utility and Propulsion Control Systems; and the functions of the flight control system. All the 

material in these sections is very useful, and if we need the material, we may simply cross-reference the 

ARP. 
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3. REQUIREMENTS 

3.1 Trim and Stability 

3.1.1 Trim for Hovering UA 

There is an obvious need for trimmability, and this paragraph serves as an example of what is expected to 

appear in the specification. There will be additional requirements for trim in fixed wing UAs. 

3.1.2 Trim for Manually Controlled UA 

Some statement requiring trim for manually-controlled aircraft is needed. This paragraph may very well 

evolve as the Phase II research is conducted. 

3.1.3 Stability 

A sweeping statement for “stability” in general, as reflected in response to external forces. 

3.1.4 Aerodynamic Closed-Loop Stability Margins 

This requirement is taken from SAE ARP94910 (Ref. 34) with some simplification. Since the 

aerodynamic loops are more critical than ever on highly-augmented (and especially autonomous) aircraft, 

this paragraph is almost certain to expand as the Phase II research is performed. Extension of the stability 

margins to flexible aircraft, as is done in the ARP, is a topic for future research. 

3.1.5 Residual Oscillations 

This requirement is meant as a placeholder for now; the numbers are reasonable for piloted aircraft, and 

may be suitable for any UA on which there is a human occupant, but more work is needed to set limits for 

smaller UA. In any case, a clear delineation between “residual oscillations” and vibration must be made, 

and a method devised to separate the two: tolerance for very high-frequency vibrations may be lower – or 

perhaps in some cases higher – than the limits for low-frequency residual oscillations. A future version of 

the specification will probably contain a very different set of requirements for limits on residual 

oscillations, including methods to determine just what those oscillations might be. 

3.2 Pitch Axis Requirements 

3.2.1 Pitch Axis Dynamic Response to Control Inputs (Bandwidth) 

Aircraft Attitude Bandwidth is a fundamental measure of the quality of angular responses to control 

inputs. The specific requirements and definition are taken from ADS-33E-PRF and AFWAL-VA-WP-

TR-2000-3046 (Ref. 40), but similar requirements – with different limits – appear in MIL-STD-1797B as 

well. The intent is to place response limits on any controller that commands pitch attitude changes to 

translate over the earth, or to increase or decrease speed or altitude; we will have separate requirements 

for aircraft that use direct force control, rather than by tilting the airframe, for those purposes. 

Values in Table 10 are obviously a major focus of the Phase II research effort. The table is intended 

purely as a placeholder for now. 

While there is a vast database for piloted fixed- and rotary-wing aircraft, there is no documentation at all 

of the possible requirements for UAs. In fact, based on an assessment of Bandwidth for UAs, we expect 

that most small vehicles will meet the numbers easily, especially for autonomous operation; Bandwidth 

frequencies as high as 10 rad/s are possible for such aircraft (Ref. 41). On the other end of the spectrum, 

operator-controlled aircraft such as Predator and Reaper exhibit very high Phase Delay, as total 

throughput delay for beyond-line-of-sight operations is close to 2 s. Pilots are not required to perform 

precision tracking operations with such UAs, and in fact, some relief is provided by the incorporation of 

gimballed sensors, so that the demands on the system are shared with the sensor. The impact on handling 
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qualities on this combination of aircraft-plus-sensor has yet to be fully explored; initial concepts are 

available in a PhD dissertation that investigates a unified set of criteria for the entire system (Ref. 42). 

3.2.2 Pitch Axis Damping 

The damping ratio limit of 0.3 comes from ARP94910 and the pitch rate overshoot parameter from 

AFWAL-VA-WP-TR-2000-3046. As discussed in the latter reference, Aircraft Bandwidth reduces the 

chance for low damping, but does not prevent it. This requirement prevents low damping in the pitch axis. 

For UA, system damping must be reasonably high to begin with. Whether “reasonably high” corresponds 

to a damping ratio of 0.3 may be a matter for future debate, but it is certain that anything much lower will 

result in an aircraft that is too easily excited to oscillate in pitch without direct suppression of the 

oscillations. 

If the UA is to provide precise attitude control – surveillance with a fixed optical sensor, for instance – a 

damping ratio of 0.3 is simply too low. We have increased the lower limit to 0.7, and there may be 

justification for even higher values of damping. 

3.2.3 Pitch Axis Control Power 

There are very specific requirements on pitch control power in the piloted specification MIL-STD-1797B, 

but they are obviously intended to provide the pilot with sufficient power to perform tasks such as 

takeoffs and landings, stall recovery, etc. Those requirements, while important for pilot-in-the-loop 

operations, are of lesser importance for UAs, especially those that operate autonomously. 

We may find it prudent to incorporate a subset of the piloted-airplane requirements for fully Manual 

flight, and for Assisted flight when the pilot is in the loop. In addition, just what constitutes “sufficient” 

control power, and the level of gusts and upsets to be applied, should be defined and included in the 

specification. At this time, the general statements given here are considered guidance to the designer. 

3.2.4 Pitch Attitude Hold 

Some form of pitch Attitude Hold (AH) will be essential on all but the most rudimentary manually 

controlled UAs. The technology to achieve a reasonable level of AH can be achieved with very low cost, 

but some low-cost attitude sensor and control systems are prone to limit-cycle oscillations (LCO) or 

reference drift over time. This requirement, taken with some modification from ARP94910, assures long-

term AH. The biggest change from ARP94910 is opening the pitch static accuracy requirement from ±0.5 

degree to ±1.0 degree. For a vehicle such as a hovering aircraft carrying an external load, the tightness of 

the AH is of secondary importance to the ability to stabilize the load. We have also removed a line 

specifying rms accuracy in disturbances – important, but in need of research that will be a focus in Phase 

II. 

3.2.5 Pitch Axis Response to Turbulence and Gusts 

This requirement is TBD. There are very detailed requirements in MIL-STD-1797B, but they may be 

excessive when applied to UAs. There is no question that the ability to operate in high winds and 

turbulence is a critical need for UAs. 

A viable requirement for testing gust rejection is application of a 1-cosine gust as defined in MIL-STD-

1797B. This form of gust is amenable to analysis, is simple in its design and implementation, and is 

highly modifiable. On the other hand, it is not testable in flight, and it does not exercise the overall 

system’s gust rejection capabilities. 

There is a critical need for turbulence rejection testing; this was a major effort in the development of 

MIL-STD-1797B and remains a high priority today. Just how to specify testing, without over- or under-

specifying, will require some research and development effort. Much more research is needed. 
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3.2.6 Pitch Response to Failures 

There will be several critical issues to be addressed when it comes to failure control in UA. These will 

include the intended use, operational area, phase of flight, and consequences of the failure, among other 

challenges. As an example, loss of a pitching actuator on a fixed wing UA in high-altitude cruise may be 

tolerable, if the following are true: the transients are not sufficiently large to lead to further damage to, or 

loss of, the airframe; transients in flight path do not put the UA into conflicting airspace; recovery to safe, 

controlled flight is possible; the primary mission can be continued, or at least diversion to an emergency 

landing can be safely performed. By contrast, loss of a rotor on a multi-rotor hovering package delivery 

aircraft – even if there is still excess thrust and pitch control power from the working rotor – could be 

catastrophic, depending upon proximity to the ground or other objects. 

Specification of failure transients is a complicated process, and for the latter case described above we can 

glean guidance from requirements in ADS-33E-PRF for a start, but there is much to be done to try to 

develop a comprehensive set of failure requirements for UA. This is an area deserving of considerable 

research work, beyond the scope of the current effort. 

3.3 Roll Axis Requirements 

3.3.1 Roll Axis Dynamic Response to Control Inputs (Bandwidth) 

The structure of this requirement is identical to that for 3.2.1 in pitch. For piloted aircraft, extensive 

testing has shown that acceptable limits of Bandwidth and Phase Delay differ between pitch and roll. For 

helicopters, for instance, the ratio of allowable pitch Bandwidth to roll Bandwidth in hover is about 1-to-2 

(Ref. 35). Theories abound to attempt to explain this difference, ranging from the physiological: binocular 

vision makes humans more sensitive to roll than pitch, therefore tolerance to errors is lower – to the 

physical: most helicopters are inertially slender, and the human has adapted to expect better control in 

roll. 

The latter theory breaks down for fixed wings, however, where the (admittedly very sparse) available 

evidence suggests the opposite (Ref. 37); yet airplanes are, in general, even more inertially slender than 

helicopters. 

At this time, we are providing for a separate set of attitude Bandwidth requirements for roll as opposed to 

pitch, even though there is an expectation that the limits will be identical for some UA. This will allow us 

to make a distinction if the need for one is identified, and we can coalesce the requirements in the future if 

appropriate. 

3.3.2 Roll Axis Damping 

The damping ratio limit comes from ARP94910. Aircraft Bandwidth reduces the chance for low damping 

but does not prevent it. This requirement prevents low damping in the roll axis. 

For UA that exhibit Dutch-roll-like oscillations in the roll axis, this limit might be viewed as being a bit 

excessive. Much lower values of Dutch roll damping are allowed in the fixed wing specifications for 

piloted airplanes, for instance. But the assumption for piloted airplanes is that the pilot can easily suppress 

Dutch roll oscillations, whether in roll or yaw. For UA, system damping must be reasonably high to begin 

with. Whether “reasonably high” corresponds to a damping ratio of 0.3 may be a matter for future debate, 

but it is certain that anything much lower will result in an aircraft that is too easily excited to roll without 

direct suppression of the oscillations. 

If the UA is to provide precise attitude control – surveillance with a fixed optical sensor, for instance – a 

damping ratio of 0.3 is simply too low. We have increased the lower limit to 0.7, and there may be 

justification for even higher values of damping. 
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3.3.3 Roll Axis Control Power 

There are very specific requirements on control power in the piloted specification MIL-STD-1797B, but 

they are obviously intended to provide the pilot with sufficient power to perform tasks such as takeoffs 

and landings, rolling maneuvers, etc. Those requirements, while important for pilot-in-the-loop 

operations, are of lesser importance for UAs, especially those that operate autonomously. 

We may find it prudent to incorporate a subset of the piloted-airplane requirements for fully Manual 

flight, and for Assisted flight when the pilot is in the loop. At this time, the general statements given here 

are considered sufficient as guidance to the designer. 

3.3.4 Roll Attitude Hold 

For now, it is assumed that the ability for the UA to hold attitude should be the same in pitch or roll, and 

hence the two requirements are identical. The rationale and source for this requirement are as discussed 

under 3.2.4 for Pitch Attitude Hold. 

3.3.5 Roll Axis Response to Turbulence and Gusts 

See discussion for 3.2.5. 

3.3.6 Roll Response to Failures 

See discussion for 3.2.6. 

3.4 Yaw Axis Requirements 

3.4.1 Yaw Axis Dynamic Response to Control Inputs (Bandwidth) 

Precise heading (or yaw) control is typically required of aircraft that operate at very low speeds, down to 

hover. Piloted conventional airplanes must demonstrate turn coordination and Dutch roll damping; for 

fixed wing UA, neither is as critical, though some level of yaw damping is desirable for performance and 

for public confidence. It is expected that this requirement will end up being restricted explicitly to very-

low-speed operation only, with a separate requirement for damping of the Dutch roll mode. We have 

chosen to not apply such a restriction at this time. 

For piloted helicopters, the yaw Bandwidth limits of ADS-33E-PRF are regarded as too stringent. 

Research will be required to determine the limits on yaw Bandwidth for hovering UA. 

3.4.2 Yaw Axis Damping 

This requirement is identical to that in roll, but it is possible that it will eventually differ. For instance, 

lower damping might be allowable for fixed wing UA in cruise flight, perhaps reflective of Dutch roll 

requirements for piloted airplanes. We will reevaluate when appropriate MTEs are defined and data 

become available to confirm limits on Dutch roll damping. 

3.4.3 Yaw Control Power 

A direct rewording of the requirements for pitch and roll, with an additional statement for crosswind 

operations. The additional statement is reflective of requirements in MIL-STD-1797B (Ref. 36) and will 

be updated to reflect specific MTEs once those MTEs are defined. Both the MIL Standard and ARP94910 

mention crosswinds up to 20 knots, but for now we have left the limits TBD. 

An additional use of yaw control for conventional airplanes is recovery from, and trimming out of, 

asymmetric flight, usually due to engine failure in multi-engine airplanes. Such a requirement is needed, 

but flight in failed conditions is an entire topic that has yet to be undertaken. 
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3.5 Vertical (Heave) Axis Requirements 

3.5.1 Vertical (Heave) Axis Dynamic Response to Control Inputs 

3.5.1.1 When a Direct Vertical Control Effector is Provided 

3.5.1.1.1 Short-Term Response (Bandwidth) 

Past attempts to define Bandwidth requirements for heave control have not been fully successful. Perhaps 

the most thorough, and most promising, work on this topic was done in the mid-1980s and documented in 

a Navy report (Ref. 38). The criterion proposed in that effort was based entirely on the frequency where 

phase angle of the vertical-rate-to controller was -135 degrees. We have added an option to also specify a 

Phase Delay parameter, should research prove such a metric is justified. 

As work shifted from powered-lift V/STOLs to rotorcraft, the Bandwidth approach in Ref. 38 was 

abandoned for a time-domain metric, as is used in ADS-33E-PRF (Ref. 35) and described in detail in an 

earlier background document (Ref. 43). The time-domain metric is a bit clumsy to apply but was 

considered necessary to capture throttle-governor dynamics effects on some vertical-lift aircraft. 

We would hope that, as a result of future research, if not from the current effort, we will be able to revisit 

this topic and generate Bandwidth-based requirements. Such requirements will be much simpler to apply 

and will share philosophies with the dynamic response requirements for other axes. 

At this time there is no reason to expect that the short-term dynamic response requirements will vary with 

airspeed or groundspeed; ADS-33E-PRF makes no such distinction for piloted rotorcraft, and in keeping 

with the spirit of this draft specification the determining factor should be mission-based, not speed-based. 

The table of allowable Bandwidth and Phase Delay may very well increase in size as limits are defined 

for differing missions, but not for differing speeds. 

Separate requirements are justified for aircraft that are not powered-lift, i.e., that generate flight path 

changes through attitude changes, as described later in this report. 

3.5.1.1.2 Vertical-Axis Control Power 

This is a challenging subject: should a handling-qualities specification set control power requirements? It 

was a topic of discussion for the pilot rotorcraft standard ADS-33E-PRF, with two competing 

philosophies: 1) control power for vertical-lift aircraft is a fundamental design decision, and setting limits 

will effectively dictate design – this is not the purpose of a compliance specification; and 2) control power 

has a direct impact on mission effectiveness, and to the degree that a handling-qualities specification is 

intended to help assure mission effectiveness, inclusion of a direct control power requirement is 

warranted. 

In the development process for ADS-33, it was decided that vertical-axis control power for handling 

qualities is not simply a question of maximum achievable climb rate, but an issue of how rapidly a 

minimum climb rate can be achieved. 

The words proposed in this requirement are taken almost verbatim from the hover paragraph in ADS-

33E-PRF. We have replaced the limits in ADS-33E-PRF – 160 ft/min, 55 ft/min, and 40 ft/min for Levels 

1, 2, and 3, respectively – with TBD, and removed reference to “OGE” (out-of-ground-effect) hover. For 

small UAVs, hover height for ground effect will be very small, and specifying OGE seems unnecessarily 

complicated. If this document is extended to cover autonomous, large-sized VTOLs, the wording change 

should be revisited. Similarly, while we have retained the wind speed limit for compliance of up to 35 kts, 

this limit can be reconsidered as data become available. 

3.5.1.2 When a Direct Vertical Control Effector is Not Provided 

3.5.1.2.1 Short-Term Response (Bandwidth) 
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Pitch attitude is the primary short-term controller for flight path in winged aircraft. This requirement is 

intended to assure that flight path change occurs sufficiently rapidly in response to attitude changes. There 

are plots published in MIL-STD-1797B (Ref. 36), taken from Ref. 37, that impose an absolute minimum 

Bandwidth, and suggest an upper limit that is a function of pitch attitude Bandwidth. We are hopeful that 

single numbers can be determined for both upper and lower limits, but it is possible that this requirement 

will resemble that in the referenced documents. 

This requirement does not assure sufficient flight path control power: it is possible that flight path 

response to pitch is sufficiently rapid, but of too low magnitude to provide essential flight path control. 

An alternative flight path response criterion was proposed in the early 1980’s for STOL operations (Ref. 

44) based on the frequency response of flight path to attitude. The “(1/Tθ2)eff” parameter was a direct 

measure of the consonance between the two states. While data correlation with the parameter showed 

promise, its implementation added a level of complication that is felt to be unnecessary. Flight path 

Bandwidth frequency is a more direct metric, and if it should prove to be related to pitch attitude 

Bandwidth (as is the case for piloted airplanes), requirements like those in the MIL standard can be 

developed. 

3.5.1.2.2 Vertical-Axis Control Power 

For conventional UA, the critical measures of flight path control power will be in collision avoidance and 

landing. It is assumed at this time that, if the aircraft can generate sufficient flight path change to go 

around during the approach and landing tasks, there will be ample flight-path control power for higher-

speed operations. 

The requirement proposed here is taken from a study of STOL requirements (Ref. 44) performed for the 

US Air Force in the early 1980’s. The numbers proposed there were all quite small – between 1.5 and 4 

deg flight path change from trim – and those values may be suitable for UA as well. A possible simple 

process for populating this requirement is to simply note the climb capabilities of typical fixed winged 

UAs while executing go-arounds. 

MIL-STD-1797B also addresses flight path control power, but in the more traditional sense for piloted 

airplanes: the degree of “backsidedness” in power approach, expressed through the parameter dγ/dV. 

While dγ/dV is a critically important measure of speed stability – it relates directly to the value of a “non-

minimum-phase” zero in the frequency response of altitude rate to elevator (Ref. 44) – it is of much less 

consequence for fixed wing UAs that are likely to operate with full-time, full-authority speed control 

systems. It might be a factor for unpowered approaches and landings, but that is likely to be more a 

failed-state operation than normal procedure for UA. We may find it necessary to incorporate limits on 

dγ/dV in a future iteration of the specification, but it is felt that such a requirement is not justified as this 

time. 

3.6 Transition Between Powered-Lift and Wing-Borne Flight 

This set of requirements is intended to build a foundation for variable-configuration UAs. There is no 

documented requirement, much less guidance, for the transitional operation of such UAs. Nevertheless, 

the limited number of proposed requirements introduced in this draft reflects a concern about possible 

loss of stability and controllability during the transition from wing-borne to powered-lift flight. 

3.6.1 Pitch Stability During Transition 

3.6.1.1 Transition to STOL 

A simulation study of transition requirements for piloted V/STOL aircraft (Ref. 39) found that some level 

of instability was tolerable, but not desired. That study suggested times to double in pitch attitude of 4.5 

seconds for Level 2 and 2.2 seconds for Level 3. The experiment was quite limited in scope, so these 
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numbers are not ready for application to a UA. The intent of the requirement, however, is to allow some 

loss of pitch stability during the transition. 

3.6.1.2 Transition to Hover 

There is no formal support for this requirement. It is recommended in Ref. 39 as an “intuitive 

conclusion,” given the criticality of the transition to hover, as it usually occurs near the ground or other 

objects. 

If data become available, some degradation might be allowable for UAs, but such degradation may very 

well be driven more by public perception than by any concern over flight dynamics: assuming the UA 

will operate in populated areas, an appearance of loss-of-control – even if there is no risk of actual loss of 

control – could lead to public distrust of the UA. 

3.6.1.3 Coupling Between Pitch Attitude and Power 

In the simulations reported in Ref. 39, cross-coupling between pitch and power was a large factor in 

degraded handling qualities. While the concern is lessened with the removal of a pilot, it is still necessary 

to assure that power changes do not lead to excessive pitching. In Ref. 39, this coupling was expressed as 

the ratio of peak pitch attitude change (in degrees) divided by thrust lever movement (in percent). For 

UA, the focus will be on total thrust, so it is recommended that the parameter be change in percent thrust, 

where thrust is scaled from 0 (idle) to 100 (full) percent. 

The simulation proposed a Level 1 limit of 0.30 (deg/%) in the transition to STOL and 0.20 (deg/%) in 

the transition to hover. There was no clear Level 2 or 3 limit. In this case, we simply recommend that the 

coupling for Levels 2 and 3 not lead to a dangerous flight condition. 

3.7 Transients Between Command Sources 

3.7.1 Mode Switching 

Operator intervention in an otherwise autonomously-controlled UA should not cause unusual transients in 

dynamic response. Likewise, operator disengagement from manual control should be relatively seamless. 

It is carefully worded to specifically reference trimmed, level flight: the inference is that, for an 

emergency takeover by an operator, or emergency reversion to autonomous control, the limits as stated 

can be exceeded. It may be appropriate in the future to add a specific requirement covering mode 

switching in emergency operation, but much more needs to be learned about such operations before an 

explicit requirement can be developed, 

This requirement is taken, with some modification, from SAE ARP-94910 (Ref. 34) and is meant to apply 

to any type of UA, whether powered-lift or wing-lift. There will be a need to confirm and update it when 

MTEs have been formally developed. 

3.7.2 Guidance and Navigation Commands 

Changes in guidance and navigation commands should never cause exceedance of the OFE. This new 

requirement is intended to prevent such transients. The user is advised to consult similar requirements in 

SAE ARP-94910 (Ref. 34) that deal with waypoint navigation. Because that specification has more to do 

with the operation of the system, rather than the dynamic response from operation of the system, we have 

chosen to go with the current statement. 
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3.8 Response to Turbulence and Gusts 

3.8.1 Dynamic Response to Turbulence 

For small UAs that are built to operate at low altitudes, turbulence from diurnal heating, combined with 

perturbations in winds resulting from buildings, trees, and other obstacles, means a good portion of their 

operation is almost certainly going to be in unsteady air. 

There is a temptation to simply reiterate the multitude of turbulence requirements and models that exist in 

the specifications for manned airplanes, V/STOLs, and helicopters, but with no flight data, we have 

chosen to ignore that temptation. SAE ARP-94910 (Ref. 34) provides requirements on response to 

turbulence, but once again, those requirements relate either indirectly or directly to the turbulence models 

for manned aircraft. 

The qualitative statements proposed here are placeholders for what will, hopefully, eventually be a well-

supported quantitative requirement. At this time, we simply wish to ensure that low levels of turbulence 

do not result in control issues, and that higher levels do not prevent control entirely. 

3.8.2 Response to a Unit Gust 

The format of this requirement is taken from MIL-STD-1797B; the details for scaling the gust need to be 

confirmed in flight test. For a hovering vehicle, the distance parameter dm used in the requirement 

becomes irrelevant, so the requirement needs revision to be time-dependent, not distance-dependent. 

The intent of this requirement is to make the UA resistant to large shear forces when flying over a 

building or a sudden change in terrain height or type. Flight testing is needed to confirm and convert the 

scaling parameters. 

A high-feedback SCAS should have no problem suppressing excursions in flight path, but possibly at the 

expense of very large and violent pitching motions. It might be prudent to de-tune control system gains, 

and accept some momentary small excursions, rather than try to eliminate them entirely. 

3.9 Response to Failures 

In handling qualities specifications for piloted aircraft, failure response is usually stated in terms of 

maximum aircraft excursion and pilot recovery. Eventually, it is hoped that similar requirements will be 

available for UAs, and certainly the piloted-aircraft specs are a good start. 

For lack of real data, we have chosen to make a rather generic statement in this document. When flight 

data become available, there should be a whole new set of requirements based on failure probabilities and 

severity. 

4. MISSION TASK ELEMENTS 

Work is currently ongoing to develop a candidate set of MTEs. These MTEs will be incorporated into a 

future draft of this specification. 
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Appendix B – Mission Task Element Catalog 
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A. INTRODUCTION 

This appendix provides an initial Mission Task Element (MTE) catalog based on the flight test 

evaluations conducted as part of this Phase II program as described in the main text and on the MTE 

submittals made by UAS Handling Qualities Stakeholders. 

B. FIXED WING 

1. Evaluations Conducted by the University of Minnesota UAV Lab 

a. Flightpath Regulation in the presence of a Discrete Gust (Non-precision, Non-aggressive or 

Non-Precision, Aggressive depending on gust input magnitude) 

Autonomy Level 

 MTE can be applied to any level of autonomy. 

 Intended to be a “surprise” disturbance, so pilot should not be alerted if under manual control. 

No assumptions required for delayed pilot response. 

Task Objectives 

 Assess response to and recovery from a discrete gust. 

 Evaluate vehicle control following a perturbation in pitch or flight path. 

Task Description 

In straight, level flight at constant airspeed, apply a gust to perturb the aircraft vertically. After the aircraft 

has recovered from the gust, apply a gust of equal amplitude and opposite sign. Assess the ability to reject 

the gust and return to equilibrium flight at the initial altitude and airspeed. 

No specific ground-referenced course is needed. The MTE may be accomplished at any initial altitude 

and airspeed. With the aircraft trimmed for level, unaccelerated flight, apply the gust documented below 

in either the up or down direction; once the aircraft has recovered from the gust (defined as meeting either 

the Adequate or Desired performance standards), apply an equal and opposite gust. The maneuver is 

complete when the aircraft has returned to equilibrium flight. 

The gust has a “1 – cosine” shape as shown in Figure 46. The gust shall be applied to the most direct 

controller for vertical flight path (e.g., elevator for a conventional UA or rotor RPM/collective for a 

VTOL UA), with magnitude vm selected to provide an altitude change of at least 10 ft in one second after 

application, determined for the UA with outer-loop hold modes (or pilot intervention, for an RPA) 

inactive. The time dm shall be tuned to the estimated rigid-body short-term response mode of interest. It 

is acceptable to replace the “1 – cosine” shape with a discrete gust. 

The “1 – cosine” gust has the following shape: 
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Figure 46: “1 – cosine” Shape for Discrete Gust 

Desired Performance 

 Maximum altitude deviation following gust, ±20 ft. 

 Recover to initial altitude (for height hold systems) within ±2 ft. 

 Recover to initial trim attitude (for attitude hold systems) within ±1 deg. 

 Recover airspeed to initial trim conditions within ±2 kt. 

 Hold trim conditions following recovery for at least 10 sec. 

 Retain initial heading within ±1 deg. 

 Time to recover to within performance standards 10 sec. 

Adequate Performance 

 Maximum altitude deviation following gust, ±30 ft. 

 Recover to initial altitude (for height hold systems) within ±5 ft. 

 Recover to initial trim attitude (for attitude hold systems) within ±2 deg. 

 Recover airspeed to initial trim conditions within ±10% of trim. 

 Hold trim conditions following recovery for at least 5 sec. 

 Retain initial heading within ±2 deg. 

 Time to recover to within performance standards 15 sec. 

Notes for developing this MTE: 

1. The input is based on MIL-STD and FAA gust requirements, but the proper values for UAs is 

entirely unknown. Suggest running gusts in basic model (no autopilot or manual reactions) 

varying dm and vm including pure discrete gusts. 

2. I imagined this to be equivalent to a small UA flying over a low building or changing terrain: how 

well can the UA handle the upset? Is it trivial, or will the UA get blown into power lines, a tree, 

etc.? 

3. Suggest the first gust be up and the second down; initially probably can get by with just the initial 

up gust, until there is confidence the down gust is not a safety issue. 

4. Want to measure aircraft flight path and pilot control inputs to correct for the gust, with the pilot 

not knowing the gust is coming; maybe after a few runs with the pilot knowing it is coming, try a 

few with random application. 
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b. Flightpath Regulation in the presence of a Sum-of-Sines Disturbance (Precision, Aggressive) 

Autonomy Level 

 MTE can be applied to any level of autonomy. 

 Intended to be a continuous, “random” disturbance that the pilot/autonomous controller must 

regulate against to maintain flightpath. No assumptions required for delayed pilot response. 

Task Objectives 

 Assess ability of pilot/autonomous controller to maintain flightpath in the presences of a 

“random” appearing continuous disturbance. 

 Evaluate vehicle control following a continuous perturbation in pitch or flight path. 

Task Description 

In straight, level flight at constant airspeed, apply a sum-of-sines disturbance input to perturb the aircraft 

vertically. Continuously regulate desired flightpath in the presence of the disturbance for a minimum of 

20 seconds. Assess the ability to reject the disturbance and maintain flightpath at the initial airspeed. 

No specific ground-referenced course is needed. The MTE may be accomplished at any initial altitude 

and airspeed. With the aircraft trimmed for level, unaccelerated flight, apply the disturbance documented 

below. The maneuver is complete when the aircraft has responded to the continuous disturbance for at 

least 20 seconds and has returned to equilibrium flight. 

The sum-of-sines (SOS) disturbance forcing function is used to drive the flightpath regulation task 

through which the pilot or autonomous controller attempts to minimize the flightpath error within desired 

performance constraints.  Table 15 presents the parameters for a Fibonacci series-based SOS input that 

has been designed for the anticipated longitudinal dynamics of a typical fixed wing sUAS.  The input is 

defined for a 20 second scoring time run length. Thus, each sine wave frequency is defined by fn (Hz) = 

Nn (cycles/run)/20 (s/run). An example disturbance signal with a Gain of 1.5 deg placed on the nominal 

signal is shown in Figure 47. 

Table 15: Example SOS Input Forcing Function Parameters for Lower Frequency Identification 

Frequency No.  1 2 3 4 5 6 7 

Cycles/Run, Nn 3 5 8 13 21 34 55 

Frequency, fn (Hz) 0.1500 0.2500 0.4000 0.6500 1.0500 1.7000 2.7500 

Frequency, (r/s) 0.9425 1.5708 2.5133 4.0841 6.5973 10.6814 17.2788 

Amplitude          

(Ai = f1/fn) 
+1.0000 -0.6000 +0.3750 -0.2308 +0.1429 -0.0882 +0.0545 

Initial Rate           

An x n   
+0.9425 -0.9425 +0.9425 -0.9425 +0.9425 -0.9425 +0.9425 
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Figure 47: Sum-of-Sines Disturbance (Gain = 1.5 deg) 

Desired Performance (Precision Task – Pitch Disturbance) 

 Maintain flightpath during disturbance within ±1 deg for at least 50% of the scoring time.  

 Maintain altitude during disturbance through the disturbance, ±20 ft. 

 Maintain airspeed during disturbance to initial trim conditions within ±2 kt. 

 Maintain initial heading during disturbance within ±1 deg. 

Adequate Performance (Precision Task – Pitch Disturbance) 

 Maintain flightpath during disturbance within ±2 deg for at least 75% of the scoring time.  

 Maintain altitude during disturbance through the disturbance, ±40 ft. 

 Maintain airspeed during disturbance to initial trim conditions within ±5 kt. 

 Maintain initial heading during disturbance within ±2 deg. 

Desired Performance (Non-Precision Task – Altitude Disturbance) 

 Maintain altitude during disturbance through the disturbance, ±10 ft. 

 Maintain airspeed during disturbance to initial trim conditions within ±2 kt. 

 Maintain initial heading during disturbance within ±1 deg. 

Adequate Performance (Non-Precision Task – Altitude Disturbance) 

 Maintain altitude during disturbance through the disturbance, ±20 ft. 

 Maintain airspeed during disturbance to initial trim conditions within ±5 kt. 

 Maintain initial heading during disturbance within ±2 deg. 
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Notes for developing this MTE: 

1. Gain on SoS disturbance and performance requirements will be refined as part of the flight test 

evaluations. 

c. Waypoint Following (Non-Precision, Non-Aggressive and Precision, Non-Aggressive 

depending task requirements) 

Autonomy Level 

 Intended to assess autonomous operations. 

Task Objectives 

 Assess ability of an autonomous controller to follow a waypoint flightpath. 

Task Description 

In straight, level flight at constant airspeed, initiate a waypoint following autonomous control command 

sequence. Waypoint legs will feature a minimum of 500 ft (or approximately 150 m). The waypoint 

sequence will feature at least two turns about a rectangular/square path with an altitude change of at least 

50 ft on one of the legs. 

Desired Performance (Precision Task) 

 Maintain lateral, longitudinal, and vertical flightpath position within ±2 ft of the defined 

waypoint path within each leg. 

 No undesirable control motions. 

Adequate Performance (Precision Task) 

 Maintain lateral, longitudinal, and vertical flightpath position within ±5 ft of the defined 

waypoint path within each leg. 

 No undesirable control oscillations. 

Desired Performance (Non-Precision Task) 

 Maintain lateral, longitudinal, and vertical flightpath position within ±10 ft of the defined 

waypoint path within each leg. 

 No undesirable control motions. 

Adequate Performance (Non-Precision Task) 

 Maintain lateral, longitudinal, and vertical flightpath position within ±25 ft of the defined 

waypoint path within each leg. 

 No undesirable control oscillations. 

Notes for developing this MTE: 

1. Specific waypoints and performance requirements will be refined as part of the flight test 

evaluations. 

d. Precision Lateral Offset Landing (Precision, Non-Aggressive) 

Autonomy Level 

 Typically, this will be a remotely piloted MTE. 

 No assumptions required for delayed pilot response. Any response delays will be reflected in 

MTE performance. 
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Task Objectives 

 Evaluate ability to precisely control horizontal and vertical flightpath and airspeed. 

 Evaluate ability to precisely control sink rate and attitude in the flare. 

 Evaluate tendency for nose bobble or PIO. 

 Evaluate control sensitivity and harmony in landing. 

Task Description 

The offset landing task consists of a visual approach during which the evaluation pilot aligns the aircraft 

approximately 50 feet off the runway centerline (see Figure 48). At approximately 65 ft AGL, the EP 

corrects back to the centerline and attempts to touchdown within the desired parameters. Offsets to the 

left or right can be used interchangeably; however, the direction of offset may be dictated by pilot line-of-

sight. 

A Precision Offset Landing test course at the UMore Park Test Range is shown in Figure 48. In the 

figure, the yellow area is the usable turf runway (approximately 900 x 100 ft). An extended centerline in 

light blue has been added to the figure. The south edge of the runway adjoins a crop field with a distinct 

edge. The notional “base” and “final” shown in light green will position the aircraft along that edge. The 

remote pilot will be positioned along that line in order provide a good perspective for tracking during the 

turn to final, and during the final approach. The offset start will be based on altitude. Temporary markings 

for the runway centerline and “touchdown” target markers will be made. A landing “T” and an extended 

centerline can be painted on the turf. 

 

Figure 48: Precision Offset Landing Course at the UMore Park Test Range 

Desired Performance 

 Approach airspeed maintained within ± 2 kts. 

 Touchdown within 5 feet of centerline (nose wheel on centerline). 

 Touchdown within ± 5 feet of aimpoint. 

 Sink rate – smooth touchdown. 

 No PIO. 

Adequate Performance 

 Approach airspeed maintained within -2 kts/+5 kts. 

 Touchdown within 10 feet of centerline. 
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 Touchdown within ± 10 feet of aimpoint. 

 No PIO. 

Notes for developing this MTE: 

1. Correction height (altitude) and performance requirements will be refined as MTE is initially 

evaluated. 

2. Unusual Attitude Recovery, Nose-High (Non-Precision, Aggressive) 

This MTE description was provided by Dr. Nate Richards of Barron Associates, Inc. 

Autonomy Level 

 This task shall be flown at all levels of autonomy under which the vehicle is expected to 

operate (from Level 1 – Human Operated to Level 4 – Fully Autonomous). 

Task Objectives 

 Recovery from a set of unusual attitudes at each level of autonomy expected for the vehicle.  

 Evaluate the ability of a UAS to recover (return to defined safe flight envelope) from an 

unusual attitude. 

 Evaluated the tendency of a UAS to depart controlled flight following an intentional or 

unintentional unusual attitude state. 

Task Description 

Starting at an airspeed of approximately 1.73 times the test article stall speed at the test configuration and 

weight, slowly advance throttle and raise the nose until it reaches a pitch attitude of at least 40 degrees 

without inducing a stall. Once at or above 40 degrees pitch up, initiate recovery to a defined safe flight 

envelope (0 to 5 degrees pitch, -5 to 5 degrees bank, -50 to 50 feet/min vertical speed, a speed of at least 

1.3 times the stall speed, and steady). Altitude, pitch attitude, bank angle, and airspeed data shall be 

collected during task execution. 

Repeat this task at each level of autonomy under which the vehicle is expected to operate. 

The scenario may be initiated manually or autonomously. 

Desired Performance 

 Vehicle recovers to defined safe flight envelope (0 to 5 degrees pitch, -5 to 5 degrees bank, -

50 to 50 feet/min vertical speed, steady) without further excursion. 

 Vehicle recovers to defined safe flight envelope without a loss of more than 400 ft in altitude 

(from recovery initiation altitude). 

Adequate Performance 

 Vehicle recovers to defined safe flight envelope (0 to 5 degrees pitch, -5 to 5 degrees bank, -

50 to 50 feet/min vertical speed, steady). 

 Vehicle recovers to defined safe flight envelope without a loss of more than 800 ft in altitude. 

 



 

 

 

 96 

C. ROTARY WING MISSION TASK ELEMENTS 

1. Evaluations Conducted in the NASA LaRC Autonomy Incubator  

a. Precision Hover (Precision, Non-Aggressive) 

Autonomy Level 

 Remotely piloted with visual line-of-sight. 

 Autonomous variations are possible. 

Objectives 

 Evaluate ability to transition from translating flight to a stabilized hover over a target hover 

zone with precision and a reasonable amount of aggressiveness. 

 Evaluate ability to maintain precise position, heading, and altitude over the target. 

Description 

The MTE will start 25 ft aft of the hover board and approximately 15 ft left or right of the hover board 

center. From this starting point, the vehicle will maneuver at a constant altitude of approximately 5 ft and 

a speed of approximately 5 kts to the precision hover point that is 25 ft aft of the hover board center. 

Attain a stabilized hover in the defined target hover zone marked by the hover board. Maintain the 

stabilized hover at the 25 ft aft location in front of the hover board for the time duration specified in the 

performance requirements. Repeat as needed. 

The center of the hover board will be placed 5 ft above and 25 ft in front of the hover point marker at 

ground level. The hover board will have distinct boundaries indicating desired and adequate performance 

requirements. 

Desired Performance 

 Attain stabilized hover from the lateral sidestep before exiting the desired region of the hover 

board. 

 ≥30 sec of stabilized hover in desired region. 

 ±1 ft altitude deviation from hover board center. 

 ±1 ft lateral deviation from hover board center. 

 ±1 ft longitudinal (fore/aft) deviation from hover point. 

 ±5° heading deviation from target or hover board. 

 No undesirable motions (bobble, overshoots/undershoots) that impact task performance 

during the transition to hover or stabilized hover. 

Adequate Performance 

 Attain stabilized hover from the lateral sidestep before exiting the adequate region of the 

target and hover board. 

 ≥30 sec of stabilized hover in adequate region. 

 ±2 ft altitude deviation from hover board center. 

 ±2 ft lateral deviation from hover board center. 

 ±2 ft longitudinal (fore/aft) deviation from hover point. 
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 ±10° heading deviation from target or hover board. 

 No oscillations that impact system stability of safety of flight during the transition to hover or 

stabilized hover. 

       

Figure 49: Precision Hover  

b. Lateral Sidestep (Precision, Non-Aggressive) 

Autonomy Level 

 Remotely piloted with visual line-of-sight. 

 Autonomous variations are possible. 

Objectives 

 Assess roll axis and heave axis response during moderately aggressive maneuvering. 

 Identify undesirable coupling between the roll controller and the other axes. 

Description 

From a stabilized hover at an altitude of 5 ft with the longitudinal axis of the multi-rotor sUAS oriented 

90 degrees to a reference line marked on the ground, initiate a lateral acceleration to approximately 5 kts 

groundspeed followed by a deceleration to laterally reposition the vehicle to a stabilized hover 12.5 ft left 

of the starting point as indicated by another ground marker all while maintaining the initial heading 

throughout the maneuver. The acceleration and deceleration phases shall be accomplished as single 

smooth maneuvers. The reposition capture is complete when a stabilized hover is achieved as indicated by 

the vehicle position in front of the hover boards, left or right depending on course position.  

The center of the (left and right) hover boards will be placed 5 ft above ground and approximately 25 ft 

apart laterally, equally spaced left and right of the starting point. (In the NASA LaRC Autonomy 

Incubator, the starting point was 20 ft aft of the precision hover board.) The hover board will have distinct 

boundaries indicating desired and adequate performance requirements.  

Desired Performance 

 ±1 vertical deviation from hover board center at each capture point. 

 ±1 ft lateral deviation as indicated by the hover board center at each capture point. 

 ±1 ft longitudinal (fore/aft) deviation from ground marker. 

 ±5° heading deviation from reference heading. 
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Adequate Performance 

 ±2 vertical deviation from hover board center at each capture point. 

 ±2 ft lateral deviation as indicated by the hover board center at each capture point. 

 ±2 ft longitudinal (fore/aft) deviation from ground marker. 

 ±10° heading deviation from reference heading. 

 

Figure 50: Lateral Reposition (mini course)  

c. Vertical Reposition (Precision, Non-Aggressive) 

Autonomy Level 

 Remotely piloted with visual line-of-sight. 

 Autonomous variations are possible. 

Objectives 

 Evaluate heave damping, i.e., the ability to precisely control and stop a vertical rate. 

 Evaluate vertical control power. 

 Identify undesirable coupling between collective and the pitch, roll, and yaw axes. 

Description 

From a stabilized hover at an altitude of 5 ft, initiate a vertical ascent of at least 10 ft and stabilize for 5 

seconds at an altitude of at least 15 ft using an available landmark to stabilize vertical position. Descend 

back to the initial hover position in front of the hover board (5 ft altitude and 25 ft aft of the hover board 

center) and stabilize for at least 5 seconds. Maintain initial heading and longitudinal/lateral position 

throughout the maneuver. Repeat as needed.  

The center of the hover board will be placed 5 ft above and 25 ft in front of the hover point marker at 

ground level. The hover board will have distinct boundaries indicating desired and adequate performance 

requirements. 
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Desired Performance 

 ±1 vertical deviation from start/finish altitude as indicated by the hover board center. 

 ±1 ft lateral deviation as indicated by the hover board center. 

 ±1 ft longitudinal (fore/aft) deviation from ground marker. 

 ±5° heading deviation from ground marker. 

Adequate Performance 

 ±2 vertical deviation from start/finish altitude as indicated by the hover board center. 

 ±2 ft lateral deviation as indicated by the hover board center. 

 ±2 ft longitudinal (fore/aft) deviation from ground marker. 

 ±10° heading deviation from ground marker. 

 

Figure 51: Bob-up/Down (Vertical Altitude Change)  

d. Landing (Non-Precision, Non-Aggressive) 

Autonomy Level 

 Remotely piloted with visual line-of-sight. 

 Autonomous variations are possible. 

Objectives 

 Evaluate precision control of multi-rotor position during final descent to a precision landing 

point. 

Description 

From an initial altitude of greater than 10 ft as indicated by a hover board or other appropriate landmark, 

maintain an essentially steady descent to a prescribed landing point as marked on the ground by a landing 
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marker while maintaining a reference heading. It is acceptable to arrest the sink rate momentarily to make 

last-minute corrections before touchdown. 

Desired Performance 

 ≤2 fps vertical speed at touchdown. 

 ±1 ft longitudinal (fore/aft) deviation from landing marker. 

 ±1 ft lateral deviation from landing marker. 

 ±5° heading deviation from landing marker. 

 Smooth, continuous descent with no undesirable motions that may impact task performance. 

Adequate Performance 

 ≤4 fps vertical speed at touchdown. 

 ±2 ft longitudinal (fore/aft) deviation from landing marker. 

 ±2 ft lateral deviation from landing marker. 

 ±10° heading deviation from landing marker. 

 No system oscillations during landing maneuver. 

 

Figure 52: Landing 

2. Scaled Autonomous ADS-33E-PRF Mission Task Elements 

Authors: Dr. Christina M. Ivler (University of Portland), Chad Goerzen (U.S. Army) 

A description of the development of these MTEs is found in Ref. 45. 

Autonomy Level 

 Fully autonomous. 

 Operator will only intervene to knock-off the maneuver for safety reasons. 

Task Objectives 
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 Track velocity and heading trajectories of scaled rotorcraft mission task element maneuvers.  

Task Description 

 Complete scaled versions of ADS-33E-PRF MTE maneuvers by autonomously tracking 

velocity/position and heading commands.  

 Example full scale maneuver Level 1 performance ADS-33E-PRF trajectories are given in 

Figs. 1-3. The position commands should be calculated by integration of the velocity 

commands.  

 The velocity scale of maneuver shall be scaled appropriately for the size of the UAS by the 

ratio of the maximum speed of the UAS relative to the maximum speed of a full-scale 

aircraft, such as the UH-60. The associated velocity and time scales of the nominal trajectory, 

where aggressiveness α = 1 is given by:   

Vscale = α
max (VUAS)

max (VUH60 )
  (1) 

tscale = α−1 max (VUAS)

max (VUH60 )
  (2) 

 For higher required aggressiveness/agility the value of α can be increased. 

 Then by integrating the scaled velocity over the scaled time, the associated position scale is: 

Lscale = (
max(VUAS)

max(VUH60 )
)

2
  (3) 

 The MTE should be completed multiple times to evaluate robustness at the maximum level of 

desired aggressiveness, as appropriate for the intended mission of the UAS.  

 No special equipment is required, but command and measured velocities and positions must 

be recorded.  

Performance Metric 

 The maneuver performance is rated with a trajectory tracking and aggressiveness (TTA) 

score. A weighted sum of the individual objectives for aggressiveness (α), tracking 

performance (ε), and robustness (R) is used to calculate a trajectory tracking and 

aggressiveness (TTA) score: 

𝐿 = 𝑤𝛼
𝛼−𝛼𝐺

𝛼𝐵−𝛼𝐺
+ 𝑤𝜀

𝜀−𝜀𝐺

𝜀𝐵−𝜀𝐺
+ 𝑤𝑅

𝑅−𝑅𝐺

𝑅𝐵−𝑅𝐺
  (4) 

   TTA Score =
200

1+𝑒𝐿             (5) 

 The weights, wα, wε, and wR, in Eqn. 4 determine the relative importance of the individual 

objectives. For each individual objective metric, the conditioning parameter with a subscript 

B (𝛼𝐵, for instance) stands for the “bad” or worst possible value for the metric, whereas the 

conditioning parameter with a subscript G (𝛼𝐺, for instance) stands for the “good” or best 

possible value.  

 The aggressiveness is used for the trajectory scaling in Eqns. 1-2 and is defined as: 

𝛼 = 𝑉𝑡𝑟𝑎𝑗/𝑉𝑛𝑜𝑚                 (6) 

𝑉𝑛𝑜𝑚 is the maximum speed of the scaled MTE using the scaling methodology, such that 𝛼 =
1 would be flown such that the UAS is performing at the equivalent aggressiveness of the 

full-scale maneuver.  

 The tracking error term is defined as: 
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𝜀 = 𝑤𝑣𝑒𝑙
𝑅𝑀𝑆𝐸(𝑣𝑒𝑙)

𝑉𝑚𝑎𝑥,𝑐𝑚𝑑
+ 𝑤𝑝𝑜𝑠

𝑅𝑀𝑆𝐸(𝑝𝑜𝑠)

𝐿𝑝𝑎𝑡ℎ
  (7) 

where RMSE stands for the root mean square of the error between the commanded and 

measured velocity or position. As shown by Eqn. 6, the RMSE for velocity and position are 

normalized by the maximum velocity command 𝑉𝑚𝑎𝑥,𝑐𝑚𝑑, and the length of the commanded 

path 𝐿𝑝𝑎𝑡ℎ, respectively.  

 If the operator knocks-off a maneuver for safety reasons or if the vehicle crashes, the 

maneuver is considered unsuccessful. The robustness term is defined as:  

𝑅 =
# 𝑠𝑢𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑒𝑣𝑒𝑛𝑡𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠
   (8) 

The scoring parameters for the IRIS+ quadcopter as used in Ref. 1 are given by Table 16. The 

robustness weighting of zero was chosen given the low number of flights performed, where 

no unsuccessful flights were recorded. As such, including the robustness parameter in the 

TTA score would have resulted in an artificially inflated value. For a larger flight test 

program, it would make sense to include a nonzero robustness weighting as part of the score.  

Table 16: Scoring Parameters for IRIS+ 

Parameter Value for IRIS+ 

wα 0.5 

wε 0.5 

wR 0 

𝛼𝐺 3 

𝛼𝐵 0 

𝜖𝐺 0 

𝜖𝐵 0.35 

𝑤𝑣𝑒𝑙  0.7 

𝑤𝑝𝑜𝑠 0.3 

Performance Levels 

Table 17: Performance Levels, Gentle  

Maneuvering Mission 

 Table 18: Performance Levels, Aggressive 

Maneuvering Mission 

Maneuver Desired  

TTA Score 

(Level 1) 

Adequate  

TTA Score 

(Level 2) 

 
Maneuver Desired   TTA 

Score (Level 

1) 

Adequate 

TTA Score 

(Level 2) 

Lateral 

Reposition 
𝜙𝑇𝑇𝐴 ≥ 75 75 > 𝜙𝑇𝑇𝐴 ≥ 70 

 
Lateral 

Reposition 
𝜙𝑇𝑇𝐴 ≥ 82 82 > 𝜙𝑇𝑇𝐴 ≥ 77 

Depart Abort 𝜙𝑇𝑇𝐴 ≥ 75 75 > 𝜙𝑇𝑇𝐴 ≥ 70 
 

Depart Abort 𝜙𝑇𝑇𝐴 ≥ 82 82 > 𝜙𝑇𝑇𝐴 ≥ 77 

Pirouette 𝜙𝑇𝑇𝐴 ≥ 73 73 > 𝜙𝑇𝑇𝐴 ≥ 68 
 

Pirouette 𝜙𝑇𝑇𝐴 ≥ 80 80 > 𝜙𝑇𝑇𝐴 ≥ 75 
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Figure 53: Lateral Reposition MTE Full Scale Trajectory 

 

Figure 54: Depart Abort Full Scale MTE Full Scale Trajectory 
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Figure 55: Pirouette Full Scale MTE Trajectory 

3. Hover MTE under First Person View Cueing (Precision, Non-Aggressive) 

Author: William Geyer, US Navy Test Pilot School 

Autonomy Level 

 This MTE is flown with pilot-in-the-loop with some level of augmentation from a simple 

stability augmentation system (SAS) to advanced control modes such as Translational Rate 

Command (TRC). 

Task Objectives 

 Check ability to transition from translating flight to a stabilized hover with precision and a 

reasonable amount of aggressiveness. 

 Check ability to maintain precise position, heading, and altitude in the presence of a moderate 

wind from most critical direction 

Task Description 

Initiate the maneuver at a ground speed of between 3 and 5 knots, at an altitude less than 5 ft. Target 

hover point shall be oriented approximately 45 deg relative to the heading of the rotorcraft. More acute 

angles may be used if FPV camera cannot provide the necessary field-of-view. The target point is a 

repeatable, ground-referenced point from which rotorcraft deviations are measured. The ground track 

should be such that the rotorcraft will arrive over the target hover point.  The transition to hover should be 

accomplished in one smooth maneuver. It is not acceptable to accomplish most of the deceleration well 

before the hover point and then to creep up to the final position. The maneuver shall be accomplished in 

calm winds and in moderate winds from the most critical direction.   

A layout of the course is shown in Figure 56. A 1 in x 1 in black square was used for the reference symbol 

with an appropriately sized backboard with the desired and adequate performance cues. Pegboards were 
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used on both 45 deg azimuths to provide for foreaft cueing as most FPV systems do not have the FOV to 

enable peripheral cueing at the +/-90 azimuths to the aircraft heading. Pegboards were constructed from ¼ 

wood dowels pushed into a Styrofoam board to provide centerline, desired and adequate performance 

cues. 

Desired Performance* 

 Longitudinal/Lateral Position (feet)  +/- 3 x Lscale  

 Altitude (feet)  +/- 2 x Lscale  

 Heading (deg) +/- 5 

 Attain a stabilized hover within TBD seconds of initial deceleration 

 Maintain a stabilized hover for at least 30 second 

Adequate Performance* 

 Longitudinal/Lateral Position (feet)  +/- 6 x Lscale 

 Altitude (feet)  +/- 4 x Lscale 

 Heading (deg) +/- 10  

 Attain a stabilized hover within TBD seconds of initial deceleration 

 Maintain a stabilized hover for at least 30 second 

* Performance measures are scaled based on dynamic scaling factor which is given below for velocity and 

distance performance measures.  Vmax is the maximum velocity of the vehicle in knots. 

Lscale = (Vmax/160)2 

Vscale = Vmax/160  
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Figure 56:  Hover under FPV Cueing MTE Course Layout 

REFERENCES 
 

45.  Ivler, C. M., C. L. Goerzen, J. A. Wagster IV, F. C. Sanders, K. K. Cheung, and M. B. Tischler, 
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AHS International 74th Annual Forum & Technology Display, Phoenix, Arizona, May 14-17, 2018. 
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Appendix C – Fixed Wing System Identification Flight Test Data 
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A. FLIGHT TEST CAMPAIGN 

1. Test Objectives 

The objectives for the fixed wing sUAS system identification flight test program were as follows: 

 Generate a flight test database using a variety of flight test inputs for a fixed wing sUAS 

at multiple flight conditions and aircraft configurations. 

o Collected data will be sufficient to determine aircraft flying and handling 

qualities metrics at each flight condition and configuration (Ref. 46).  

o The database will include a nominal baseline configuration as well as two off-

nominal configurations (e.g., a configuration with added time delay and a 

configuration with an unfavorable c.g. shift). 

 Use several input excitation command types from frequency sweeps to multi-sines to 

short duration inputs. 

o The database will be used to determine the effectiveness of each command input 

leading to recommendations that will guide future sUAS tests. 

 Demonstrate an efficient process for determining aircraft flying and handling qualities 

metrics for UAS via flight testing. 

 Use the resulting flight test database to compute flight-derived handling qualities 

parameters and compare with those obtained analytically. 

2. Test Description 

a. Vehicle Configurations 

A nominal baseline configuration and two additional off-nominal configurations were flown. All 

configurations included the same flight control system feedback augmentation. The off-nominal 

configurations were: 1) added delay at the feedback sensor and 2) a configuration with an unfavorable c.g. 

shift. 

b. Airspeeds 

Two airspeed flight conditions were flown. The primary cruise airspeed for all evaluation tasks was 23 

m/s and the primary approach airspeed for all evaluation tasks was 17 m/s. 

c. Altitudes 

The primary altitude for all cruise and approach evaluation tasks was approximately 50 m. The defined 

“approach” condition is not a true approach condition as it was flown at a constant altitude, but at a lower 

airspeed with 50% flap deflections to be reflective of a true approach condition. Maintaining a constant 

altitude for the defined approach condition was done to simplify and minimize risk for system 

identification flight test points and to preserve the desired test conditions. 

d. Flight Patterns 

No specific flight patterns were required, other than to remain in visual line of sight. It flew circuits 

around the test area with 700 m straight legs and 45o turns at the constant 50 m altitude.  

e. Pilot 

All evaluated test conditions have been flown by the on-board flight computer, emulating an autonomous 

or semi-autonomous system. The test inputs were preprogrammed into the flight computer and initiated 

by the UAS controller on the ground. A subset of these evaluations will also be performed by the UAS 

controller directly, representative of a remote pilot. 
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3. Test Inputs 

This section provides descriptions of each of the input profiles and includes sample time histories of both 

the excitation command, the shaped command that was sent to the actuator, and the attitude responses. 

The profiles were uniform across each axis. Here, pitch axis examples are shown. These examples 

represent the computer-generated inputs and the resulting vehicle responses. Each of the sample 

commands include both a plot of the original excitation command uex (red dashed line), and the resultant 

shaped surface command u (solid blue line). 

a. Multi-Sine 

The orthogonal multi-sine (OMS)47 input profiles are mutually orthogonal in the time and frequency 

domains and completely uncorrelated. These OMS were applied to each axis independently, the elevator 

and aileron in combination, and all three axes in combination, elevator, aileron and rudder. Each OMS 

was 20 seconds long, had a 4 deg amplitude and covered a frequency range from 1-50 rad/s. Samples of 

the pitch command and attitude response are provided in Figure 57. 

 

a) OMS Command Time History 

 

b) Pitch Attitude Time History 

Figure 57: Example Orthogonal Multi-Sine Input and Resulting Aircraft Output 

b. Frequency Sweep 

The frequency sweep input excitation was designed to be 20 seconds in duration, have an amplitude of 4 

deg, and cover a frequency range of 1 to 50 rad/s. This was applied to each axis independently, and the 

aileron and elevator in combination. When applying this input to the elevator and aileron in combination, 

the pitch excitation had increasing frequencies over time, while the roll excitation started at high 

frequency and decreased over time. This provided separation in the frequencies between the axes. 

Samples of the pitch command and attitude response are given in Figure 58. 

 

a) Frequency Sweep Command Time History 

 

b) Pitch Attitude Time History 

Figure 58: Example Frequency sweep Input and Resulting Aircraft Output  
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c. Doublet 

The doublet excitation profile was designed to have a 4 deg amplitude. The pulse width varied based upon 

the axis of the input. For every axis, the pulse width (half of the total doublet width) was designed to 

target a particular frequency through the following relation: 0.7/(2*target frequency). The target 

frequency is in units of Hz. For pitch, the target frequency was the short period mode, estimated as 1.51 

Hz. For the aileron and rudder doublet, the Dutch roll frequency was targeted and estimated to be 0.65 

Hz, Samples of the pitch command and attitude response are given in Figure 59. 

 

a) Doublet Command Time History 

 

b) Doublet Pitch Attitude Time History 

Figure 59: Example Doublet Input and Resulting Aircraft Output 

d. Pulse 

The pulse input was designed to have a 4 deg amplitude. The pulse width was defined in the same manner 

as the doublet. A wider aileron input was also defined as an additional input type that was used to 

determine time to bank values for 30, 50, and 60 degrees. Samples of the pitch command and attitude 

response are given in Figure 60. 

 

a) Pulse Command Time History 

 

b) Pulse Pitch Attitude Time History 

Figure 60: Example Pulse Input and Resulting Aircraft Output 

e. 3-2-1-1 

The 3-2-1-1 input is a set of pulses of varied widths. A base width is defined, the “1” in 3-2-1-1. This 

base width is defined in the same manner as the pulse and doublet widths, based on the short period and 

Dutch roll frequencies for the pitch and roll axis respectively. The “2” and “3” in this is then double and 
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triple the base width pulses. For example, if the base width was 1 second, the first pulse would be 3 

seconds wide, the next 2 seconds wide, followed by two pulses of 1 second each. Each new pulse reverses 

direction from the prior one. Samples of the pitch command and attitude response are given in Figure 61. 

 

a) 3-2-1-1 Command Time History 

 

b) 3-2-1-1 Pitch Attitude Time History 

Figure 61: Example 3-2-1-1 Input and Resulting Aircraft Output 

4. UltraStick120 

UltraStick120 flights 03-06 were flown in late February through mid-March 2018. Flights 10 and 11 were 

flown in mid-June 2018. The flight vehicle was the UltraStick120. The flight conditions of each flight can 

be seen in Table 19. Fifty percent flaps were utilized in the Approach Condition. The test card for all 6 

flights seen below in Table 20 were flown with computer generated inputs. 

Table 19: Flight Conditions 

Flight Speed Condition 

FLT 03 23 m/s Cruise Normal CG No Added Delay 

FLT 04 17 m/s Approach Normal CG No Added Delay 

FLT 05 23 m/s Cruise Aft CG No Added Delay 

FLT 06 17 m/s Approach Aft CG No Added Delay 

FLT 10 23 m/s Cruise Normal CG Extra Delay 80ms 

FLT 11 17 m/s Approach Normal CG Extra Delay 80ms 

Table 20: Flight Test Card 

Leg Input Name Description 
Duration 

(sec) 

Amplitude 

(deg) 

Start-End 

Frequency 

(rad/s) 

1 OMS_ele1 Orthogonal multi-sine applied to elevator 20 4 1-50 

2 OMS_ail1 Orthogonal multi-sine applied to ailerons 20 4 1-50 

3 OMS_rud1 Orthogonal multi-sine applied to rudder 20 4 1-50 

4 OMS_elevail1 
Orthogonal multi-sine applied to elevator 

and ailerons in combination 
20 4 1-50 

5 OMS_3axes1 
Orthogonal multi-sine applied to elevator, 

ailerons and rudder in combination 
20 4 1-50 

6 
frequency 

sweep_elev1 
Frequency sweep to the elevator 20 4 1-50 

7 
frequency 

sweep_ail1 
Frequency sweep to the ailerons 20 4 1-50 

8 frequency Frequency sweep to the rudder 20 4 1-50 
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Leg Input Name Description 
Duration 

(sec) 

Amplitude 

(deg) 

Start-End 

Frequency 

(rad/s) 

sweep_rud1 

9 
frequency 

sweep_elevail1 

Simultaneous frequency sweep to the 

elevator and ailerons (ele increasing freq, 

ail decreasing) 

20 4 1-50 

Leg Input Name Description   Pulse Width (s) 

10 doublet_elev A doublet input to the elevator 20 4 
0.23 (half 

width) 

11 doublet_ail A doublet input to the ailerons 20 4 
0.54 (half 

width) 

12 doublet_rud A doublet input to the rudder 20 4 
0.54 (half 

width) 

13 pulse_elev A pulse input to the elevator 20 4 0.23 

14 pulse_ail A pulse input to the ailerons 20 4 0.54 

15 pulse_rud A pulse input to the rudder 20 4 0.54 

16 pulse_ail_wide A wider pulse input to the aileron 20 25 0.6 

17 3211_elev 

A combination of 3 width, 2 width, 1 width, 

1width elevator pulses in opposing 

directions for each new input 

20 4 
0.23 (the “1” 

width) 

18 3211_ail 

A combination of 3 width, 2 width, 1 width, 

1width aileron pulses in opposing directions 

for each new input 

20 4 
0.54 (the “1” 

width) 

19 3211_rud 

A combination of 3 width, 2 width, 1 width, 

1width rudder pulses in opposing directions 

for each new input 

20 4 
0.54 (the “1” 

width) 

In support of the flight test objectives outlined earlier in this document, each input profile was leveraged 

to identify the flight vehicle from the test data. The excitation input was summed with the compensated 

feedback signal to generate the actuator input signal “u”, as seen in Figure 7. The output variables were 

the pitch rate for longitudinal, roll rate for lateral, and yaw rate for directional. This identification returns 

the actuator and bare airframe dynamics of the vehicle and is not a complete closed-loop identification.  

As an initial checkout, every input profile that included an elevator, aileron, or rudder excitation was 

identified using STI’s FREquency Domain Analysis (FREDA) software (Ref. 48). The overlay of each of 

these identifications, including the Simulink model frequency response, is shown below in the first figure 

in each subsequent subsection.  

Following the summary figure in each subsection, the individual input types have been broken out. The 

OMS profile was flown under three configurations: elevator input only, elevator and aileron inputs at the 

same time, and the elevator, aileron and rudder inputs at the same time.  

An encouraging result from this evaluation is the relative uniformity of the identified systems with one 

another, even in the presence of excitations of the other control surfaces. This result would indicate that 

the OMS input excitation can be performed in multiple axes without interfering with or contaminating the 

results of the others, as has been exemplified by Morelli (Ref. 47). This characteristic means that fewer 

numbers of flights are required to perform the identification of the vehicle, saving on time and cost during 

the test campaign. 

The follow-on figures in each subsection shows the frequency sweep profiles which was flown under four 

conditions: elevator input only, aileron input only, rudder input only, and elevator and aileron inputs at 

the same time. Like for the OMS identification, the frequency sweep exhibits the same property: the 

ability to have multi-axis input excitations not adversely affect the system identification.  
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The next figure in each subsection show the short duration inputs. Four different signals are shown in this 

section: doublet, pulse, 3-2-1-1, and for aileron only, wider pulse.  

As a side note, all the model responses shown in the subsequent sections are models that were updated to 

match the flight data using the frequency sweep test run. 
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B. FLIGHT 03 

Flight 03 was flown at cruise condition, that was straight and level flight with computer generated inputs. 

This flight is the baseline configuration.  

In order to match the gain values of the longitudinal, lateral, and directional bare airframe models with the 

flight data, a series of gains were applied to the bare airframe models which can be seen in Table 21. 

Table 21: Model Gains for FLT 03 

Longitudinal Lateral Directional 

1.5 1.0 3.5 

1. Longitudinal Survey 

All identified responses from the longitudinal excitations can be seen plotted with the updated reference 

model in Figure 62. Table 22 provides the actuator model and bare airframe dynamics in the longitudinal 

axis. 

Table 22: FLT 03 – Longitudinal Aircraft and Elevator Actuator Models 

Elevator Actuator Model Longitudinal Model 

0.0658

10

se

ec

e
s








 
75.03( 0)(0.3977)(5.966)

[0.3078,0.5362][0.5,12.5]e

q




 1 

The identified longitudinal OMS input excitation for flight 03 can be seen in Figure 63. All identified 

systems provide a close match to the modeled response, with higher levels of coherence except at the 

highest (> 40rad/s) ends of the frequency region.  

The identified longitudinal frequency sweep input excitation for flight 03 can be seen in Figure 64, 

featuring the elevator only input, and the multi-axis elevator and aileron input. Given that the model was 

updated to match the elevator only frequency sweep response, the model closely matches this as expected. 

The multi-axis input frequency sweep also matches well. There was good coherence throughout the range 

of frequencies shown.  

The identified longitudinal short duration input excitation can be seen in Figure 65. The identified 

systems closely overlaid the model response. Of the three excitations, the 3-2-1-1 input profile maintained 

the highest level of coherence across the frequency region shown, but all excitations lacked the content to 

identify the lowest and highest frequencies of interest. 

                                                           
1. The STI shorthand form of displaying a transfer function is defined by:  2 2( )[ 2 ] ( )[ , ]a s b s s a b          



 

 

 

 115 

 

Figure 62: FLT03 - q/δec Identification – All Methods 
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Figure 63: FLT03 - q/δec Identification – OMS 

 

Figure 64: FLT03 - q/δec Identification – Frequency sweep 
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Figure 65: FLT03 - q/δec Identification – Short Duration Inputs 

2. Lateral Survey 

All lateral excitations can be seen plotted with the model in Figure 66. Table 23 provides the aileron 

actuator model and lateral aircraft model.  

Table 23: FLT 03 – Lateral Aircraft and Aileron Actuator Model 

Aileron Actuator Model Lateral Model 

0.06040

12

sa

ac

e
s








 
48.98( 0.03415)[0.2767,3.436]

(0.0456)[0.2961,3.943](12.5)a

p




  

The identified lateral OMS input excitation for flight 03 can be seen in Figure 67. The magnitude and 

phase response of the aileron alone, and elevator-aileron multi axis, and the elevator-aileron-rudder multi 

axis excitations closely match the model. The coherence levels are high in general, with some slight 

tapering at the highest frequencies and a drop in the 2-3 rad/s region for the elevator-aileron-rudder multi 

axis input. This did not significantly alter the quality of the fit.  

The identified lateral frequency sweep input excitation for flight 03 can be seen in Figure 68 that features 

the aileron only input, and the multi-axis elevator and aileron excitation. Overall, the magnitude and 

phase response of both signals closely fit the model. The aileron only excitation generally has a higher 

coherence relative to the multi-axis input though both are close to 1. In addition, the coherence rolls off at 

the highest frequency levels for both input profiles.  

The identified lateral short duration input excitation can be seen in Figure 69. Of the four excitations, the 

3-2-1-1 input profile maintained the highest level of coherence across the frequency region shown, but all 
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excitations had either major issues with or lacked the content to identify the lowest and highest 

frequencies of interest. 

 

Figure 66: FLT03 - p/δac Identification – All Methods 
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Figure 67: FLT03 - p/δac Identification – OMS 

 

Figure 68: FLT03 - p/δac Identification – Frequency sweep 
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Figure 69: FLT03 - p/δac Identification – Short Duration Inputs 

3. Directional Survey 

All directional excitations can be seen plotted with the model in Figure 70. Table 24 provides the rudder 

actuator model and directional aircraft model.  

Table 24: FLT 03 - Directional Aircraft and Rudder Actuator Model 

Rudder Actuator Model Directional Model 
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e
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


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

 
7.547[0.245,1.247](8.928)

(0.0456)[0.299,4](12.5)r

r




  

The identified directional OMS input excitation for flight 03 can be seen in Figure 71. The magnitude and 

phase response of the rudder alone, and the elevator-aileron-rudder multi axis closely match each other 

and the model at frequencies above 5 rad/s. At the lower frequencies the coherence tended to be less than 

0.8 The coherence rolls off at the highest frequencies, though ~10rad/s sooner than for the pitch and roll 

evaluations.   

The identified directional frequency sweep input excitation for flight 03 can be seen in Figure 72, which 

features the rudder only input. Overall, the magnitude and phase response of the excitation matches the 

model above ~2-3 rad/s. The lowest and highest frequency regions have coherence levels below 0.8 and 

the identified fits reflect that.   

The identified directional short duration input excitation can be seen in Figure 73. Of the four excitations, 

the 3-2-1-1 input profile maintained the highest level of coherence across the frequency region shown, but 

all excitations either had low coherence or lacked the frequency content to identify the lowest and highest 

frequencies of interest. 
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Figure 70: FLT03 - r/δrc Identification – All Methods 
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Figure 71: FLT03 - r/δrc Identification – OMS 

 

Figure 72: FLT03 - r/δrc Identification – Frequency Sweep 
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Figure 73: FLT03 - r/δrc Identification – Short Duration Inputs 

C. FLIGHT 04 

Flight 04 was flown at the approach condition, essentially a lower airspeed cruise (17m/s) with flaps at 

50%. In order to match the gain values of the longitudinal, lateral, and directional bare airframe models 

with the flight data, a series of gains were applied to the bare airframe models which can be seen in Table 

25. 

Table 25: Model Gains for FLT 04 

Longitudinal Lateral Directional 

1.25 1.0 4.0 

1. Longitudinal Survey 

All identified responses from the longitudinal excitations can be seen plotted with the updated reference 

model in Figure 74. Table 26 provides the actuator model and bare airframe dynamics in the longitudinal 

axis.  

Table 26: FLT 04 - Longitudinal Aircraft and Elevator Actuator Models 

Elevator Actuator Model Longitudinal Model 
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40.54( 0)(0.3175)(4.617)

[0.1748,0.6876][0.651,8.18]e

q




  
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The identified longitudinal OMS input excitation for flight 04 can be seen in Figure 75. All identified 

signals match each other and the model with high coherence (near 1) except at the higher frequencies of 

interest. 

The identified longitudinal frequency sweep input excitation for flight 04 can be seen in Figure 76, 

featuring the elevator only input, the multi-axis elevator and aileron input, and the multi axis elevator-

aileron-rudder input. All the frequency sweep input excitations closely match the model. High coherence 

can be seen throughout the range of frequencies shown.  

The identified longitudinal short duration input excitation can be seen in Figure 77. The excitations match 

the model at lower frequencies. Of the three excitations, the pulse input profile maintained the highest 

level of coherence across the frequency region shown, but all excitations had either issues with or lacked 

the content to identify frequencies of interest. 

 

Figure 74: FLT04 - q/δec Identification – All Methods 
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Figure 75: FLT04 - q/δec Identification – OMS 

 

Figure 76: FLT04 - q/δec Identification – Frequency sweep 
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Figure 77: FLT04 - q/δec Identification – Short Duration Inputs 

2. Lateral Survey 

All lateral excitations can be seen plotted against the model in Figure 78. Table 27 provides the aileron 

actuator model and lateral aircraft model.  

Table 27: FLT 04 - Lateral Aircraft and Aileron Actuator Model 

Aileron Actuator Model Lateral Model 
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30.27(-0.08536)[0.3335,2.24]

(0.05395)[0.3226,3.066](12.5)a

p


  

The identified lateral OMS input excitation for flight 04 can be seen in Figure 79. The magnitude and 

phase response of the aileron alone, and elevator-aileron multi axis match closely to the model at all 

frequencies of interest. The elevator-aileron-rudder multi axis excitation matches closely the other OMS 

input excitations and the model at higher frequencies. However, there is a drop in coherence at 

frequencies less than 4 rad/s.  

The identified lateral frequency sweep input excitation for flight 04 can be seen in Figure 80, which 

features the aileron only input, and the multi-axis elevator-aileron excitation. Overall, the magnitude and 

phase response of both excitations match the model, with the aileron only excitation generally having a 

higher coherence. The elevator and aileron multi axis excitation have high coherence which occasionally 

drops below 0.8. once again, as the frequency approaches the upper bounds of the test, the coherence 

drops off.  

The identified lateral short duration input excitation can be seen in Figure 81. Of the four excitations, the 

3-2-1-1 and the doublet input profiles maintained the highest level of coherence across the frequency 
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region shown, but all excitations had either issues with or lacked the content to identify the lowest and 

highest frequencies of interest. 

 

Figure 78: FLT04 - p/δac Identification – All Methods 
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Figure 79: FLT04 - p/δac Identification – OMS 

 

Figure 80: FLT04 - p/δac Identification – Frequency sweep 
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Figure 81: FLT04 - p/δac Identification – Short Duration Inputs 

3. Directional Survey 

All directional excitations can be seen plotted with the model and modes in Figure 82. Table 28 provides 

the rudder actuator model and directional aircraft model. 

Table 28: FLT 04 - Directional Aircraft and Rudder Actuator Model 

Rudder Actuator Model Directional Model 
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 -3.754[0.2292,1.387](6.949)

(0.05395)[0.3,3.5](12.5)r

r


  

The identified directional OMS input excitation for flight 04 can be seen in Figure 83. The magnitude and 

phase response of the rudder alone, and the elevator-aileron-rudder multi axis have a fluctuating value of 

coherence throughout the frequencies of interest. The rudder only excitation is close to 0.8 throughout but 

the combined OMS generally had coherence values less than 0.8.  

The identified directional frequency sweep input excitation for flight 04 can be seen in Figure 84, which 

features the rudder only input. Overall, the magnitude and phase response of the excitation are a match to 

the model above ~2-3 rad/s. 

The identified directional short duration input excitation can be seen in Figure 85. Of the four excitations, 

the 3-2-1-1 input profile maintained the highest level of coherence across the frequency region shown, but 

all excitations had either issues with or lacked the content to identify the lowest and highest frequencies 

of interest. 
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Figure 82: FLT04 - r/δrc Identification – All Methods 
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Figure 83: FLT04 - r/δrc Identification – OMS 

 

Figure 84: FLT04 - r/δrc Identification – Frequency sweep 
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Figure 85: FLT04 - r/δrc Identification – Short Duration Inputs 

D. FLIGHT 05 

Flight 05 was flown at cruise condition but with weight added to the aft portion of the vehicle, in order to 

move the CG back and to create an off-nominal case. 

When changing the parameters in the UM model to reflect the aft CG condition, new mass moment of 

inertia (MOI) values had to be calculated. Two methods were employed to determine the new MOI 

values.  

The first method used a table build up to calculate the components of the MOI values. The first 

component used was the existing vehicle, with the weight and CG location as inputs. The second 

component used was the new added mass with the weight of the mass and the location of the mass on the 

aircraft. This method will be denoted as “MOI Method 1” in the subsequent sections where the data is 

presented. 

The second method used a series of hand calculations. The first step was to uses the parallel axis theorem 

on the new added mass and the distance from the old CG to the location of the added mass and add this 

term to the current Izz value. Next use the parallel axis theorem on the vehicle as a whole with the new 

mass of the vehicle and the distance between the new and old CG values. This method will be denoted as 

“MOI Method 2” in the subsequent sections where the data is presented. The results of both methods can 

be seen in Table 29. 

In order to match the gain values of the longitudinal, lateral, and directional bare airframe models with the 

flight data, a series of gains were applied to the bare airframe models which can be seen in Table 30. 
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Table 29: Moment of Inertia Results for Aft-CG 

- Nominal CG Method 1 Method 2 

Ixx (kg-m2) 0.8568 0.8568 0.8568 

Iyy (kg-m2) 1.0095 0.677 0.8791 

Izz (kg-m2) 1.7005 1.534 1.735 

Table 30: Model Gains for FLT 05 

- Longitudinal Lateral Directional 

MOI 

Method 1 
0.75 0.75 2.5 

MOI 

Method 2 
1.0 0.75 2.5 

1. Longitudinal Survey 

All identified responses from the longitudinal excitations can be seen plotted for each MOI method in 

Figure 86 and Figure 90. Table 31 provides the actuator model and bare airframe dynamics in the 

longitudinal axis. 

Table 31: FLT05 - Longitudinal Aircraft and Elevator Actuator Models 

Elevator Actuator Model Longitudinal Model 
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89.62(0)(0.4055)(6.045)

[0.3157,0.5423][0.716,10]e

q


  

The identified longitudinal OMS input excitation for flight 05 can be seen in Figure 87 and Figure 91. All 

input excitations match closely to the model with high coherence (near 1) except at the higher (> 40rad/s) 

ends of the frequency region shown.  

The identified longitudinal frequency sweep input excitation for flight 05 can be seen in Figure 88 and 

Figure 92 and features the elevator only input, the multi-axis elevator and aileron input, and the multi axis 

elevator-aileron-rudder input. Overall the frequency sweep input excitations closely match the model 

response. The coherence drops slightly for each at the highest frequencies considered.  

The identified longitudinal short duration input excitation can be seen in Figure 89 and Figure 93. Of the 

three excitations, the pulse input profile maintained the highest level of coherence across the frequency 

region shown. These is significant drop-off of coherence at frequencies above 20 rad/s 
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a. MOI Method 1 

 

Figure 86: FLT05-MOI Method 1 - q/δec Identification – All Methods 
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Figure 87: FLT05-MOI Method 1 - q/δec Identification – OMS 

 

Figure 88: FLT05-MOI Method 1 - q/δec Identification – Frequency sweep 
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Figure 89: FLT05-MOI Method 1 - q/δec Identification – Short Duration Inputs 
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b. MOI Method 2 

 

Figure 90: FLT05-MOI Method 2 - q/δec Identification – All Methods 
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Figure 91: FLT05-MOI Method 2 - q/δec Identification – OMS 

 

Figure 92: FLT05-MOI Method 2 - q/δec Identification – Frequency sweep 
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Figure 93: FLT05-MOI Method 2 - q/δec Identification – Short Duration Inputs 

2. Lateral Survey 

All identified responses from the lateral excitations can be seen plotted with the updated reference model 

in Figure 94 and Figure 98. Table 32 provides the aileron actuator model and lateral aircraft model. 

Table 32: FLT05 - Lateral Aircraft and Aileron Actuator Model 

Aileron Actuator Model Lateral Model 
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 50.39(-0.03378)[0.2752,3.531]

(0.04175)[0.2952,4.022](9.2)a

p


  

The identified lateral OMS input excitation for flight 05 can be seen in Figure 95 and Figure 99. The 

magnitude and phase response of the aileron alone, and elevator-aileron multi axis closely match the 

model. The elevator-aileron-rudder multi axis excitation follows the same trend as the other two OMS 

excitations, however, there is a drop in coherence at frequencies between 2-3 rad/s.  

The identified lateral frequency sweep input excitation for flight 05 can be seen in Figure 96 and Figure 

100, which features the aileron only input, and the multi-axis elevator-aileron excitation. Overall, the 

magnitude and phase response of both input excitations match the model, with the aileron only excitation 

generally having a higher coherence throughout. The elevator and aileron multi axis excitation coherence 

occasionally drops below 0.8 as the frequency approaches the upper bounds of the test.  

The identified lateral short duration input excitation can be seen in Figure 97 and Figure 101. Of the four 

excitations, the 3-2-1-1 and the doublet input profiles maintained the highest level of coherence across the 

frequency region shown, but all excitations had either issues with or lacked the content to identify the 

highest frequencies of interest. 
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a. MOI Method 1 

 

Figure 94: FLT05-MOI Method 1 - p/δac Identification – All Methods 
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Figure 95: FLT05-MOI Method 1 - p/δac Identification – OMS 

 

Figure 96: FLT05-MOI Method 1 - p/δac Identification – Frequency sweep 
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Figure 97: FLT05-MOI Method 1 - p/δac Identification – Short Duration Inputs 
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b. MOI Method 2 

 

Figure 98: FLT05-MOI Method 2 - p/δac Identification – All Methods 
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Figure 99: FLT05-MOI Method 2 - p/δac Identification – OMS 

 

Figure 100: FLT05-MOI Method 2 - p/δac Identification – Frequency sweep 
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Figure 101: FLT05-MOI Method 2 - p/δac Identification – Short Duration Inputs 

3. Directional Survey 

All directional excitations can be seen plotted with the model in Figure 102 and Figure 106. Table 33 

provides the rudder actuator model and directional aircraft model. 

Table 33: FLT05 - Directional Aircraft and Rudder Actuator Model 

Rudder Actuator Model Directional Model 
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 -7.623[0.2505,1.242](9.186)

(0.04175)[0.305,3.05](9.2)r

r


  

The identified directional OMS input excitation for flight 05 can be seen in and Figure 103 and Figure 

107. The magnitude and phase response of the rudder alone, and the elevator-aileron-rudder multi axis 

match the model at frequencies above 6 rad/s. Both excitations remained above 0.8 coherence at the 

middle frequencies. A brief spike occurred in the phase of both input excitations at about 5 rad/s. 

The identified directional frequency sweep input excitation for flight 05 can be seen in Figure 104 and 

Figure 108, which features the rudder only input. Overall, the magnitude and phase response of the 

excitation close match to the model where coherence does not fall below 0.8 until the higher frequencies, 

which follows the trend of the previous response types.  

The identified directional short duration input excitation can be seen in Figure 105 and Figure 109. The 

identified and model appear to match, however there is significant loss in coherence at all frequencies of 

interest.  

Adjustments were considered to improve the fit, particularly in the 1 to 5 rad/s region, but all alterations 

had a negative effect on the lateral system fits. As more confidence was placed in the roll identifications, 

the model dynamics remained unchanged beyond those already performed for the roll fit. 
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a. MOI Method 1 

 

Figure 102: FLT05-MOI Method 1 - r/δrc Identification – All Methods 
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Figure 103: FLT05-MOI Method 1 - r/δrc Identification – OMS 

 

Figure 104: FLT05-MOI Method 1 - r/δrc Identification – Frequency sweep 
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Figure 105: FLT05-MOI Method 1 - r/δrc Identification – Short Duration Inputs 
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b. MOI Method 2 

 

Figure 106: FLT05-MOI Method 2 - r/δrc Identification – All Methods 
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Figure 107: FLT05-MOI Method 2 - r/δrc Identification – OMS 

 

Figure 108: FLT05-MOI Method 2 - r/δrc Identification – Frequency sweep 
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Figure 109: FLT05-MOI Method 2 - r/δrc Identification – Short Duration Inputs 

E. FLIGHT 06 

Flight 06 was flown at the approach condition (50% flaps at 17m/s) with the aft CG.  

When changing the parameters in the UM model to reflect the aft CG condition, new (MOI) values had to 

be calculated. The methodologies and naming conventions are mirrored from the flight 05 condition 

above. To match the gain values of the longitudinal, lateral, and directional bare airframe models with the 

flight data, a series of gains were applied to the bare airframe models which can be seen in Table 34. The 

primary difference between the two MOI cases is the longitudinal gains which was due to the additional 

weight added along the central axis near the rear of the aircraft. 

Table 34: Model Gains for FLT 06 

- Longitudinal Lateral Directional 

MOI 

Method 1 
1.0 1.0 2.5 

MOI 

Method 2 
1.25 1.0 2.5 
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1. Longitudinal Survey 

All identified responses from the longitudinal excitations can be seen plotted in Figure 110 and Figure 

114. Table 35 provides the actuator model and bare airframe dynamics in the longitudinal axis. 

Table 35: FLT 06 - Longitudinal Aircraft and Elevator Actuator Models 

Elevator Actuator Model Longitudinal Model 
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  46.95(-0)(0.319)(4.579)

[0.1771,0.699][0.627,9.18]e

q


  

The identified longitudinal OMS input excitation for flight 06 can be seen in Figure 111 and Figure 115. 

All signals have a close match to the model with high coherence (near 1) except at the higher (> 30rad/s) 

ends of the frequency region.  

The identified longitudinal frequency sweep input excitation for flight 06 can be seen in Figure 112 and 

Figure 116 features the elevator only input, the multi-axis elevator and aileron input, and the multi axis 

elevator-aileron-rudder input. Overall the frequency sweep input excitations closely match the model and 

each other over the range of considered frequencies.  

The identified longitudinal short duration input excitation can be seen in Figure 113 and Figure 117. 

There is significant drop-off of coherence at frequencies above 7-8 rad/s though the magnitude and phase 

overlays appear to reflect the modeled trend. 
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a. MOI Method 1 

 

Figure 110: FLT06-MOI Method 1 - q/δec Identification – All Methods 
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Figure 111: FLT06-MOI Method 1 - q/δec Identification – OMS 

 

Figure 112: FLT06-MOI Method 1 - q/δec Identification – Frequency sweep 
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Figure 113: FLT06-MOI Method 1 - q/δec Identification – Short Duration Inputs 
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b. MOI Method 2 

 

Figure 114: FLT06-MOI Method 2 - q/δec Identification – All Methods 
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Figure 115: FLT06-MOI Method 2 - q/δec Identification – OMS 

 

Figure 116: FLT06-MOI Method 2 - q/δec Identification – Frequency sweep 
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Figure 117: FLT06-MOI Method 2 - q/δec Identification – Short Duration Inputs 

2. Lateral Survey 

All identified responses from the lateral excitations can be seen plotted with the updated reference model 

in Figure 118 and Figure 122. Table 36 provides the actuator model and bare airframe dynamics in the 

lateral axis. 

Table 36: FLT 06 - Lateral Aircraft and Aileron Actuator Model 

Aileron Actuator Model Lateral Model 
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 30.37(-0.08657)[0.3275,2.266]

(0.04581)[0.3201,3.085](12.5)a

p


  

The identified lateral OMS input excitation for flight 06 can be seen in Figure 119 and Figure 123. The 

magnitude and phase response of the aileron alone, and elevator-aileron multi axis through all frequencies 

of interest have highly variable coherence values. The magnitude and phase responses closely match each 

other and the model, but not as well as previous fits. 

The identified lateral frequency sweep input excitation for flight 06 can be seen in Figure 120 and Figure 

124 and features the aileron only input, and the multi-axis elevator-aileron excitation. While the fit of the 

identified systems is close to the model, the coherence is again lower than desired.  

The identified lateral short duration input excitation can be seen in Figure 121 and Figure 125. Similarly, 

the magnitude and phase match with one another and the model, but with regions of poorer fits. Again, 

the coherence is not as high as desired. 
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a. MOI Method 1 

 

Figure 118: FLT06-MOI Method 1 - p/δac Identification – All Methods 
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Figure 119: FLT06-MOI Method 1 - p/δac Identification – OMS 

 

Figure 120: FLT06-MOI Method 1 - p/δac Identification – Frequency sweep 
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Figure 121: FLT06-MOI Method 1 - p/δac Identification – Short Duration Inputs 
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b. MOI Method 2 

 

Figure 122: FLT06-MOI Method 2 - p/δac Identification – All Methods 
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Figure 123: FLT06-MOI Method 2 - p/δac Identification – OMS 

 

Figure 124: FLT06-MOI Method 2 - p/δac Identification – Frequency sweep 
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Figure 125: FLT06-MOI Method 2 - p/δac Identification – Short Duration Inputs 

3. Directional Survey 

All identified responses from the directional excitations can be seen plotted with the updated reference 

model in Figure 126 and Figure 130. Table 37 provides the actuator model and bare airframe dynamics in 

the directional axis. All excitations had poor coherence levels, resulting in poor matches with the modeled 

response and each other. Although the directional identifications have not been as clean as the 

identifications in the other axes, efforts are underway to understand the reason for these poor fits as they 

are the worst of the considered data sets. 

Table 37: FLT 06 - Directional Aircraft and Rudder Actuator Model 

Rudder Actuator Model Directional Model 
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 -3.656[0.2313,1.386](6.95)

(0.04581)[0.305,3.05](12.5)r

r


  

The identified directional OMS input excitation for flight 06 can be seen in and Figure 127 and Figure 

131. The magnitude and phase response of the rudder alone and the elevator-aileron-rudder multi axis 

generally match the model at frequencies above 6 rad/s. Both excitations did not remain in a desired 

coherence level at any of the frequencies shown. A brief spike occurred in the phase of the elevator-

aileron-rudder multi axis input excitation at about 5 rad/s. A ramp up in the phase for the rudder alone 

input excitation is shown at low frequencies up to about 6rad/s, the extremely low coherence shows this 

as well. 

The identified directional frequency sweep input excitation for flight 06 can be seen in Figure 128 and 

Figure 132, which features the rudder only input. Overall, the magnitude and phase response of the 



 

 

 

 165 

excitation generally match to the model at frequencies above 5rad/s and ~3rad/s, respectively. The 

coherence was generally unsatisfactory. 

The identified directional short duration input excitation can be seen in Figure 129 and Figure 133. Of the 

four excitations, the 3-2-1-1 input profile maintained the highest level of coherence across the frequency 

region shown, but all excitations had either issues with or lacked the content to identify the lowest and 

highest frequencies of interest. 

a. MOI Method 1 

 

Figure 126: FLT06-MOI Method 1 - r/δrc Identification – All Methods 
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Figure 127: FLT06-MOI Method 1 - r/ δrc Identification - OMS 
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Figure 128: FLT06-MOI Method 1 - r/δrc Identification - Frequency sweep 

 

Figure 129: FLT06-MOI Method 1 - r/δrc Identification - Short Duration 
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b. MOI Method 2 

 

Figure 130: FLT06-MOI Method 2 - r/δrc Identification - All Methods 
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Figure 131: FLT06-MOI Method 2 - r/δrc Identification - OMS 

 

Figure 132: FLT06-MOI Method 2 - r/δrc Identification - Frequency sweep 
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Figure 133: FLT06-MOI Method 2 - r/δrc Identification - Short Duration 
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F. FLIGHT 10 

Flight 10 was flown at cruise condition, that was straight and level flight with computer generated inputs. 

An additional time delay of 80ms was added to the system for this flight. 

In order to match the gain values of the longitudinal, lateral, and directional bare airframe models with the 

flight data, a series of gains were applied to the bare airframe models which can be seen in Table 38. 

Table 38: Model Gains for FLT 10 

Longitudinal Lateral Directional 

1.2 0.8 4.0 

1. Longitudinal Survey 

All identified responses from the longitudinal excitations can be seen plotted with the updated reference 

model in Figure 134. Table 39 provides the actuator model and bare airframe dynamics in the longitudinal 

axis. 

Table 39: FLT 10 – Longitudinal Aircraft and Elevator Actuator Models 

Elevator Actuator Model Longitudinal Model 
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77.33(0)(0.4055)(6.147)

[0.3178,0.5352][0.7533,9.484]e

q


 2 

The identified longitudinal OMS input excitation for flight 10 can be seen in Figure 135. All identified 

systems provide a close match to the modeled response. There is a drop in coherence in the 2-3rad/s 

region with a taper off starting at 10rad/s of the frequency region.  

The identified longitudinal frequency sweep input excitation for flight 10 can be seen in Figure 136, 

featuring the elevator only input, and the multi-axis elevator and aileron input. Overall, the magnitude and 

phase response of both signals fit the model with a slight offset from 1-6rad/s. There was decent 

coherence throughout the range of frequencies shown, however it is seen to roll off at 10rad/s.  

The identified longitudinal short duration input excitation can be seen in Figure 137. The identified 

systems closely overlaid the model response. Of the three excitations, the 3-2-1-1 input profile maintained 

the highest level of coherence across the frequency region shown, but all excitations lacked the content to 

identify the lowest and highest frequencies of interest. 

                                                           
2. The STI shorthand form of displaying a transfer function is defined by:  2 2( )[ 2 ] ( )[ , ]a s b s s a b          
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Figure 134: FLT10 - q/δec Identification - All Methods 
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Figure 135: FLT10 - q/δec Identification – OMS 

 

Figure 136: FLT10 - q/δec Identification - Frequency sweep 
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Figure 137: FLT10 - q/δec Identification - Short Duration 

2. Lateral Survey 

All lateral excitations can be seen plotted with the model in Figure 138. Table 40 provides the aileron 

actuator model and lateral aircraft model.  

Table 40: FLT 10 – Lateral Aircraft and Aileron Actuator Model 

Aileron Actuator Model Lateral Model 

0.06040
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sa

ac

e
s








 
50.41( 0.0333)[0.2792,3.505]

(0.04542)[0.2987,3.999](9.191)a

p




  

The identified lateral OMS input excitation for flight 10 can be seen in Figure 139. The magnitude and 

phase response of the aileron alone, elevator-aileron multi axis, and the elevator-aileron-rudder multi axis 

excitations match the model. The coherence levels are high in general, with coherence rolling off 

beginning at the ~10rad/s for all inputs. However, this did not significantly alter the quality of the fit.  

The identified lateral frequency sweep input excitation for flight 10 can be seen in Figure 140 that 

features the aileron only input, and the elevator-aileron multi axis. Overall, the magnitude and phase 

response of both signals closely fit the model. The elevator-aileron multi axis excitation generally had a 

higher coherence relative to the aileron only input though both taper at about 10rad/s. 

The identified lateral short duration input excitation can be seen in Figure 141. Of the four excitations, the 

3-2-1-1 input profile maintained the highest level of coherence across the frequency region shown, but all 

excitations had either major issues with or lacked the content to identify the lowest and highest 

frequencies of interest. Due to the low coherence levels, the phase for the pulse excitation was left 

unwrapped. 
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Figure 138: FLT10 - p/δac Identification - All Methods 
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Figure 139: FLT10 - p/δac Identification - OMS 

 

Figure 140: FLT10 - p/δac Identification - Frequency sweep 
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Figure 141: FLT10 - p/δac Identification - Short Duration 

3. Directional Survey 

All directional excitations can be seen plotted with the model in Figure 142. Table 41 provides the rudder 

actuator model and directional aircraft model.  

Table 41: FLT 03 - Directional Aircraft and Rudder Actuator Model 

Rudder Actuator Model Directional Model 

0.06510
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e
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
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

 
7.794[0.2501,1.241](9.181)

(0.04542)[0.2987,3.999](9.191)r

r


  

The identified directional OMS input excitation for flight 10 can be seen in Figure 143. The magnitude 

and phase response of the rudder alone, and the elevator-aileron-rudder multi axis closely match each 

other and the model at frequencies above 5 rad/s. At the lower frequencies the coherence tended to be less 

than 0.8 The coherence rolls off at the highest frequencies.   

The identified directional frequency sweep input excitation for flight 10 can be seen in Figure 144, which 

features the rudder only input. Overall, the magnitude and phase response of the excitation matches the 

model above ~2rad/s. The lowest and highest frequency regions have coherence levels below 0.8 and the 

identified fits reflect that.   

The identified directional short duration input excitation can be seen in Figure 145. Of the four 

excitations, the 3-2-1-1 input profile maintained the highest level of coherence across the frequency 

region shown, but all excitations either had low coherence or lacked the frequency content to identify the 

lowest and highest frequencies of interest. Due to the low coherence levels, the phase for the doublet 

excitation was left unwrapped. 
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Figure 142: FLT10 - r/δrc Identification - All Methods 
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Figure 143: FLT10 - r/δrc Identification - OMS 

 

Figure 144: FLT10 - r/δrc Identification - Frequency Sweep 
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Figure 145: FLT10 - r/δrc Identification - Short Duration 
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G. FLIGHT 11 

Flight 11 was flown at approach condition (50% flaps at 17 m/s), that was straight and level flight with 

computer generated inputs. An extra delay of 80ms was added to the system for flight 11. 

In order to match the gain values of the longitudinal, lateral, and directional bare airframe models with the 

flight data, a series of gains were applied to the bare airframe models which can be seen in Table 42. 

Table 42: Model Gains for FLT 11 

Longitudinal Lateral Directional 

1.6 1.0 4.5 

1. Longitudinal Survey 

All identified responses from the longitudinal excitations can be seen plotted with the updated reference 

model in Figure 146. Table 43 provides the actuator model and bare airframe dynamics in the longitudinal 

axis. 

Table 43: FLT 11 – Longitudinal Aircraft and Elevator Actuator Models 

Elevator Actuator Model Longitudinal Model 

0.0658
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se

ec

e
s








 
40.54(0)(0.3175)(4.617)

[0.1748,0.6876][0.6664,8.077]e

q


 3 

The identified longitudinal OMS input excitation for flight 11 can be seen in Figure 147. All identified 

systems provide a close match to the modeled response, with higher levels of coherence except there I a 

taper of coherence at the higher frequency region (~20rad/s).  

The identified longitudinal frequency sweep input excitation for flight 11 can be seen in Figure 148 

featuring the elevator only input, the multi-axis elevator and aileron input. All identified systems provide 

a close match to the modeled response. There was good coherence throughout the range of frequencies 

shown with a slight taper at the higher frequencies (>40rad/s).  

The identified longitudinal short duration input excitation can be seen in Figure 149. The identified 

systems closely overlaid the model response. Of the three excitations, the 3-2-1-1 input profile maintained 

the highest level of coherence across the frequency region shown, but all excitations lacked the content to 

identify the lowest and highest frequencies of interest. Due to the low coherence levels, the phase for the 

doublet excitation was left unwrapped. 

 

                                                           
3. The STI shorthand form of displaying a transfer function is defined by:  2 2( )[ 2 ] ( )[ , ]a s b s s a b          
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Figure 146: FLT11 - q/δec Identification - All Methods 
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Figure 147: FLT11 - q/δec Identification - OMS 

 

Figure 148: FLT11 - q/δec Identification - Frequency sweep 
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Figure 149: FLT11 - q/δec Identification - Short Duration 

2. Lateral Survey 

All lateral excitations can be seen plotted with the model in Figure 150. Table 44 provides the aileron 

actuator model and lateral aircraft model.  

Table 44: FLT 11 – Lateral Aircraft and Aileron Actuator Model 

Aileron Actuator Model Lateral Model 

0.06040

12
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ac

e
s








 
30.27( 0.08536)[0.3335,2.24]

(0.05395)[0.3226,3.066](6.956)a

p




  

The identified lateral OMS input excitation for flight 11 can be seen in Figure 151. The magnitude and 

phase response of the aileron alone, elevator-aileron multi axis, and the elevator-aileron-rudder multi axis 

excitations closely match the model, however there is a slight mismatch with the aileron alone and this is 

reflected in the coherence. The coherence levels are not ideal, however the elevator-aileron multi axis 

input profile maintained the highest level of coherence across the frequency region shown. 

The identified lateral frequency sweep input excitation for flight 11 can be seen in Figure 152 that 

features the aileron only input and the elevator-aileron multi axis excitation. Overall, the magnitude and 

phase response of both signals closely fit the model. The aileron only excitation generally has a higher 

coherence relative to the elevator-aileron multi axis input though both are close to 1 in the lower 

frequencies. In addition, the coherence rolls off starting at the 5-6rad/s frequency levels for both input 

profiles.  

The identified lateral short duration input excitation can be seen in Figure 153. Of the four excitations, the 

wider pulse input profile maintained the highest level of coherence across the frequency region shown, 

but all excitations had either major issues with or lacked the content to identify the lowest and highest 
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frequencies of interest. Due to the low coherence levels, the phase for the pulse excitation was left 

unwrapped. 

 

Figure 150: FLT11 - p/δac Identification - All Methods 
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Figure 151: FLT11 - p/δac Identification - OMS 

 

Figure 152: FLT11 - p/δac Identification - Frequency Sweep 
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Figure 153: FLT11 - p/δac Identification - Short Duration 

3. Directional Survey 

All directional excitations can be seen plotted with the model in Figure 154. Table 45 provides the rudder 

actuator model and directional aircraft model.  

Table 45: FLT 11 - Directional Aircraft and Rudder Actuator Model 

Rudder Actuator Model Directional Model 

0.06510
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3.754[0.2292,1.387](6.949)

(0.05395)[0.3226,3.066](6.956)r

r


  

The identified directional OMS input excitation for flight 11 can be seen in Figure 155. The magnitude 

and phase response of the rudder alone and the elevator-aileron-rudder multi axis closely match each 

other and the model at frequencies above 5 rad/s. At the lower frequencies the coherence tended to be less 

than 0.8 The coherence rolls off at the ~10rad/s frequency.  

The identified directional frequency sweep input excitation for flight 11 can be seen in Figure 156, which 

features the rudder only input. Overall, the magnitude and phase response of the excitation matches the 

model above ~2-3 rad/s. The lowest and highest frequency regions have coherence levels below 0.8 and 

the identified fits reflect that.  

The identified directional short duration input excitation can be seen in Figure 157. Of the four 

excitations, the doublet input profile maintained the highest level of coherence across the frequency 

region shown, but all excitations either had low coherence or lacked the frequency content to identify the 

lowest and highest frequencies of interest. Due to the low coherence levels, the phase for the 3-2-1-1 

excitation was left unwrapped. 
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Figure 154: FLT11 - r/δrc Identification - All Methods 
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Figure 155: FLT11 - r/δrc Identification - OMS 

 

Figure 156: FLT11 - r/δrc Identification - Frequency sweep 
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Figure 157: FLT11 - r/δrc Identification - Short Duration 
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H. SHORT DURATION MODEL RESPONSE EVALUATION 

The following figures in this section demonstrate the response of the previously identified model with a 

frequency sweep input against short duration inputs. For flights 03 and 04, the test input profiles for the 

longitudinal and directional axes were doublets, pulses, and 3-2-1-1 pulse sets. The lateral test input 

profiles were the same as the other two axes, however, there was an additional wider pulse input as well. 

These test input profiles are described in detail in section 3. Section 5.3 shows some of the short duration 

off-nominal model responses for select flight conditions and test excitation inputs. 

1. Flight 03 

Flight 03 was flown at cruise condition, straight and level flight with computer generated inputs. This 

flight is the baseline configuration. The identified model was simulated with initial conditions set to zero. 

a. Longitudinal Survey 

The short duration responses for the longitudinal axis can be seen in Figure 158, Figure 159, and Figure 

160. The model response for the doublet excitation exhibited a close match to the excitation flight data. 

The pulse and 3-2-1-1 excitation response demonstrated a good model fit, however there is a modest 

amount of amplitude mismatch. This mismatch, which occurs for the lower frequency inputs, is likely due 

to system nonlinearities such as actuator free play. There are two sets of data drop outs from ~7-11 

seconds and ~12-15 seconds region that impacted the second doublet maneuver. 

 

 

Figure 158: FLT03 - Doublet Response 
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Figure 159: FLT03 - Pulse Response 

 

Figure 160: FLT03 - 3-2-1-1 Response 
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b. Lateral Survey 

The short duration responses for the lateral axis can be seen in Figure 161, Figure 162, Figure 163, and 

Figure 164. The model response for the doublet, wider pulse, and 3-2-1-1 test input excitations exhibited 

a close match to the excitation flight data with the wider pulse response being the best. However, there is 

a considerable amount of amplitude offset demonstrated in all model responses except for the wider pulse 

response. There is one set of data drop out from the ~6-9 seconds region in the doublet maneuver flight 

data. The wider pulse response also exhibits a minor time delay. 

 

Figure 161: FLT03 - Doublet Response 
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Figure 162: FLT03 - Pulse Response 

 

Figure 163: FLT03 - Wider Pulse Response 
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Figure 164: FLT03 - 3-2-1-1 Response 

c. Directional Survey 

The short duration responses for the directional axis can be seen in Figure 165, Figure 166, and Figure 

167. The model response for all test input excitations exhibited a close match to the excitation flight data 

with the doublet response being the best. However, there is a moderate amount of amplitude offset 

demonstrated in all model responses. 
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Figure 165: FLT03 - Doublet Response 

 

Figure 166: FLT03 - Pulse Response 
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Figure 167: FLT03 - 3-2-1-1 Response 

2. FLT 04 

Flight 04 was flown at the approach condition, essentially a lower airspeed cruise (17m/s) with flaps at 

50%. The identified model was simulated with initial conditions set to zero. 

a. Longitudinal Survey 

The short duration responses for the lateral axis can be seen in Figure 168, Figure 169, and Figure 170. 

The model response for all test input excitations exhibited a close match to the excitation flight data with 

the last doublet response being the best. There is a moderate amount of amplitude offset demonstrated in 

all model responses except for the last doublet and pulse excitation responses and the first 3-2-1-1 

excitation response. The doublet and pulse maneuver flight data both exhibit one set of data drop out from 

the ~4-6 seconds and ~7-18 seconds region, respectively. 
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Figure 168: FLT04 - Doublet Response 

 

Figure 169: FLT04 - Pulse Response 
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Figure 170: FLT04 - 3-2-1-1 Response 

b. Lateral Survey 

The short duration responses for the lateral axis can be seen in Figure 171, Figure 172, Figure 173, and 

Figure 174. The model response for the doublet and 3-2-1-1 test input excitations exhibited a close match 

to the excitation flight data. The model response for the pulse somewhat matches the test input excitation 

and there is some resemblance of a model response fit for the wider pulse test input excitation. There is a 

moderate amount of amplitude offset demonstrated in all model responses. The wider pulse maneuver 

flight data exhibits two sets of data drop out from the ~9-12 seconds and ~16-31 seconds region. 



 

 

 

 200 

 

Figure 171: FLT04 - Doublet Response 

 

Figure 172: FLT04 - Pulse Response 
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Figure 173: FLT04 - Wider Pulse Response 

 

Figure 174: FLT04 - 3-2-1-1 Response 



 

 

 

 202 

c. Directional Survey 

The short duration responses for the directional axis can be seen in Figure 175, Figure 176, and Figure 

177. The model response for all test input excitations exhibited a close match to the excitation flight data. 

There is a moderate amount of amplitude offset demonstrated in the doublet and 3-2-1-1 model responses, 

however, the pulse model response shows a larger amplitude offset. All model responses exhibit a time 

delay.  

 

Figure 175: FLT04 - Doublet Response 
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Figure 176: FLT04 - Pulse Response 

 

Figure 177: FLT04 - 3-2-1-1 Response 



 

 

 

 204 

3. Select Model Responses 

a. FLT 05: Aft CG Longitudinal Survey 

Flight 05 was flown at cruise condition, but with weight added to the aft portion of the vehicle, to move 

the CG back and to create an off-nominal case.  

The doublet excitation model response for MOI method 1 and 2 are shown in Figure 178 and Figure 181, 

respectively. The model response for both MOI methods exhibited a very close match to the excitation 

flight data. The only difference between the two models is the minor existence of an amplitude offset 

demonstrated in the MOI method 2 model response. The maneuver flight data exhibits one set of data 

drop out from the ~7-9 seconds region.  

The pulse excitation model response for MOI method 1 and 2 in Figure 179 and Figure 182, respectively. 

The model response for both MOI methods exhibited a close match to the excitation flight data. Both 

models exhibit a minor amount of amplitude offset. The maneuver flight data exhibits one set of data drop 

out from the ~5-13 seconds region. 

The 3-2-1-1 excitation model response for MOI method 1 and 2 in Figure 180 and Figure 183, 

respectively. The model response for both MOI methods exhibited a close match to the excitation flight 

data. Both models exhibit a minor amount of amplitude offset and a small time delay. 

 

Figure 178: FLT05-MOI Method 1 - Doublet Response 
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Figure 179: FLT05-MOI Method 1 - Pulse Response 

 

Figure 180: FLT05-MOI Method 1 - 3-2-1-1 Response 
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Figure 181: FLT05-MOI Method 2 - Doublet Response 

 

Figure 182: FLT05-MOI Method 2 - Pulse Response 
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Figure 183: FLT05-MOI Method 2 - 3-2-1-1 Response 

b. FLT 10: Time Delay Lateral Survey 

Flight 10 was flown at cruise condition, straight and level flight, with computer generated inputs. An 

additional time delay of 80ms was added to the system for this flight. 

The short duration 3-2-1-1 excitation model response for the lateral axis can be seen in Figure 187. The 

model response for exhibited a close match to the maneuver flight data with only a moderate amount 

amplitude offset demonstrated in the model response.  

The short duration responses for the lateral axis can be seen in Figure 184, Figure 185, Figure 186, and 

Figure 187. The model response for the doublet and pulse input excitations exhibited a decent match to 

the excitation flight data and the wider pulse and 3-2-1-1 model responses exhibited close matches. There 

is a considerable amount of amplitude offset demonstrated in both the doublet and pulse responses and a 

moderate amplitude offset in the 3-2-1-1 response. The wider pulse response exhibits a minor time delay. 

 



 

 

 

 208 

 

Figure 184: FLT10 - Doublet Response 

 

Figure 185: FLT10 - Pulse Response 
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Figure 186: FLT10 - Wider Pulse Response 

 

Figure 187: FLT10 - 3-2-1-1 Response 

 



 

 

 

 210 

REFERENCES
 

46. Miller, J. P., D. H. Klyde, P. C. Schulze, B. P. Danowsky, and D. G. Mitchell, Analysis of 

Longitudinal and Lateral Dynamics of the UltraStick120, STI-WP-1456-3, Systems Technology, Inc., 

October 20, 2017. 

47.  Morelli, E.A., “Multiple Input Design for Real-Time Parameter Estimation in the Frequency 

Domain,” Paper REG-360, 13th IFAC Symposium on System Identification, Rotterdam, The 

Netherlands, August 2003. 

48. Myers, T. T., B. L. Aponso, D. H. Klyde, T. J. Rosenthal, R. E Magdaleno, FREDA, Frequency 

Domain Analysis Program User’s Guide, STI-WP-433-2, Systems Technology, Inc., 1988.  



 

 

 

 211 

Appendix D – Multirotor Flight Test Data 
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A. INTRODUCTION 

This appendix provides a review of the initial flight testing of multirotor aircraft as part of an effort to 

develop, test, and validate Mission Task Elements (MTEs) for sUAS. Specifically, the tasks included 

herein were defined for the common set of multirotor MTEs that were introduced in Ref. 49. It is intended 

that the evaluations described herein will serve to document nominal system performance of the selected 

vehicles. This performance will later be compared with results conducted in the presence of representative 

hazards (e.g., steady winds). The nominal system flight testing was conducted at the Autonomy Incubator 

(AI) at NASA Langley Research Center in April 2018. Follow-on testing was conducted in the 14-by 22-

foot Subsonic Wind Tunnel (14 x 22) at NASA Langley Research Center in late March 2019. The MTEs 

were flown in the presence of steady winds up to 25 mph. It was beyond scope and period of performance 

to analyze and document the results of the wind tunnel evaluations for this program. 

The data analysis in this appendix was conducted by two summer interns from California State 

Polytechnic University, Pomona, Eric Gonzalez and Joshua Klyde, under the direction of the STI 

Principal Investigator and Dr. Amanda Lampton of STI. 

B. FLIGHT TEST SUMMARY 

The test was conducted at the AI on a course defined by hover boards positioned according to each MTE 

description. Four low speed MTEs were tested: Precision Hover, Lateral Sidestep, Vertical Reposition, 

and Landing. Complete descriptions of the MTEs are provided in Appendix C. The checkout flights were 

flown by two pilots, and the checkout vehicle was the Tarot X6 hexacopter. The verification flights were 

flown by the same two pilots as well as a third pilot with a Tarot 650 Sport quadcopter as the test vehicle. 

The test vehicles are shown in Figure 188. 

 

a) Tarot X6 

 

b) Tarot 650 Sport 

Figure 188: Multirotor Test Vehicles 

Two sets of data and video were generated for each set of flight test evaluation runs. The video consists of 

a stationary video that captures the entire test range and an over-the-shoulder video of the pilot to capture 

pilot perception and line-of-sight. The AI is equipped with a Vicon system that provides precision 

position tracking of vehicles. Both multirotors were outfitted with Vicon tracking nodes. These data in 

concert with the over-the-shoulder video can and will be used to calculate performance metrics for these 

tests. In addition, the aircraft carry Pixhawk autopilots that record GPS, IMU, pilot command, and control 

deflection data. The GPS data are not accurate in the indoor AI environment and cannot be used for 

measuring performance, but the IMU, pilot command, and control deflection data will be valuable in 

understanding the pilot-vehicle system and how that affects performance.  

C. FLIGHT TEST RESULTS 

1.  Run Logs 

During a test session for a given vehicle, the pilot performed an MTE (e.g. Precision Hover) multiple 

times before landing, resetting, and proceeding to the next MTE. A Vicon data file was stored at the 
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completion of the final run of an MTE as the pilot landed the vehicle to reset such that only a single type 

of MTE was recorded in each file. Run logs for the Vicon data are included in Table 46. For each pilot 

and the vehicle flown, the time range over which an MTE or task was performed and recorded in their 

respective Vicon data files is listed in Table 46. The total number of a given MTE that was performed and 

the total run time is included. For the Vertical Reposition, the time range is recorded for both a “Vertical 

Up” maneuver from a 5 ft to 10 ft and a “Vertical Down” maneuver from 10 ft to 5 ft with the downward 

maneuver listed first as that was first step in the task. Similarly, for the Lateral Sidestep, runs were 

separated by the direction in which the vehicle stepped, as indicated by “Sidestep Left” or “Sidestep 

Right.” These were listed in the order in which the pilot performed the maneuver with all but Pilot 2 

stepping to the right first. 

If a set of MTE runs were recorded over two or more Vicon data files for a single pilot and vehicle rather 

than one, the time entries for each run are followed by an integer in parentheses (e.g., (1)) indicating in 

which file they are stored. 

Table 46: Vicon Data Run Logs 

Pilot 1 

Vehicle Tarot 650 Sport 

Task Vertical Down Vertical Up Landing Hover Sidestep Right Sidestep Left 

Number of Runs 6 5 4 2 4 4 

Times of Runs 27.5-34.5 40-50 40-72 69-101 83.5-90.5 97.5-105 

(sec) 55.5-69.5 75-85 79-107 124.5-166 115-127 134.5-140 

  91-102 105.5-117 115-151   151-163 172-183.5 

  121.5-129.5 135.5-143.5 157-187   196-209.5 217.5-228 

  147-157.5 162-172.7         

  177.5-187           

Total Runtime 206.2 204.6 184.1 258.6 

          

 
 

Pilot 2 

Vehicle Tarot 650 Sport 

Task Vertical Down Vertical Up Landing Hover Sidestep Left Sidestep Right 

Number of Runs 4 3 0 2+2 3+3 2+3 

Times of Runs 26-36 41.5-51.5   63-93 (1) 46.5-72 (1) 84-102 (1) 

(sec) 55.5-65 67.5-81.5   110-148 (1) 109.5-124.5 (1) 134-154 (1) 

  85.5-98 100-110   46-83 (2) 164-178 (1)   

  114-122.5     98-126 (2) 68-86 (2) 98-113.5 (2) 

          125.5-137.5 (2) 146-163 (2) 

          189-196 (2) 206-214 (2) 

Total Runtime 142   173.6 (1) 204.3 (1) 

      149.6 (2) 242.5 (2) 

Pilot 2 

Vehicle Tarot X6-2 

Task Vertical Down Vertical Up Landing Hover Sidestep Right Sidestep Left 

Number of Runs 4 3 3 1+2 3 2 
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Times of Runs 15-27 33.5-48 10-40 83.5-128.5 (1) 35-68 75.5-85 

(sec) 51.5-68.5 72.5-90 52-78 67-100 (2) 92.5-105.5 112-125 

  96.5-119.5 123-142 86-119 123-171 (2) 131.5-147.5   

  146-163           

              

              

Total Runtime 203.9 135.5 143.8 (1) 173.8 

      192.3 (2)   

 

Pilot 3 

Vehicle Tarot 650 Sport 

Task Vertical Down Vertical Up Landing Hover Sidestep Right Sidestep Left 

Number of Runs 4 3 3 3+2 3 2 

Times of Runs 30.5-43.5 49-59.5 24-58 66.5-78 (1) 34-36 44-61 

(sec) 65.5-76.5 80-89 66.5-101.5 98-125 (1) 69.5-81.5 88.5-100 

  93.5-103.5 106.5-115.5 109-144 162-187 (1) 111-122   

  120.5-128     88-101 (2)     

        128.5-162 (2)     

              

Total Runtime 153.9 155 200.3 (1) 147.8 

      182.2 (2)   

 

Pilot 3 

Vehicle Tarot X6-2 

Task Vertical Down Vertical Up Landing Hover Sidestep Right Sidestep Left 

Number of Runs 3 2 1+2 0 3 2 

Times of Runs 32.5-55 64-72 33.5-90.5 (1)   65.5-70.5 82.5-89.5 

(sec) 84.5-100 116-127 38-93.5 (2)   103.5-107.5 116-125.5 

  135-151   111-183 (2)   138-151   

              

              

              

Total Runtime 177.4 106.7 (1)   182.4 

    203.1 (2)     
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2. Performance Metrics 

Based on the MTE definitions in Appendix C, performance metrics can be defined based on the vehicle’s 

position (i.e., X, Y, and Z coordinates), attitude (i.e., roll, pitch and heading angles), and velocity. Since 

the Vicon data does not include velocity, it was derived by differentiating aircraft position. Performance 

metrics include % Desired performance and % Adequate performance. From this collection of data, it is 

possible to assess the performance of each MTE and determine if and how the MTEs should be improved. 

To visualize these data with the desired and adequate regions and to calculate performance, ten separate 

plots were created for each MTE run. An example of these for a Precision Hover MTE run are shown in 

Figure 189 through Figure 192. Figure 189 shows aircraft position with respect to time; Figure 190 shows 

aircraft attitude with respect to time; Figure 191 shows aircraft velocity with respect to time; and Figure 

192 shows the inertial position of the aircraft for the full set of runs, or batch, for the MTE.  

In general, the subfigures in Figure 189 through Figure 191 follow the same pattern to show the desired 

and adequate regions. The desired performance region is defined by an opaque grey region outlined in 

solid black lines. The adequate performance region is defined by dashed lines. The flight data is shown in 

blue, and the performance test range for the run is defined by dashed red lines. 

 

a) Altitude 

 

b) X Position 

 

c) Y Position 

Figure 189: Tarot 650 Sport Precision Hover MTE, Pilot 1, Run 1 – Positions 
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a) Roll Attitude 

 

b) Pitch Attitude 

 

c) Heading Angle 

Figure 190: Tarot 650 Sport Precision Hover MTE, Pilot 1, Run 1 – Attitudes 
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a) Longitudinal Velocity 

 

b) Lateral Velocity 

 

c) Vertical Velocity 

Figure 191: Tarot 650 Sport Precision Hover MTE, Pilot 1, Run 1 – Velocities 
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Figure 192: Tarot 650 Sport Precision Hover MTE, Pilot 1, Batch 1 – Inertial Position 

Calculating the percentage of time spent within preset adequate and desired bounds for a given aircraft 

state is a standard method of determining task performance. This is calculated by assessing each data 

point over the test performance range to determine if it falls within the desired or adequate and dividing 

the number of points within each by the total number of data points. If the pilot keeps the aircraft within 

the desired bounds more than 50% of the time for the task, then the overall task performance is 

considered desired. If less than 50% is within the desired bounds, but more than 50% is within the 

adequate bounds, then task performance is adequate. If less than 50% is within the adequate bounds, then 

the pilot fails in task performance.   

As a detailed example of this, consider the X position data in Figure 6b. These data show Pilot 1’s first 

attempt at the Precision Hover MTE with the Tarot 650 Sport. The pilot’s station-keeping biased in the 

negative X direction resulting in a desired performance of 69.32%, adequate performance of 97.41%, and 

thus an overall performance of Adequate.   

3. Analysis 

a. Precision Hover MTE 

To execute the precision hover task, pilots were instructed to start the vehicle and begin hovering at 5 

feet. The pilot then executed a step to the left while maintaining the longitudinal position and altitude. 

The pilot immediately stepped the vehicle back to the original lateral position and to hover above the 

origin for approximately thirty seconds. This MTE was repeated several times, and then the pilot landed 

the vehicle at its original position (see example in Figure 193).  

From the complete set of runs, it is observed that the pilots were adept at minimizing lateral deviation 

during the hover task as seen in Y-position for each Hover MTE run. This is characterized by pilot 

maintaining the aircraft in hover close to the center of the desired region with few excursions beyond the 

desired bounds. Never did a pilot deviate beyond the adequate performance bounds.  

However, secondary tasks proved to be challenging, especially that of maintaining longitudinal position. 

Due to the pilots’ position behind the aircraft, accuracy was limited to the lateral and vertical directions. 

As such, deviations in longitudinal position either forward or aft were common and usually resulted in the 

pilot maintaining an incorrect longitudinal position for the duration of the maneuver. The pilots were 

skilled at keeping a constant altitude for the duration of each Hover MTE as seen in the relevant altitude 

figures. Most pilots have a continuously smooth and centered altitude within the desired region. 
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Figure 193: Tarot 650 Sport Precision Hover MTE, Pilot 1, Batch 1 – Inertial Position 

1. Qualitative Individual Pilot Assessment 

Pilot 1 was the most skilled of the three pilots in the Hover MTE, which can be confirmed by comparing 

his performance for each hover maneuver against the other two pilots. The data are noticeably smoother 

with fewer large deviations from the objective. For each run, Pilot 1 maintained the vehicle’s vertical and 

lateral position within the desired bounds. Although slight, a small perturbation in altitude often 

accompanied the lateral sidestep from the origin but was quickly corrected. A similar trend appeared in 

the longitudinal position of the vehicle. The left sidestep was accompanied by a forward deviation that 

was corrected by the time the aircraft returned to hover. Like the other pilots, he was susceptible to 

longitudinal deviations forward without correction until landing.  

Pilot 2 was adept at the main task, executing a precision hover for each vehicle. He maintained the hover 

in the desired region for all but a second of the time performing the maneuver. The secondary tasks 

proved more difficult as there were many longitudinal excursions with a few altitude overcorrections. The 

most prominent such excursion was an inadvertent 7-ft aft deviation during the second hover run. These 

issues were amplified when piloting the Tarot X6-2, though this was to be expected considering the larger 

weight and higher difficulty in precisely maneuvering the vehicle. 

Pilot 3 had some difficulty in performing the Hover MTE in his first flight. He was the only pilot to 

deviate outside the desired bounds for an extended period and had a few large excursions in longitudinal 

position. Additionally, during the last hover in the first flight, a large vertical deviation occurred without 

explanation as there is no coinciding video from which to glean such information. Unfortunately, though 

Pilot 3 completed the Hover MTE multiple times with the Tarot X6-2, very little data was recorded, and 

that which remained was heavily corrupted. The only significant data for Pilot 3 flying the Tarot X6-2 are 

from the video of each flight.  This video shows the bulkier vehicle proved challenging for him to fly. 

There were many deviations in all directions with him able to maintain at least an adequate score for only 

the lateral position during the hover. 

2. Performance 

Tables of the pilots’ performance for the Precision Hover MTE are included in Table 47 through Table 

51. The tables contain the desired and adequate scores for altitude, X-position, Y-position, and heading 

angle for each pilots’ individual run within each MTE. The pilots had high performance scores for 

altitude, lateral position, and heading angle. For these three performance measures, the percent values 
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never differed by more than 10%. The most difficult task was keeping the vehicle’s longitudinal position 

in the desired region.  

Table 51 lists the averages for the data in Table 47 through Table 50. The lowest average pilot 

performance score for the desired region is just 18.23% and the highest is 36.78%. However, the highest 

adequate score for the longitudinal performance measurement is 92.11% with a low of 29.91%. The pilots 

are consistent in which axis is easy or difficult to meet performance requirements. From the data herein, it 

is apparent that maintaining longitudinal position of the vehicle in a small region is a challenging task 

whereas maintaining altitude, lateral position, and heading is fairly easy. 

The only pilot to fly both the Tarot 650 Sport and the Tarot X6-2 with data recorded was Pilot 2, thus 

making it difficult to make comparisons between the relative difficulty of performing the MTE with the 

vehicles. However, Pilot 2 kept the aircraft within the desired bounds for altitude, lateral position, and 

heading 7% more of the time with the Tarot 650 Sport than with the larger Tarot X6-2 and was 6% more 

successful at maintaining a desired longitudinal position.  

Table 47: Precision Hover MTE Performance – Pilot 1, Tarot 650 Sport 

Pilot: 1 Task: Hover 

Run: 1 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 69.32 97.41 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 1 Task: Hover 

Run: 2 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 4.23 86.81 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

  

Table 48: Precision Hover MTE Performance – Pilot 2, Tarot 650 Sport  

Pilot: 2 Task: Hover 

Run: 1 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 95.03 100.00 

X Position 45.83 79.25 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 2 Task: Hover 

Run: 2 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 90.54 100.00 

X Position 13.02 64.87 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

  

Pilot: 2 Task: Hover 

Run: 3 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 98.66 100.00 

X Position 16.47 32.14 

Y Position 100.00 100.00 

Heading Angle 99.97 100.00 
 

Pilot: 2 Task: Hover 

Run: 4 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 88.70 100.00 

X Position 9.13 27.13 

Y Position 100.00 100.00 

Heading Angle 95.32 100.00 
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Table 49: Precision Hover MTE Performance – Pilot 3, Tarot 650 Sport  

Pilot: 3 Task: Hover 

Run: 1 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 91.13 100.00 

X Position 0.00 7.83 

Y Position 61.91 100.00 

Heading Angle 26.30 61.65 
 

Pilot: 3 Task: Hover 

Run: 2 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 98.20 100.00 

X Position 0.00 0.00 

Y Position 100.00 100.00 

Heading Angle 85.69 100.00 
 

  

Pilot: 3 Task: Hover 

Run: 3 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 12.98 40.76 

X Position 26.16 44.04 

Y Position 82.90 100.00 

Heading Angle 98.60 100.00 
 

Pilot: 3 Task: Hover 

Run: 4 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 81.58 100.00 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

  

Pilot: 3 Task: Hover 

Run: 5 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 23.70 

Y Position 100.00 100.00 

Heading Angle 95.91 100.00 
 

 

Table 50: Precision Hover MTE Performance – Pilot 2, Tarot X6-2  

Pilot: 2 Task: Hover 

Run: 1 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 94.06 100.00 

X Position 11.90 26.08 

Y Position 100.00 100.00 

Heading Angle 96.02 100.00 
 

Pilot: 2 Task: Hover 

Run: 2 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 74.82 100.00 

X Position 34.12 68.21 

Y Position 99.03 100.00 

Heading Angle 59.91 100.00 
 

  

Pilot: 2 Task: Hover 

Run: 3 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 88.52 100.00 

X Position 0.00 10.66 

Y Position 100.00 100.00 

Heading Angle 97.68 100.00 
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Table 51: Precision Hover MTE Pilot Performance Averages 

Average Pilot Performance for Vertical Reposition MTE 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1 100.00 100.00 36.78 92.11 100.00 100.00 100.00 100.00 

2 89.52 100.00 18.23 42.91 99.84 100.00 91.68 100.00 

3 80.46 88.15 21.55 35.11 88.96 100.00 81.30 92.33 

AVG 89.99 96.05 25.52 56.71 96.27 100.00 90.99 97.44 

  

Average Pilot Performance for Vertical Reposition MTE Using Tarot 650 Sport 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1 100.00 100.00 36.78 92.11 100.00 100.00 100.00 100.00 

2 93.23 100.00 21.11 50.85 100.00 100.00 98.82 100.00 

3 80.46 88.15 21.55 35.11 88.96 100.00 81.30 92.33 

AVG 91.23 96.05 26.48 59.36 96.32 100.00 93.37 97.44 

  

Average Pilot Performance for Vertical Reposition MTE Using Tarot 650 Sport w/o Pilot 1 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1                 

2 100.00 100.00 17.33 34.07 100.00 100.00 99.65 100.00 

3 85.54 98.62 0.00 41.56 96.01 100.00 97.25 100.00 

AVG 92.77 99.31 8.66 37.81 98.01 100.00 98.45 100.00 

  

Average Pilot Performance for Vertical Reposition MTE Using Tarot X6-2 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1                 

2 85.80 100.00 15.34 34.98 99.68 100.00 84.54 100.00 

3                 

AVG 85.80 100.00 15.34 34.98 99.68 100.00 84.54 100.00 
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b. Lateral Sidestep MTE 

For the Lateral Sidestep MTE, the pilots were instructed to fly the vehicle laterally in one direction, 

capture and hold a static position, then sidestep in the other direction to capture and hold the original 

position. In most cases, the pilot first flew the aircraft to a hover board approximately 6.5 feet to the right 

of the takeoff point and then sidestepped towards a hover board about 15 feet to the left of the takeoff 

point. The lateral sidestep was then repeated several times (see example in Figure 194). Most flights 

consisted of 5 or 6 sidesteps with Pilot 1 performing 8. The time spent hovering in position after 

completing the lateral movement was short, lasting 10-25 seconds depending on the preference of the 

pilot. In general, the pilots had a higher degree of success with the right sidestep.  

The pilots were effective at maintaining desired performance during the right lateral maneuver. They also 

performed the left sidestep well, though they were prone to under- or overshooting the target. This under- 

and overshooting the target can be attributed to depth perception and line-of-sight issues. The right 

sidestep end position was much closer to the pilot making it easier to judge vehicle’s position relative to 

the hover board and adequate/desired bounds. In terms or maintaining altitude, the pilots had moderate 

success with small dips when beginning the sidestep. 

 

Figure 194: Tarot 650 Sport Lateral Sidestep MTE, Pilot 1, Batch 1 – Inertial Position 

1. Qualitative Individual Pilot Assessment 

Pilot 1 performed very well during each individual sidestep maneuver. He completed 8 different lateral 

repositions, starting by sidestepping to the right. Aside from the first left sidestep, he finished the entire 

run in the desired area. In the altitude portion of the task, he remained in the desired zone for the duration 

of the run but deviated by a few inches every time a lateral reposition was initiated. This deviation was 

then corrected during each quick hover at the sidestep point. For the longitudinal position, Pilot 1 was 

unable to complete the aft reposition 5 feet behind the origin, and instead held a very unsteady position 3-

4 feet behind. He was, however, able to return the vehicle to landing zone at the conclusion of the task.  

Pilot 2 faced some difficulty in performing sections of the sidestep maneuver. While piloting the Tarot 

650 Sport he made multiple altitude overcorrections and was unable to achieve a steady hover during any 

left lateral repositions. He found more success in the right sidestep maneuver, consistently achieving a 

desired position. He also attempted to perform a 5 foot aft reposition that was unsuccessful and resulted in 

erratic longitudinal position changes between 2 and 5 feet behind the origin. While piloting the Tarot X6-

2, he encountered many similar problems as he did with the Tarot 650 Sport, but with the additional 
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variable of increased air circulation. There was a glass panel near the right hoverboard which allowed the 

air circulation from the powerful hex rotors to bounce off it, disturbing the air around it causing 

fluctuations in altitude and lateral position. 

Pilot 3 proved to be adept at maintaining lateral positioning of each of his vehicles. Additionally, unlike 

the other two pilots, he was able to successfully perform the aft reposition five feet behind the origin.  

Despite the correct repositioning of the vehicle, Pilot 3 still exhibited similar oscillatory behavior in the 

longitudinal axis to Pilot 2, although his perturbations mostly fell within the desired and adequate areas. 

His performance piloting the Tarot 650 Sport and the Tarot X6-2 were very comparable, but 

understandably, the were more jarring and frequent movements during the Tarot X6-2 runs due to its 

bulkier size.  

2. Performance 

Tables of the pilots’ performance for the Lateral Sidestep MTE are included in Table 52 through Table 

57. In addition to containing similar information to the Hover MTE, each pilot was scored on their ability 

to maintain a desired or adequate altitude position during the translation from one sidestep to the next. 

Altitude, longitudinal position, lateral position, and heading angle were more coupled in the Lateral 

Sidestep MTE than in any other MTE. Pilots’ performance reflected more difficulty in precisely and 

accurately controlling the lateral position of the vehicle within the desired and adequate bounds, which is 

not seen in other the MTEs. They also had difficulty maintaining desired heading angle, another trend not 

seen in any other maneuver. 

When performance scores are separated as shown in Table 57, pilots excelled at staying in the desired 

region for altitude with a desired performance of 94.33% and an adequate performance of 99.94%. 

Holding altitude between hover positions was an easy task for the pilots with an average of 87% desired 

performance score with a near 100% adequate score. Lateral position was relatively easy for the pilots to 

control with a desired performance of 85.21% and an adequate performance of 96.95%. Average heading 

angle performance was 65.52% desired and 97.47% adequate. Longitudinal position performance was just 

39.08% desired and 70.87% adequate.  

Comparing the two vehicles, there are small differences in performance measures. In altitude during 

hover, the Tarot 650 Sport has a desired performance over 12% higher at 97.64% than the Tarot X6-2 at 

85.35%. In lateral position, the pilots achieved a higher desired performance with the Tarot X6-2 at 

87.83%, 10% higher than with the Tarot 650 Sport. However, this can be explained by Pilot 2’s poor 

performance flying the Tarot 650 Sport while Pilot 3 performed slightly worse with the Tarot X6-2. 

Heading angle performance was nearly identical between the two vehicles. This lack of consistency in 

one vehicle performing better than the other means that a claim cannot be made for an evidence-based 

difference in vehicle performance. 
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Table 52: Lateral Sidestep MTE Performance – Pilot 1, Tarot 650 Sport 

Pilot: 1 Task: Sidestep 

Run: 1 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 30.29 

Y Position 100.00 100.00 

Heading Angle 9.43 100.00 
 

Pilot: 1 Task: Sidestep 

Run: 2 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 19.32 

Y Position 37.44 100.00 

Heading Angle 51.50 100.00 
 

  

Pilot: 1 Task: Sidestep 

Run: 3 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 76.97 

Y Position 89.30 94.71 

Heading Angle 1.96 61.31 
 

Pilot: 1 Task: Sidestep 

Run: 4 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 74.45 100.00 

Y Position 100.00 100.00 

Heading Angle 34.45 100.00 
 

  

Pilot: 1 Task: Sidestep 

Run: 5 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 44.21 100.00 

Y Position 100.00 100.00 

Heading Angle 78.46 100.00 
 

Pilot: 1 Task: Sidestep 

Run: 6 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 100.00 100.00 

Y Position 95.52 100.00 

Heading Angle 0.00 95.35 
 

  

Pilot: 1 Task: Sidestep 

Run: 7 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 32.15 100.00 

Y Position 100.00 100.00 

Heading Angle 42.26 100.00 
 

Pilot: 1 Task: Sidestep 

Run: 8 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 100.00 100.00 

Y Position 100.00 100.00 

Heading Angle 0.00 100.00 
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Pilot: 1 Task: Sidestep 

Translation Alt. 

Hold 

Vehicle: Tarot 650 Sport 

Desired (%) Adequate (%) 

Altitude Run 1 100.00 100.00 

Altitude Run 2 100.00 100.00 

Altitude Run 3 100.00 100.00 

Altitude Run 4 100.00 100.00 

Altitude Run 5 100.00 100.00 

Altitude Run 6 100.00 100.00 

Altitude Run 7 100.00 100.00 

Altitude Run 8 100.00 100.00 

Altitude Run 9 100.00 100.00 
 

 

Pilot 1 Lateral Sidestep Direction Comparison 

Tarot 650 Sport 

  Desired (%) Adequate (%) 

AVG Right 62.96 91.78 

AVG Left 68.34 94.67 
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Table 53: Lateral Sidestep MTE Performance – Pilot 2, Tarot 650 Sport 

Pilot: 2 Task: Sidestep 

Run: 1 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 82.94 95.88 

X Position 14.75 46.84 

Y Position 45.02 83.96 

Heading Angle 99.45 100.00 
 

Pilot: 2 Task: Sidestep 

Run: 2 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 13.97 48.92 

Y Position 100.00 100.00 

Heading Angle 63.64 100.00 
 

  

Pilot: 2 Task: Sidestep 

Run: 3 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 18.77 32.37 

Y Position 38.97 95.73 

Heading Angle 73.03 100.00 
 

Pilot: 2 Task: Sidestep 

Run: 4 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 19.15 

Y Position 100.00 100.00 

Heading Angle 47.08 93.20 
 

  

Pilot: 2 Task: Sidestep 

Run: 5 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 28.14 

Y Position 29.46 99.64 

Heading Angle 100.00 100.00 
 

Pilot: 2 Task: Sidestep 

Run: 6 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 98.42 100.00 

X Position 21.14 45.22 

Y Position 33.78 91.72 

Heading Angle 99.94 100.00 
 

  

Pilot: 2 Task: Sidestep 

Run: 7 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 18.19 

Y Position 73.29 100.00 

Heading Angle 96.81 100.00 
 

Pilot: 2 Task: Sidestep 

Run: 8 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 0.00 

Y Position 0.00 9.00 

Heading Angle 100.00 100.00 
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Pilot: 2 Task: Sidestep 

Run: 9 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 83.18 100.00 

X Position 8.79 17.82 

Y Position 98.15 100.00 

Heading Angle 94.82 99.62 
 

Pilot: 2 Task: Sidestep 

Run: 10 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 0.00 

Y Position 0.00 46.86 

Heading Angle 100.00 100.00 
 

  

Pilot: 2 Task: Sidestep 

Run: 11 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 19.56 77.31 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

 

Pilot: 2 Task: Sidestep 

Translation Alt. 

Hold 

Vehicle: Tarot 650 Sport 

Desired (%) Adequate (%) 

Altitude Run 1 100.00 100.00 

Altitude Run 2 76.18 100.00 

Altitude Run 3 58.71 100.00 

Altitude Run 4 63.87 100.00 

Altitude Run 5 67.33 99.92 

Altitude Run 6 100.00 100.00 
 

Pilot: 2 Task: Sidestep 

Translation Alt. 

Hold 

Vehicle: Tarot 650 Sport 

Desired (%) Adequate (%) 

Altitude Run 7 100.00 100.00 

Altitude Run 8 62.16 100.00 

Altitude Run 9 85.71 100.00 

Altitude Run 

10 87.09 100.00 

Altitude Run 

11 100.00 100.00 

Altitude Run 

12 100.00 100.00 

Altitude Run 

13 40.97 100.00 
 

  

Pilot 2 Lateral Sidestep Direction Comparison 

Tarot 650 Sport 

  Desired (%) Adequate (%) 

AVG Right 60.94 74.94 

AVG Left 67.20 83.31 
 

 

  



 

 

 

 229 

Table 54: Lateral Sidestep MTE Performance – Pilot 3, Tarot 650 Sport 

Pilot: 3 Task: Sidestep 

Run: 1 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 100.00 100.00 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 3 Task: Sidestep 

Run: 2 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 92.56 100.00 

X Position 54.97 94.32 

Y Position 100.00 100.00 

Heading Angle 62.85 100.00 
 

  

Pilot: 3 Task: Sidestep 

Run: 3 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 37.42 100.00 

Y Position 100.00 100.00 

Heading Angle 36.21 92.92 
 

Pilot: 3 Task: Sidestep 

Run: 4 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 85.79 100.00 

Y Position 94.00 100.00 

Heading Angle 100.00 100.00 
 

 

Pilot: 3 Task: Sidestep 

Run: 5 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 86.92 100.00 

Y Position 100.00 100.00 

Heading Angle 86.96 100.00 
 

 

Pilot: 3 Task: Sidestep 

Translation Alt. 

Hold 

Vehicle: Tarot 650 Sport 

Desired (%) Adequate (%) 

Altitude Run 1 100.00 100.00 

Altitude Run 2 71.38 100.00 

Altitude Run 3 89.28 100.00 

Altitude Run 4 63.87 100.00 

Altitude Run 5 94.18 100.00 

Altitude Run 6 93.83 100.00 
 

  

Pilot 3 Lateral Sidestep Direction Comparison 

Tarot 650 Sport 

  Desired (%) Adequate (%) 

AVG Right 87.29 99.41 

AVG Left 84.53 99.04 
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Table 55: Lateral Sidestep MTE Performance – Pilot 2, Tarot X6-2 

Pilot: 2 Task: Sidestep 

Run: 1 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 98.09 100.00 

X Position 18.69 59.58 

Y Position 91.82 100.00 

Heading Angle 93.44 100.00 
 

Pilot: 2 Task: Sidestep 

Run: 2 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 22.42 

Y Position 54.42 93.84 

Heading Angle 100.00 100.00 
 

  

Pilot: 2 Task: Sidestep 

Run: 3 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 19.42 34.62 

Y Position 100.00 100.00 

Heading Angle 98.58 100.00 
 

Pilot: 2 Task: Sidestep 

Run: 4 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 36.42 80.23 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

  

Pilot: 2 Task: Sidestep 

Run: 5 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 94.22 100.00 

X Position 37.56 48.56 

Y Position 100.00 100.00 

Heading Angle 85.25 100.00 
 

  

Pilot: 2 Task: Sidestep 

Translation Alt. 

Hold 

Vehicle: Tarot X6-2 

Desired (%) Adequate (%) 

Altitude Run 1 100.00 100.00 

Altitude Run 2 100.00 100.00 

Altitude Run 3 100.00 100.00 

Altitude Run 4 100.00 100.00 

Altitude Run 5 100.00 100.00 

Altitude Run 6 100.00 100.00 
 

Pilot 2 Lateral Sidestep Direction Comparison 

Tarot X6-2 

  Desired (%) Adequate (%) 

AVG Right 78.09 86.90 

AVG Left 74.70 87.03 
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Table 56: Lateral Sidestep MTE Performance – Pilot 3, Tarot X6-2 

Pilot: 3 Task: Sidestep 

Run: 1 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 74.70 100.00 

X Position 22.30 66.70 

Y Position 100.00 100.00 

Heading Angle 0.00 88.70 
 

Pilot: 3 Task: Sidestep 

Run: 2 Vehicle: Tarot X6-2 

  

Desired 

(%) 

Adequate 

(%) 

Altitude 60.07 100.00 

X Position 50.93 100.00 

Y Position 83.36 100.00 

Heading 

Angle 94.79 100.00 
 

  

Pilot: 3 Task: Sidestep 

Run: 3 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 96.88 100.00 

X Position 59.88 100.00 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 3 Task: Sidestep 

Run: 4 Vehicle: Tarot X6-2 

  

Desired 

(%) 

Adequate 

(%) 

Altitude 29.56 100.00 

X Position 0.00 86.11 

Y Position 48.66 100.00 

Heading 

Angle 97.95 100.00 
 

  

Pilot: 3 Task: Sidestep 

Run: 5 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 96.77 100.00 

Y Position 100.00 100.00 

Heading Angle 93.92 100.00 
 

 

Pilot: 3 Task: Sidestep 

Translation Alt. 

Hold 

Vehicle: Tarot X6-2 

Desired (%) Adequate (%) 

Altitude Run 1 70.98 100.00 

Altitude Run 2 80.73 100.00 

Altitude Run 3 86.83 100.00 

Altitude Run 4 24.22 98.92 

Altitude Run 5 100.00 100.00 

Altitude Run 6 63.33 100.00 
 

Pilot 3 Lateral Sidestep Direction Comparison 

Tarot X6-2 

  Desired (%) Adequate (%) 

AVG Right 78.70 96.28 

AVG Left 62.27 97.87 
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Table 57: Lateral Sidestep MTE Pilot Performance Averages 

Average Pilot Performance for Lateral Sidestep MTE 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1 100.00 100.00 43.85 78.32 90.28 99.34 27.26 94.58 

2 97.62 99.81 15.62 39.72 72.75 91.52 92.03 99.67 

3 85.38 100.00 57.76 94.57 92.60 100.00 77.27 98.16 

AVG 94.33 99.94 39.08 70.87 85.21 96.95 65.52 97.47 
 

 

Average Pilot Performance for Lateral Sidestep MTE Using Tarot 650 Sport 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1 100.00 100.00 43.85 78.32 90.28 99.34 27.26 94.58 

2 96.78 99.63 8.82 30.36 56.24 84.27 88.62 99.35 

3 98.51 100.00 69.54 98.58 98.80 100.00 77.20 98.58 

AVG 98.43 99.88 40.74 69.09 81.78 94.53 64.36 97.50 
 

 

Average Pilot Performance for Lateral Sidestep MTE Using Tarot 650 Sport without Pilot 1 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1                 

2 96.78 99.63 8.82 30.36 56.24 84.27 88.62 99.35 

3 98.51 100.00 69.54 98.58 98.80 100.00 77.20 98.58 

AVG 97.64 99.81 39.18 64.47 77.52 92.13 82.91 98.97 
 

 

Average Pilot Performance for Lateral Sidestep MTE Using Tarot X6-2 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1                 

2 98.46 100.00 22.42 49.08 89.25 98.77 95.45 100.00 

3 72.24 100.00 45.97 90.56 86.40 100.00 77.33 97.74 

AVG 85.35 100.00 34.20 69.82 87.83 99.38 86.39 98.87 
 

 

Average Pilot Performance for Altitude Hold Translation 

Vehicle Desired (%) Adequate (%) 

Tarot 650 Sport 87.66 100.00 

Tarot X6-2 85.51 99.91 

Average 87.02 99.97 
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3. Left/Right Hover Performance 

When capturing and hovering at the left and right hover boards at the ends of the Lateral Sidestep MTE 

course, there is a noticeable difference in performance as listed in Table 58, though it is not consistent 

between aircraft. This is surprising since the left hover board is 15 ft from the pilot and the right hover 

board is only 5 ft from the pilot, which one would think would make the left more difficult to cue from. 

However, when flying the Tarot X6-2, there is a 10% difference in the average performance of hovering 

at the left hover board as compared to the right, which reflects the perceived difficulty in precisely 

capturing and hovering this aircraft at a distance. There is only a 3% difference when flying the Tarot 650 

Sport with capturing and hovering near the left hover having higher performance. This could be due to 

visual feedback and the faster dynamics of the smaller vehicle at close range compared to long range, but 

more data for more multi-rotor vehicles are needed to draw a confident conclusion.  

Table 58: Left/Right Hover Performance Averages 

Pilot Lateral Sidestep Direction Comparison Tarot 

650 Sport 

  Desired (%) Adequate (%) 

AVG Right 70.40 88.71 

AVG Left 73.36 92.34 
 

Pilot Lateral Sidestep Direction Comparison Tarot 

X6-2 

  Desired (%) Adequate (%) 

AVG Right 78.40 91.59 

AVG Left 68.49 92.45 
 

 

Pilot Lateral Sidestep Direction Comparison 

  Desired (%) Adequate (%) 

AVG Right 73.60 89.86 

AVG Left 71.41 92.38 
 

c. Vertical Reposition MTE 

For the Vertical Reposition MTE, the pilots were instructed to takeoff and stabilize in a hover for 5 

seconds relative to a hover board placed 5 ft above the ground. The pilots were then instructed to fly the 

vehicle ≥ 10 feet higher in altitude from the ground, the visual landmark for which was the top of the 

white portion of the large projector screen at the back of the AI. Due to the perspective of the pilot, this 

placed the aircraft ~10 ft above the ground. As such the requirement for the MTE was modified to 10 ft 

above the ground from the original 15 ft. The desired and adequate performance bounds relative to this 

point was kept the same. However, the altitude of the vehicle was highly influenced by the longitudinal 

position of the vehicle and the pilot’s line of sight. Once at this altitude the pilot stabilized the vehicle in a 

hover for 5 seconds and then descended back to the original hover position (see example in Figure 195).  

In general, the pilots executed the vertical reposition correctly and were able to return to the correct 

position in front of the lower hover board. This task appeared more difficult when flying the Tarot X6-2. 

Each pilot maintained precise control of the aircraft in the lateral plane, rarely straying beyond the desired 

bounds and never exiting the adequate bounds. However, as with the other tasks, maintaining a steady, 

accurate longitudinal position proved to be difficult, more so while flying the Tarot X6-2. 
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Figure 195: Tarot 650 Sport Vertical Reposition MTE, Pilot 1, Batch 1 – Inertial Position 

1. Qualitative Individual Pilot Assessment 

Pilot 1 consistently stayed within desired bounds for each Vertical Position MTE he performed. He had 

few lateral perturbations, barely moving to the left or right of the landing zone. He stabilized within the 

desired bounds during each of his 5 Vertical Reposition MTEs, although on his first and last runs, he 

overshot the peak altitude slightly. The ascent of the vehicle was usually accompanied by a slight forward 

movement, which was corrected during the descent of the vehicle.  

Pilot 2 was generally unsteady while performing this MTE, though he did attain the desired altitudes. He 

had difficulty in maintaining the aircraft’s longitudinal position with vertical movements often 

accompanied by an aft deviation and subsequent correction. The pilot had trouble capturing the peak 

altitude of 10 ft, often oscillating vertically about target point. This oscillation also occurred when 

capturing the lower altitude hover. However, he maintained lateral position precisely with only small 

deviations in either direction. Conversely, when flying the Tarot X6-2, the pilot precisely captured 

altitudes while exhibiting large aft deviations and maintaining a steady lateral position.  

Pilot 3 performed 5 vertical repositions to varying degrees of success. With the Tarot 650 Sport, vertical 

maneuvers mostly remained within the desired bounds with some deviations into the adequate region. As 

with the other pilots, lateral motion was kept to a minimum. The two runs flown with the Tarot X6-2 

showed very similar deviations in vertical and lateral position as compared to those flown with the Tarot 

650 Sport. However, the vehicle deviated aft at takeoff and the pilot maintained the longitudinal position 

>5 ft behind the origin until landing. With both vehicles, Pilot 3 failed to attain the initial stabilized hover 

at 5 ft and instead steadily gained altitude. He also had difficulty capturing the hover at 5 ft, usually 

undershooting to hover above the desired bounds. 

2. Performance 

The performance metrics for each run are listed in Table 59 through Table 63 with the averages listed in 

Table 64. Odd numbered runs represent the hover at 5 feet, and even numbered runs represent the vertical 

reposition to 10 feet. Altitude performance was captured at each height. In general, the pilots were very 

capable at flying the vehicles within the desired bounds for altitude, latitude position, and heading angles 

with an average desired performance across all pilots and vehicles of 94.46% and 100% adequate 

performance. Two pilots were unable to meet desired longitudinal position with an average desired 

performance of 25.76% and adequate performance of 42.74%. However, these data are skewed by the 

excellent performance of Pilot 1. If Pilot 1’s data are removed, the average desired performance is 0% and 
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the average adequate performance is 21.92%. This performance data is listed in Table 64. This maneuver 

overall seemed to have a larger impact on longitudinal position performance than the other maneuvers. 

For Pilots 2 and 3, this phenomenon occurred across the entire maneuver, both in the up and down 

vertical positions. Interestingly, for Pilot 1, aside from his first vertical reposition, was able to consistently 

maintain a desired longitudinal position in subsequent runs. However, during some of the repositions 

downward, he was unable or barely able maintain a desired position in the X direction. Much of the 

difficulty of the task for the pilots can be attributed to line of sight issues that worsen when flying a 

vehicle above eye level.  

Table 59: Vertical Reposition MTE Performance – Pilot 1, Tarot 650 Sport 

Pilot: 1 Task: Vertical 

Run: 1 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 100.00 100.00 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 1 Task: Vertical 

Run: 2 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 21.24 100.00 

Y Position 100.00 100.00 

Heading Angle 82.81 100.00 
 

  

Pilot: 1 Task: Vertical 

Run: 3 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 100.00 100.00 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 1 Task: Vertical 

Run: 4 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 100.00 100.00 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

  

Pilot: 1 Task: Vertical 

Run: 5 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 46.86 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 1 Task: Vertical 

Run: 6 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 100.00 100.00 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

  

Pilot: 1 Task: Vertical 

Run: 7 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 75.27 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 1 Task: Vertical 

Run: 8 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 87.88 100.00 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
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Pilot: 1 Task: Vertical 

Run: 9 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 9.24 100.00 

Y Position 100.00 100.00 

Heading Angle 83.04 100.00 
 

Pilot: 1 Task: Vertical 

Run: 10 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 94.81 100.00 

X Position 100.00 100.00 

Y Position 100.00 100.00 

Heading Angle 98.83 100.00 
 

 

Pilot: 1 Task: Vertical 

Run: 11 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 100.00 100.00 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
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Table 60: Vertical Reposition MTE Performance – Pilot 2, Tarot 650 Sport 

Pilot: 2 Task: Vertical 

Run: 1 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 1.10 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 2 Task: Vertical 

Run: 2 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 13.95 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

  

Pilot: 2 Task: Vertical 

Run: 3 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 68.83 89.15 

Y Position 100.00 100.00 

Heading Angle 97.58 100.00 
 

Pilot: 2 Task: Vertical 

Run: 4 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 41.16 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

  

Pilot: 2 Task: Vertical 

Run: 5 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 22.00 33.40 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 2 Task: Vertical 

Run: 6 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 0.00 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

  

Pilot: 2 Task: Vertical 

Run: 7 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 30.47 59.71 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
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Table 61: Vertical Reposition MTE Performance – Pilot 3, Tarot 650 Sport 

Pilot: 3 Task: Vertical 

Run: 1 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 55.67 90.31 

X Position 0.00 20.80 

Y Position 100.00 100.00 

Heading Angle 87.39 100.00 
 

Pilot: 3 Task: Vertical 

Run: 2 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 83.87 100.00 

X Position 0.00 0.00 

Y Position 72.09 100.00 

Heading Angle 100.00 100.00 
 

  

Pilot: 3 Task: Vertical 

Run: 3 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 75.14 100.00 

X Position 0.00 2.77 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 3 Task: Vertical 

Run: 4 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 92.73 100.00 

X Position 0.00 72.68 

Y Position 100.00 100.00 

Heading Angle 94.00 100.00 
 

  

Pilot: 3 Task: Vertical 

Run: 5 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 91.40 100.00 

X Position 0.00 69.85 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 3 Task: Vertical 

Run: 6 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 100.00 

Y Position 100.00 100.00 

Heading Angle 99.33 100.00 
 

 

Pilot: 3 Task: Vertical 

Run: 7 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 0.00 24.80 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
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Table 62: Vertical Reposition MTE Performance – Pilot 2, Tarot X6-2 

Pilot: 2 Task: Vertical 

Run: 1 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 100.00 100.00 

X Position 15.63 35.96 

Y Position 100.00 100.00 

Heading Angle 97.21 100.00 
 

Pilot: 2 Task: Vertical 

Run: 2 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 99.07 100.00 

X Position 0.00 13.31 

Y Position 100.00 100.00 

Heading Angle 99.72 100.00 
 

  

Pilot: 2 Task: Vertical 

Run: 3 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 93.44 100.00 

X Position 11.32 16.32 

Y Position 100.00 100.00 

Heading Angle 92.68 100.00 
 

Pilot: 2 Task: Vertical 

Run: 4 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 93.46 100.00 

X Position 0.00 0.00 

Y Position 100.00 100.00 

Heading Angle 47.69 99.97 
 

  

Pilot: 2 Task: Vertical 

Run: 5 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 88.35 100.00 

X Position 0.00 0.00 

Y Position 100.00 100.00 

Heading Angle 91.96 100.00 
 

Pilot: 2 Task: Vertical 

Run: 6 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 86.81 100.00 

X Position 0.00 0.00 

Y Position 90.66 100.00 

Heading Angle 94.31 100.00 
 

  

Pilot: 2 Task: Vertical 

Run: 7 Vehicle: Tarot X6-2 

 

Desired (%) Adequate (%) 

Altitude 92.53 100.00 

X Position 0.00 4.35 

Y Position 81.79 100.00 

Heading Angle 89.44 99.56 
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Table 63: Vertical Reposition MTE Performance – Pilot 3, Tarot X6-2 

Pilot: 3 Task: Vertical 

Run: 1 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 23.76 75.78 

X Position 0.00 8.67 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 3 Task: Vertical 

Run: 2 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 64.69 100.00 

X Position 0.00 0.00 

Y Position 100.00 100.00 

Heading Angle 87.25 100.00 
 

  

Pilot: 3 Task: Vertical 

Run: 3 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 65.84 100.00 

X Position 0.00 0.00 

Y Position 75.94 100.00 

Heading Angle 97.42 100.00 
 

Pilot: 3 Task: Vertical 

Run: 4 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 30.91 100.00 

X Position 0.00 0.00 

Y Position 100.00 100.00 

Heading Angle 99.95 100.00 
 

  

Pilot: 3 Task: Vertical 

Run: 5 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Altitude 93.63 100.00 

X Position 0.00 0.00 

Y Position 100.00 100.00 

Heading Angle 100.00 100.00 
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Table 64: Vertical Reposition MTE Pilot Performance Averages 

Average Pilot Performance for Vertical Reposition MTE 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1 99.53 100.00 65.31 92.92 100.00 100.00 96.79 100.00 

2 96.69 100.00 10.59 22.03 98.03 100.00 93.61 99.97 

3 70.65 99.31 0.00 20.78 95.60 100.00 97.09 100.00 

AVG 88.96 99.77 25.30 45.24 97.88 100.00 95.83 99.99 
 

 

Average Pilot Performance for Vertical Reposition MTE Using Tarot 650 Sport 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1 99.53 100.00 65.31 92.92 100.00 100.00 96.79 100.00 

2 100.00 100.00 17.33 34.07 100.00 100.00 99.65 100.00 

3 85.54 98.62 0.00 41.56 96.01 100.00 97.25 100.00 

AVG 95.02 99.54 27.54 56.18 98.67 100.00 97.90 100.00 
 

 

Average Pilot Performance for Vertical Reposition MTE Using Tarot 650 Sport w/o Pilot 1 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1                 

2 100.00 100.00 17.33 34.07 100.00 100.00 99.65 100.00 

3 85.54 98.62 0.00 41.56 96.01 100.00 97.25 100.00 

AVG 92.77 99.31 8.66 37.81 98.01 100.00 98.45 100.00 
 

 

Average Pilot Performance for Vertical Reposition MTE Using Tarot X6-2 

  Altitude Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1                 

2 93.38 100.00 3.85 9.99 96.06 100.00 87.57 99.93 

3 55.76 100.00 0.00 0.00 95.19 100.00 96.92 100.00 

AVG 74.57 100.00 1.92 5.00 95.63 100.00 92.25 99.97 
 

d. Landing MTE 

To execute the Landing MTE, the pilots were instructed to fly the vehicle above 10 ft, then gently land 

the vehicle at the same spot from which they took off, minimizing lateral and longitudinal deviations (see 

example in Figure 196). They were also required to limit vertical velocity at touchdown to ≤ 2 ft/s. Each 

pilot executed this MTE three or four times per vehicle. There was no requirement to capture or maintain 

a certain altitude as the focus was on the landing position.  

Each pilot had few or no problems maintaining lateral position with the vehicle, as expected considering 

the favorable line of sight. However, the pilots generally had issues maintaining the aircraft’s longitudinal 

positions with many runs exhibiting large excursions upwards of 10 ft from the landing zone. Although 
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each individual run featured at least an adequate touchdown vertical velocity, the pilots did have some 

difficulty in touching down with a vertical velocity below 2 ft/s. 

 

Figure 196: Tarot 650 Sport Landing MTE, Pilot 1, Batch 1 – Inertial Position 

1. Qualitative Individual Pilot Assessment 

Pilot 1 achieved at least adequate performance for each of his four landings. His only major excursion 

beyond the desired bounds was a touchdown vertical velocity that slightly exceeded 2 ft/s. For each 

individual Landing MTE, Pilot 1 flew the vehicle above the task definition recommendation of 10 ft 

before descending to land. He better maintained longitudinal position as compared to the other MTEs and 

never strayed more than 2 ft in any direction from the landing zone center. The only performance measure 

in any of the runs to not qualify as desired performance was the second landing that had a vertical 

velocity at touchdown just above 2 ft/s.  

Pilot 2 performed three landings for each vehicle; however, no data was recorded for him flying this MTE 

with the Tarot 650 Sport. The video of the flight shows these maneuvers and gives some idea of his 

performance flying this MTE with the Tarot 650 Sport. There are signs of deviations in both lateral and 

longitudinal position, such as during the second landing in which the vehicle moved towards the camera 

and to the right landing outside of the front left corner of the landing zone. As the vehicle landed, it 

bounced multiple times, indicating that vertical velocity was not ideal. His performance improves with the 

Tarot X6-2 with all landings inside the landing zone. Pilot 2 maintained a consistent lateral position and 

tended to fly the vehicle aft while ascending before correcting for the landing with the occasional 

overcorrection forward. 

Pilot 3 was competent flying the MTE with the Tarot 650 Sport but struggled with the Tarot X6-2. With 

the Tarot 650 Sport, he performed the Landing MTE three times with minimal lateral deviation and with 

longitudinal deviations after during the ascent that was corrected before landing. With the Tarot X6-2, 

this MTE proved to be a challenging task with the first run resulting in a longitudinal excursion aft over 

15 ft and a failed correction attempt that culminated in a landing 7 ft from the landing zone center. Much 

improvement was shown in the next two runs with a still present but less severe longitudinal excursion aft 

of 10 ft. In these two runs the excursion was successfully corrected, and the pilot landed the vehicle close 

to the landing zone center. In the first two runs, touchdown vertical velocity exceeded 2 ft/s, but it was 

within the desired bounds in the final landing run. 
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2. Performance 

The performance metrics for each run are listed in Table 65 through Table 68 with the averages listed in 

Table 69. For this maneuver, pilots had no altitude requirements but instead had to attempt to land with a 

touchdown of less than 2 fps. The pilots generally excelled in controlling lateral position and heading 

angle for both vehicles with high desired performance. The measure with the lowest and highest desired 

performance was lateral position with Tarot X6-2 of 70.43% and lateral position with the Tarot 650 Sport 

of 100%, respectively. The adequate performance for both vehicles in lateral position and heading angle 

was ≥ 95%. This high performance for lateral position and heading angle indicate that it was easy for the 

pilots to control these states performing this MTE. 

Controlling the vertical velocity when landing was difficult for the pilots with both vehicles. Since the 

performance assessment of landing vertical velocity is a discrete metric in which the pilot had Desired, 

Adequate, or Failed performance, a performance between 0-100% is irrelevant. However, to keep a 

consistent format and to be more easily compared to the other MTE performance measures, a percent 

desired/adequate performance was assigned. If the landing vertical velocity was within the desired 

bounds, the metric was assigned a 100% desired performance and 100% adequate performance. If the 

landing vertical velocity was outside the desired bounds but within the adequate bounds, the metric was 

assigned a 0% desired performance and 100% adequate performance. Finally, if the landing vertical 

velocity was beyond the adequate bounds, the metric was assigned a 0% desired performance and 0% 

adequate performance. Averaging these assigned values results in the performance averages listed in 

Table 24.  

On average across both vehicles, the pilots only met the desired landing vertical velocity requirements 

36.11% of the time but were always able meet the adequate requirements. This low desired performance 

measure is a direct result of the complete failure of Pilot 2 and Pilot 3 meeting the desired requirement 

when flying this MTE with the Tarot X6-2. There was no data recorded for Pilot 2 flying this MTE with 

the Tarot 650 Sport, but Pilot 3’s data for the two aircraft can be compared. Pilot 3 met the desired 

requirements when flying the Tarot 650 Sport 66.67% of the time, suggesting the Tarot X6-2 was more 

difficult than the Tarot 650 Sport to land slowly. 

Longitudinal position once again showed poor performance. The Tarot X6-2 had the lowest average for 

desired longitudinal position at just 20.74% while the Tarot 650 Sport had a still low desired performance 

of 53.85%. This implies that maintaining longitudinal position was easier for the Tarot 650 Sport than the 

Tarot X6-2, but there is not enough data to draw a meaningful conclusion. 
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Table 65: Landing MTE Performance – Pilot 1, Tarot 650 Sport 

Pilot: 1 Task: Landing 

Run: 1 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Landing Speed 100.00 100.00 

X Position 79.31 100.00 

Y Position 100.00 100.00 

Heading Angle 95.45 100.00 
 

Pilot: 1 Task: Landing 

Run: 2 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Landing Speed 0.00 100.00 

X Position 87.39 100.00 

Y Position 100.00 100.00 

Heading Angle 91.32 100.00 
 

  

Pilot: 1 Task: Landing 

Run: 3 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Landing Speed 100.00 100.00 

X Position 69.69 100.00 

Y Position 100.00 100.00 

Heading Angle 97.92 100.00 
 

Pilot: 1 Task: Landing 

Run: 4 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Landing Speed 100.00 100.00 

X Position 100.00 100.00 

Y Position 100.00 100.00 

Heading Angle 93.78 100.00 
 

 

Table 66: Landing MTE Performance – Pilot 3, Tarot 650 Sport 

Pilot: 3 Task: Landing 

Run: 1 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Landing Speed 100.00 100.00 

X Position 28.10 49.90 

Y Position 100.00 100.00 

Heading Angle 91.43 98.28 
 

Pilot: 3 Task: Landing 

Run: 2 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Landing Speed 0.00 100.00 

X Position 25.96 42.64 

Y Position 100.00 100.00 

Heading Angle 64.97 94.67 
 

  

Pilot: 3 Task: Landing 

Run: 3 Vehicle: Tarot 650 Sport 

  Desired (%) Adequate (%) 

Landing Speed 100.00 100.00 

X Position 16.76 43.04 

Y Position 100.00 100.00 

Heading Angle 76.23 96.86 
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Table 67: Landing MTE Performance – Pilot 2, Tarot X6-2 

Pilot: 2 Task: Landing 

Run: 1 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Landing Speed 0.00 100.00 

X Position 34.93 47.47 

Y Position 78.08 100.00 

Heading Angle 100.00 100.00 
 

Pilot: 2 Task: Landing 

Run: 2 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Landing Speed 0.00 100.00 

X Position 34.00 49.79 

Y Position 91.69 100.00 

Heading Angle 83.15 100.00 
 

  

Pilot: 2 Task: Landing 

Run: 3 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Landing Speed 0.00 100.00 

X Position 24.95 38.89 

Y Position 84.89 100.00 

Heading Angle 73.27 98.06 
 

 

Table 68: Landing MTE Performance – Pilot 3, Tarot X6-2 

Pilot: 3 Task: Landing 

Run: 1 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Landing Speed 0.00 100.00 

X Position 5.78 6.59 

Y Position 47.14 84.63 

Heading Angle 83.01 98.43 
 

Pilot: 3 Task: Landing 

Run: 2 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Landing Speed 100.00 100.00 

X Position 13.77 21.11 

Y Position 64.29 96.05 

Heading Angle 91.25 100.00 
 

  

Pilot: 3 Task: Landing 

Run: 3 Vehicle: Tarot X6-2 

  Desired (%) Adequate (%) 

Landing Speed 100.00 100.00 

X Position 11.02 19.25 

Y Position 56.49 89.51 

Heading Angle 66.85 86.49 
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Table 69: Landing MTE Pilot Performance Average 

Average Pilot Performance for Landing MTE 

  Landing Speed Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1 75.00 100.00 84.10 100.00 100.00 100.00 94.62 100.00 

2 0.00 100.00 31.30 45.38 84.89 100.00 85.48 99.35 

3 33.33 100.00 16.90 30.42 77.99 95.03 78.96 95.79 

AVG 36.11 100.00 44.10 58.60 87.63 98.34 86.35 98.38 
 

  

Average Pilot Performance for Landing MTE Using Tarot 650 Sport 

  Landing Speed Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1 75.00 100.00 84.10 100.00 100.00 100.00 94.62 100.00 

2                 

3 66.67 100.00 23.61 45.19 100.00 100.00 77.54 96.60 

AVG 70.83 100.00 53.85 72.60 100.00 100.00 86.08 98.30 
 

  

Average Pilot Performance for Landing MTE Using Tarot X6-2 

  Landing Speed Fore/Aft Position Lateral Position Heading Angle 

Pilot # Desired Adequate Desired Adequate Desired Adequate Desired Adequate 

1                 

2 0.00 100.00 31.30 45.38 84.89 100.00 85.48 99.35 

3 0.00 100.00 10.19 15.65 55.97 90.06 80.37 94.97 

AVG 0.00 100.00 20.74 30.52 70.43 95.03 82.92 97.16 
 

e. Heading Performance 

As listed in Table 70, heading angle performance during the Lateral Sidestep MTE were lower than any 

other maneuvers with a desired performance a full 13% lower than the next lowest performance, that for 

the Landing MTE. 

Table 70: Heading Angle Performance Averages 

  Desired Adequate 

Precision 

Hover 88.33 96.97 

Lateral 

Sidestep 72.09 97.95 

Vertical 

Reposition 93.83 100.00 

Landing 85.12 97.95 

 

This large difference was largely caused by Pilot 1’s performance of the Lateral Sidestep MTE. Pilot 1’s 

average desired performance for heading angle was 27.26% while the combined average of Pilot 2 and 

Pilot 3 was 82.91%, as shown in Table 12. Pilot 1 consistently performs better than the other two pilots 
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for all other performance measures across all the MTEs. This failure at maintaining heading angle is an 

anomaly if just comparing the quantitative performance of the pilots. However, investigating qualitative 

performance through the correlation of lateral position and heading angle for Pilot 1 for the Lateral 

Sidestep MTE (see Figure 197) sheds some light this anomaly. 

  
 

a) Pilot 1 

  
 

b) Pilot 3 

Figure 197: Juxtaposition of Heading Angle and Lateral Position 

As shown in Figure 197a, Pilot 1 has a clear tendency of skewing the heading angle of the vehicle during 

the lateral travel of the vehicle and holding that angle during the hover. In Figure 197b, Pilot 3 shows no 

piloting tendency and maintains the vehicle heading relatively constant throughout. This correlation 

suggests Pilot 1 either did not understand the requirements and actively maneuvered in this manner to 

perform the MTE or he was skewing the heading unconsciously and did not realize that he needed to 

correct for heading.  
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4. Pilot Responses 

After completing all four MTEs with the checkout vehicle, each piloted answered a debrief questionnaire 

the results of which are presented in Figure 198. The three pilots all agreed or strongly agreed that the 

MTEs were representative of an operational task element, well defined, and repeatable and easy to 

perform. They also agreed or strongly agreed that the MTEs had entry/exit conditions that were easy to 

establish and had course markers that were easy to follow. All agreed or strongly agreed that the MTEs 

effectively exposed aircraft characteristics and that the MTEs were valid for defining nominal 

performance. Note that one exception was that Pilot 3 neither agreed nor disagreed that the precision 

hover task was valid for defining nominal performance.  

D. CONCLUSIONS 

The purpose of this flight test was to determine the effectiveness of the mission task element (MTE) 

approach as a means to define sUAS nominal performance. The MTEs evaluated in the test program were 

precision hover, lateral sidestep, vertical reposition, and landing. From the qualitative results that included 

video recordings of each maneuver and pilot debrief questionnaires and the quantitative task performance 

results from the Vicon data, it was clearly demonstrated that the MTEs met the defined objectives. The 

main improvement necessary based on pilot feedback and evidence from the Vicon data is a visual marker 

to make it easier for pilots to determine their longitudinal fore/aft position. Otherwise the pilots proved 

capable of performing each task at least adequately, with less than adequate results caused mainly by pilot 

error, not the MTE requirements. 
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Legend: (Precision Hover, Vertical Reposition, Lateral 

Sidestep, Landing) 

Figure 198: Debrief Questionnaire Results 



 

 

 

 250 

REFERENCES 
 

49. Belcastro, C. M., D. H. Klyde, M. J. Logan, R. L. Newman, and J. V. Foster, “Experimental Aircraft 

Testing for Assessing the Safety of Unmanned Aircraft System Safety-Critical Operations,” AIAA-

2017-3274 presented at the AIAA Aviation Forum: 17th AIAA Aviation Technology, Integration, and 

Operations Conference, Denver, CO, 5-9 June 2017.  



 

 

 

 251 

Appendix E – Exploration of Dynamic Scaling 
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A. INTRODUCTION 

For piloted vehicles, there is decades of work to draw upon when assessing handling qualities (Ref. 50). It 

would be beneficial to the definition of handling qualities for UAS if elements of the piloted vehicle work 

could be transitioned to UAS, especially the sUAS that are of interest in this program. To this end, this 

working paper provides a way to compare dynamic modes of standard fixed wing, manned aircraft to that 

of small UAS. The comparison is done by scaling down a given manned aircraft using techniques that 

have been developed to carry out scaled model test flights for different aircraft designs (Refs. 51 and 52). 

This comparison supplements the work done in the area of UAS handling qualities as part of this NASA 

program. Furthermore, the scaling up of the sUAS dynamic characteristics was also explored. 

Handling qualities quantities including the Control Anticipation Parameter (CAP) and Aircraft Bandwidth 

are computed for the longitudinal dynamics and Aircraft Bandwidth for the lateral-directional dynamics 

for the UltraStick120 UAS belonging to UAV laboratory at the University of Minnesota (UMN). The 

dynamic model was provided by UMN, and modal requirements were computed for the open-loop, 

Aircraft Bandwidth parameters were computed for the closed-loop. For definitions of these parameters, 

see the above-referenced working paper.     

Since there is no database or compendium available that provides an acceptable range within which these 

parameters should fall for small UAS (sUAS), it is difficult to evaluate the handling qualities in terms of 

these traditional parameters. Therefore, in an effort to assess the handling qualities of UltraStick120, this 

working paper attempts to ‘scale down’ the parameters corresponding to a full-scale aircraft – the Cessna 

172. The model for the Cessna 172 is taken from Ref. 53. The dynamics of the Cessna 172 are considered 

a benchmark for this analysis, and therefore the dynamics of its scaled version may therefore be compared 

to UltraStick120. As shown in later sections, the UltraStick120 is determined at 22% scale of the Cessna 

172. Since the size, mass properties and flight conditions for the large-scale aircraft is very different from 

that of the UltraStick120, dynamic scaling has to be carried out as described in the sections ahead.  

Besides comparing the dynamics of UltraStick120 to that of the scaled version of Cessna 172, a 

comparison is also made within the UltraStick family of sUAS. UMN also provides the dynamic model 

for the UltraStick25e, which is a 66% scaled model of the UltraStick120. Thus, the availability of this 

model is used to provide a validation or ‘sanity check’ for this analysis. The logic here is that if the scaled 

Cessna dynamics do not compare favorably with UltraStick120, but the 120 and 25e compare well within 

themselves, it may be concluded that the differences between the Cessna and UltraStick platforms are due 

to different dynamics rather than flawed scaling process. To summarize, dynamics of Cessna 172 are 

scaled down to 22% of the original values and compared to those of UltraStick120; separately, 

UltraStick120 dynamics are scaled down 60% and compared to UltraStick25e as a validation/sanity check 

step. 

An alternate approach for evaluating the handling qualities of the UltraStick120 and 25e is also presented, 

where instead of scaling down the Cessna 172, dynamics of the UltraStick UAVs are scaled up. This is 

done to take advantage of existing handling qualities performance standards and requirements that have 

been established for Cessna-class aircraft. By scaling up different modal quantities of the UltraStick 

UAVs, a direct evaluation using the established standards is possible. This analysis is also presented in 

the following sections. 

B. FROUDE SCALING FOR DYNAMIC SIMILITUDE 

Since small-scaled models are often used to test different aircraft designs, they need to be built 

specifically to ensure so-called dynamic similitude. Dynamic similitude essentially means similar angular 

displacement and relative movement of different components after proportional amount of time between 

the scaled and actual aircraft. Unless scaled properly, test results from a scaled model does not provide 

any meaningful insights into the expected performance of the large-scale model. The scaling technique 

used for this purpose is called the Froude scaling. 
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Since the motion of an aircraft is dependent on its mass properties as well as flight conditions, the scaled 

models must feature properly scaled mass properties and must be flown in appropriate flight conditions. 

Assuming the linear scaling factor between an aircraft and its scaled model to be n (n < 1), Table 71 

provides the scaling factors of relevant quantities at sea-level. Here, σ stands for the ratio of air density at 

flight condition to that of sea level. 

Table 71: Froude Scaling Factors for Scaled Models 

Property Scaling Factor 

Linear Dimension n 

Area n2 

Weight/Mass n3/σ 

Moment of Inertia n5/σ 

Linear Velocity n1/2 

Relative Density (m/ρL3) 1 

Time n1/2 

Before comparing the dynamics of the UltraStick120 and the scaled version of the Cessna 172, validity of 

this exercise is checked by looking at the mass properties of the two aircraft. A good match between the 

mass properties of the UltraStick120 and scaled Cessna 172 indicates that Froude-scaled dynamics of the 

Cessna 172 will provide a reasonable benchmark for the UltraStick120.  

Since aspect ratios of the Cessna 172 differs from that of the UltraStick120, wingspan comparison of the 

two aircraft reveals a scaling factor of ns = 0.176, while the mean chord-based comparison gives a scaling 

factor of nc = 0.27. For this analysis, the scaling factor is assumed to be the average of these two values, 

i.e., n = 0.22. Furthermore, the Cessna 172 model available is for straight and level flight at an altitude of 

5000 ft (i.e., σ = 0.85) and an airspeed of 219 ft/s. These flight conditions are kept in mind for scaling 

purposes. The scaled mass properties of the Cessna 172 to the UltraStick120 are compared in Table 72 to 

see how close the Froude-scaled Cessna 172 is to the UltraStick120.   

Table 72: Comparison of UltraStick120 to the Froude-Scaled Cessna 172 

Property Cessna 172 22% Scaled Cessna 172 UltraStick120 Difference 

Mass (Kg) 1150.72 10.66 6-10 (nominal 7.411) 43.84% 

Ixx (Kg m2) 1285.3 0.768 0.857 10.4% 

Iyy (Kg m2) 1824.9 1.092 1.01 7.33% 

Izz (Kg m2) 2666.9 1.594 1.701 6.24% 

From Table 72 we can see that although the Froude-scaled mass of Cessna 172 is substantially more than 

that of the nominal mass of UltraStick120, the inertia properties match up very well. However, the 

maximum allowable mass of UltraStick120 matches closely to that of the Cessna 172 scaled value, which 

is encouraging. A number of factors such as payloads, absence of passenger weight, etc. can account for 

variations in overall mass.  

To further validate this scaling method for comparing the dynamics of different-sized aircraft the 

dynamics of the UltraStick25e, which is a 60% scaled model of UltraStick120 and whose models are 

available from UMN, was compared to the scaled-down values obtained from the UltraStick120. The 

comparison of mass properties is shown in Table 73 below. 
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Table 73: Mass properties comparison between UltraStick120 and 25e 

Property UltraStick120 Scaled 60% UltraStick25e 

Mass (Kg) 1.87 1.96 

Ixx (Kg m2) 0.0777 0.0715 

Iyy (Kg m2) 0.0916 0.864 

Izz (Kg m2) 0.154 0.153 

The mass properties for the 60% scaled UltraStick120 model align very well with those of UltraStick25e. 

Therefore, when comparing the dynamics of the Cessna 172 and UltraStick120, a comparison between 

120 and 25e will also be made to check whether the dynamics scale properly. This serves as an additional 

verification of the scaling procedure working as expected.  

From Table 71, time is scaled by a multiplication factor of n1/2. Consequently, frequency associated with 

any dynamic motion has to be scaled by n-1/2. This is the key factor used to obtain Froude-scaled 

frequencies for different modes for the Cessna 172 aircraft. 

C. FROUDE-SCALED DYNAMICS 

The dynamics of UltraStick120 is compared with the Cessna 172 aircraft, after scaling down the Cessna 

172 to the scale of the UltraStick120. For the Froude scaling to be satisfied, equivalent flight conditions 

must be ensured. Since the Cessna 172 model is available at straight and level flight, altitude 5000 ft and 

airspeed 219 ft/s, the airspeed for the scaled model at sea-level has to be computed according to Table 71, 

which works out to be 31.3 m/s. For a proper comparison, the bandwidth values for the UltraStick120 

must be recomputed at this airspeed.  

In addition, to compare the scaled down dynamics of UltraStick120 at 31.3 m/s to that of 25e, the scaled 

down airspeed of UltraStick25e comes out to be 24.25 m/s. Both longitudinal and lateral-directional 

dynamics are discussed in the following sub-sections. 

1. Longitudinal Dynamics 

The transfer function from elevator (δe) to pitch angle (θ) for the Cessna 172 is given as, 

 
  39.42 0.0597 2.044

[0.116,0.181][0.685,6.03]e






  (4) 

a. Longitudinal Modes Comparison 

We also compare the damping and frequencies of phugoid and short period modes for the Cessna 172 

scaled model and the UltraStick120.  

Table 74: Modal Frequencies and Damping Comparison (Long.) 

Aircraft Phugoid Short Period 

 Damping Frequency Damping Frequency 

Cessna 172 0.116 0.181 0.685 6.03 

Cessna 172 scaled 22% 0.116 0.386 0.685 12.85 

UltraStick120 0.246 0.396 0.76 12.8 

We can see from Table 74 that the frequencies match very well between the scaled values of Cessna 172 

and the UltraStick120. The damping for Phugoid mode does not match as closely as that for the short 
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period mode. Nevertheless, it may be concluded that the longitudinal dynamics of the UltraStick120 

meets the benchmark values set by the scaled Cessna 172 aircraft. 

In addition, we also compare the longitudinal modes of 60% scaled UltraStick120 and the UltraStick25e, 

as shown in Table 75. The comparison is very close, which is encouraging. 

 Table 75: Modal Frequencies and Damping Comparison (Long.), 120 & 25e 

Aircraft Phugoid Short Period 

 Damping Frequency Damping Frequency 

UltraStick120, scaled 60% 0.246 0.511 0.76 21.33 

UltraStick25e 0.428 0.514 0.759 21.95 

Table 75 shows that the excellent agreement in modal frequencies between the scaled Cessna 172 and 

UltraStick120 is not a one-off.  

2. Modal Flying Qualities Requirements (CAP) 

The Control Anticipation Parameter (CAP) represents the ability of the pilot to anticipate long-term 

changes in vertical accelerations based on his/her sense of initial pitch angular acceleration. It is defined 

as, 

 
2
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z
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where ωsp is the short period mode frequency and,  
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CAP as well as scaled CAP are computed for the Cessna 172 and the UltraStick120. The scaling factor, as 

mentioned earlier, is n-1/2. The results are shown in Table 76. 

Table 76: CAP Value Comparison 

Aircraft ωsp (rad/s) CAP (rad3/s2/g) 

Cessna 172 6.03 2.35 

Cessna 172 scaled 22% 12.85 10.68 

UltraStick120 12.8 5.98 

As can be seen, the UltraStick120 has ~60% of the CAP corresponding to a scaled Cessna 172 flying 

straight and level at 31.3 m/s. The 60% scaled value for UltraStick120 was also compared with the 

UltraStick25e, shown in Table 77. 

  Table 77: CAP Value Comparison (120 & 25e) 

Aircraft ωsp (rad/s) CAP (rad3/s2/g) 

UltraStick120 scaled 60% 21.33 9.96 

UltraStick25e 21.95 18.1 

Again, the CAP does not scale well, even though the short period mode frequency matches very well. 

This is in line with what was seen in Table 76 between the UltraStick120 and the scaled Cessna 172. 

Therefore, it cannot readily be concluded that the CAP for UltraStick120 is better/worse compared to that 

of the benchmark set by Cessna 172. 
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3. Lateral-Directional Dynamics 

We compare spiral, Dutch roll and roll subsidence modes for the UltraStick120 and the Cessna 172.  

Table 78: Modal Frequencies and Damping Comparison (Lateral-Directional)  

Aircraft Roll Spiral Dutch Roll 

 Damping Frequency Damping Frequency Damping Frequency 

Cessna 172 - 12.4 - 0.011 0.203 3.38 

Cessna 172 scaled 

22% 

- 26.44 - 0.0235 0.203 7.21 

UltraStick120 - 12.2 - 0.0304 0.292 5.44 

From Table 78 we see that though roll subsidence frequency does not match between UltraStick120 and 

Cessna 172, there is reasonable agreement between the other two modes. We also check for this in the 

comparison between UltraStick120 and 25e, shown in Table 79. 

Table 79: Modal Frequencies and Damping Comparison (Lateral-Directional), 120 & 25e  

Aircraft Roll Spiral Dutch Roll 

 Damping Frequency Damping Frequency Damping Frequency 

UltraStick120 scaled 

60% 

 15.75  0.0392 0.292 7.02 

UltraStick25e - 23 - 0.026 0.328 7.85 

We can see that the roll subsidence frequency does not match well between UltraStick25e and the scaled 

120 values either. However, the Dutch roll modes between the two aircraft are very close. This is again, in 

line with what is seen in Table 78. 

D. SCALING UP ANALYSIS FOR ULTRASTICK AIRCRAFT 

Froude scaling can also be used to scale up the modal quantities of the UltraStick120 and 25e to the scale 

of a small, lightweight aircraft similar to the Cessna 172. The advantage of scaling up these quantities is 

that standard performance requirements in terms of these quantities are available for the class of small, 

light aircraft (so called Class I), see Ref. 54. Therefore, by computing modal quantities of interest such as 

short period frequency and damping for the UltraStick aircraft and then scaling them up to the dimension 

of the Cessna 172, the handling qualities of the UltraStick series may be evaluated against the standard 

requirements. 

For the analysis presented in this section, nominal flight conditions are assumed for both UltraStick 

aircraft, as opposed to the ‘scaled down’ flight conditions considered in the previous sections. The 

intention is to evaluate the UAVs under their nominal flying conditions. For UltraStick120, steady level 

flight at 23 m/s and altitude of 100m is considered, while an airspeed of 17m/s is considered for 

UltraStick 25. Modal quantities for both UAVs are scaled up using scaling factors n120 = 4.54 and n25 = 

6.88 respectively that match the dimensions of Cessna 172.  

Data associated with Cessna 172 is also presented along with the scaled up results for the UltraStick 

aircraft. Since the Cessna 172 is considered to be a ‘well behaved’ design, it is used here for 

demonstrating how an actual Class I aircraft measures up with respect to the specifications. A direct 

comparison between Cessna 172 and the scaled up UAVs is not carried out, since the flight conditions do 

not scale appropriately. However, the Cessna 172 data serves as a useful ‘sanity check’, providing 

suitable context to the scaled-up data obtained for the UltraStick aircraft. 
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In Ref. 54, classification of different aircraft, flight phases and performance levels are as follows: 

1. Aircraft types: 4 classes of aircraft are defined:  

a. Class I: Small light aircraft (utility, observation etc.) 

b. Class II: Medium weight, low-to-medium maneuverability aircraft (search and rescue, 

light/medium transporter etc.) 

c. Class III: Large, heavy, low-to-medium maneuverability aircraft (heavy transporter, 

heavy bomber etc.) 

d. Class IV: High-maneuverability aircraft (Fighters, tactical reconnaissance, trainers) 

2. Three Flight phases are defined: 

a. Category A: Nonterminal flight phases that require maneuvering, precision tracking, or 

precise flight-path control (air-to-air combat, terrain following etc) 

b. Category B: Nonterminal flight phases accomplished using gradual maneuvers (climbing, 

cruise, loiter etc.) 

c. Category C: Terminal flight phases accomplished using gradual maneuvers, require 

accurate flight-path control (take-off, landing etc.) 

3. Three levels of performance defined: 

a. Level I: Satisfactory (flying qualities adequate for mission with minimal pilot 

compensation) 

b. Level II: Acceptable (flying qualities adequate for mission with increase in pilot load or 

decrease in mission effectiveness) 

c. Level III: Controllable (Flying qualities such that aircraft can be controlled in context of 

the mission Flight Phase with excessive pilot load, degradation of mission effectiveness) 

For this analysis, we seek to compare the scaled up modal quantities of the UltraStick UAVs to the 

standards provided for a Class I aircraft under Category B flight phase. The desired level of performance 

is of course, Level I. 

1. Longitudinal Dynamics 

Both phugoid and short period modes are evaluated for the UltraStick120 and 25e at their nominal flight 

conditions. The nominal, as well as scaled up values of damping and frequencies are provided in Table 80 

along with those for Cessna 172. 

 

 

 

 

 

 

 

Table 80: Longitudinal Modal Damping and Frequencies 

Aircraft Phugoid Short Period 
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Damping Freq. Damping Freq. 

UltraStick120 (23m/s) 0.21 0.48 0.75 9.48 

UltraStick25e (17m/s) 0.24 0.66 0.76 15.38 

Scaled UltraStick120 0.21 0.22 0.75 4.45 

Scaled UltraStick25e 0.24 0.25 0.76 7.21 

Cessna 172 0.11 0.18 0.68 6.03 

For phugoid mode, Ref. 54 states that the minimum requirements for phugoid damping (ζp) are: 

 Level I: ζp > 0.04 

 Level II: ζp > 0 

 Unstable phugoid acceptable, as long as time for amplitude to double (T2) > 55 seconds 

We can see that all the phugoid damping values listed in Table 80 satisfy the Level I criteria. For the short 

period mode, the frequency-related specifications are conveniently provided in terms of ωsp vs (n/α) 

graphs, where ωsp stands for short period mode frequency, n is the load factor and α is the angle of attack. 

The quantity (n/α) is computed as,  
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  (7) 

Where (1/Tθ2) is a zero in the (θ/δe) transfer function. Figure 199 shows the graph for scaled UltraStick 

UAVs as well as Cessna 172. 

 

Figure 199: Short period frequency specifications 

Figure 199 shows that the scaled up short period mode dynamics for both UltraStick aircraft fall within 

the Level I performance limits, therefore indicating satisfactory handling qualities. Short period damping 

requirements are shown in the next section along with flying qualities parameter CAP requirements. 

2. CAP Specifications 

Ref. 54 provides specifications for short period damping and CAP in terms of CAP vs ζsp graphs, where 

ζsp represents short period damping. The graph for the scaled UltraStick aircraft and Cessna 172 are 

shown in Figure 200. 
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Figure 200: CAP vs ζsp requirements short period mode 

As seen from Figure 200, the short period damping as well as CAP for all three aircraft (scaled 

UltraStick120, 25e and Cessna 172) lie within the Level I specifications. 

3. Lateral-Directional Dynamics  

Roll subsidence, spiral and Dutch roll modes are analyzed for both UltraStick aircraft and evaluated 

against the standards provided in Ref. 54. We also look at the Cessna 172 lateral-directional dynamics for 

validation purposes, as done in the previous subsections. 

a. Roll Subsidence 

For roll subsidence, the most convenient form of establishing performance requirements is by fixing an 

upper limit on the roll time constant (Tr) which is essentially the inverse of the frequency associated with 

roll subsidence mode. The maximum upper limits for Level 1 and Level 2 specifications are:  

 Level 1: Tr ≤ 1.4 

 Level 2: Tr ≤ 3 

Keeping these limits in mind, the roll time constants computed for UltraStick120 and 25e, their scaled-up 

values and Cessna 172 are presented in Table 81. 

Table 81: Roll Time Constant 

Aircraft Roll Time Constant (seconds) 

UltraStick120 0.109 

UltraStick25e 0.063 

Scaled UltraStick120 0.232 

Scaled UltraStick25e 0.164 

Cessna 172 0.08 

From Table 81, it can be seen that the roll time constants for all aircraft are significantly below the desired 

upper limit for Level 1 performance. This provides confidence in the ability of a UAV pilot to carry out 

precision roll commands in both of the UltraStick aircraft in a satisfactory manner. 
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b. Spiral Mode 

For the spiral mode, we consider time to double the amplitude (T2s) for evaluation purposes. Since it is 

required for T2s to be as high as possible, a lower limit for Levels 1, 2 and 3 is provided in Ref. 54 for T2s 

as:  

 Level 1: T2s ≥ 20 

 Level 2: T2s ≥ 8 

 Level 3: T2s ≥ 4 

The spiral mode is stable for the UltraStick and Cessna 172 cases. Thus, both of the UltraStick aircraft 

meet the required specifications for spiral mode, by definition, when scaled up to the dimensions of 

Cessna 172. 

c.  Dutch Roll Mode 

The Dutch roll mode damping and frequencies are obtained for both UltraStick aircraft and scaled up 

appropriately. Ref. 54 provides lower limits for both these quantities for performance Levels 1 and 2.  

Table 82: Dutch Roll Mode Damping and Frequencies 

Aircraft Damping Frequency (rad/s) 

UltraStick120 0.29 3.99 

UltraStick25e 0.33 5.59 

Scaled UltraStick120 0.29 1.87 

Scaled UltraStick25e 0.33 2.13 

Cessna 172 0.21 3.38 

 

 

Figure 201: Dutch Roll Mode Damping and Frequency Specifications 

From Table 82 and Figure 201, it can be seen that all the aircraft configurations clearly exceed the 

required specifications for Level I performance.  

4. Aircraft Bandwidth Specifications 

The scaled up values for pitch attitude bandwidth as well as roll attitude bandwidth for UltraStick120 and 

25 are also computed at the standard flight conditions. We also compute the phase delay τp for both 

UAVs, using elevator to pitch angle and aileron to bank angle transfer functions respectively. Using the 
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specifications for levels 1 & 2 provided in Ref. 55 for these parameters, the bandwidth properties of 

UltraStick UAVs can be evaluated. Figure 202 and Figure 203 show the scaled bandwidth properties of 

the UltraStick UAVs along with the specifications.  

 

Figure 202: Pitch Attitude Bandwidth and Phase Delay Specifications 

 

 

Figure 203: Roll Attitude Bandwidth and Phase Delay Specifications 

It can be seen that for both pitch and roll bandwidth properties (scaled), the UltraStick UAVs meet or 

exceed the specifications for level 1 performance, though the roll phase delay falls outside the level 1 

requirements.    

E.  CONCLUSIONS / FUTURE WORK 

The overall conclusion from these analyses is that the dynamics of UltraStick family of UAS is 

qualitatively very similar to the Cessna 172 aircraft. The mass properties scale well between the aircraft, 

and subsequently, modal frequencies and damping are shown to be qualitatively close under appropriate 

flight conditions. The Froude scaling process is also validated by scaling the UltraStick120 down by 66% 

and compared to the known dynamics of UltraStick25e.  
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The second part of the analysis involves scaling in the opposite direction, where the dynamics of both 

UltraStick UAVs are scaled up to the dimensions of the Cessna 172 aircraft. This analysis is primarily 

carried out in order to evaluate the flying/handling qualities of UltraStick120 and 25e using standards and 

requirements established for Cessna-sized (Class I) aircraft. The analysis shows that the UltraStick UAVs 

meet or exceed all specifications in longitudinal as well as lateral-directional handling qualities. 

In near future, this analysis (carried out for cruise – Category B) can be extended to Category C flight 

conditions that include landing and take-off procedures as well. Further research using data from different 

UAVs and manned aircraft can help establish Froude-scaling based analysis as an important step for 

evaluating handling qualities for small UAS. 
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