NASA/TM-2020-220568/Volume II/Part 1

Nondestructive Evaluation (NDE) Methods and Capabilities Handbook

Volume II Appendices — Appendix A – Appendix D

Patricia A. Howell, Editor Langley Research Center, Hampton, Virginia

APPROVED FOR PUBLIC RELEASE

February 2020

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at <u>http://www.sti.nasa.gov</u>
- E-mail your question to <u>help@sti.nasa.gov</u>
- Phone the NASA STI Information Desk at 757-864-9658

• Write to: NASA STI Information Desk Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199

NASA/TM-2020-220568/Volume II/Part 1

Nondestructive Evaluation (NDE) Methods and Capabilities Handbook

Volume II Appendices — Appendix A – Appendix D

Patricia A. Howell, Editor Langley Research Center, Hampton, Virginia

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23681-2199 APPROVED FOR PUBLIC RELEASE

February 2020

The material is based upon work supported by NASA under Award Nos. NNL09AA00A and 80LARC17C0004

The use of trademarks or names of manufacturers in the report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199 Fax: 757-864-6500

Table of Contents

	NASA Advanced Composites Project NDE – State of the Practice Report	
	ction	
	ve Summary	
•	Design	
•	Results	
A.4.1	Respondent Information	
A.4.2	Recommendations	
A.5 Next St	eps	11
Appendix B	Appendix B Overview of Standards: Photos and Descriptions – Listed by Defect 13	Туре
B.1 Porosity	Ι	14
B.1.1	Porosity in Radii	14
B.1.2	Porosity in Step or Flat Panels	17
B.1.3	Porosity in Wedges	
B.1.4	Porosity in Woven Composites	20
B.2 FOD an	d Inclusion	21
B.2.1	FOD and Inclusion	21
B.3 Delamin	nations	21
B.3.1	Delaminations at Radii (14 w/ multiple delams at different depths – GE & Boeing)	21
B.3.2	Delaminations In Flat or Step Panels (1 step GE; 10 'S' panels Boeing)	
B.3.3	Delamination in Wedge Panels	
B.3.4	Delaminations in Woven Composites	
B.3.5	Delamination in Woven Flange	32
B.3.6	Flange Baseline	
B.4 AFP Fil	per Defects (wringles, tow snags)	
B .4.1	Tow Defects in AFP (automated fiber placement) composites (twists, folds, laps & 33	
B.4.2	Bridging Joggle in AFP	35
B.4.3	Detection of Tow Orientation in AFP Composite	
	efects (wrinkles, tow snags)	
B.5.1	Detection of Fiber Wrinkling in Flat Panels	
B.5.2	Detection of Wrinkling in Radii	
B.5.3	Fabric SNA in Woven Composites	
B.5.4	Snag in Woven Flange	
B.6 Bond St	6	
B.6.1	Mold Release	
	Damage	
B.7.1	Static Impact	
	-	
Appendix C	Round-Robin Test Matrix	
	Robin Testing	
C.1.1	Introduction	
C.2 Test Ma	ıtrix	44
Appendix D	Manufacturing and Design Documents and Validation Reports from IDIQ	54
D.1 Manufac	cturing Information for NDE Standards Provided by Consortium Member #1	54
D.1.1	Wrinkle specimens	
D.1.2	S-Curve panels with imbedded inserts Partner #1	
D.2 Manufac	cturing Information for NDE Standards Provided by Consortium Member #2	

D.2.1 Baseline	e, Defect and Porosity in Wedges and Flat Panels	72
	formation for NDE Standards Provided by Consortium Member #3	
	effects – twisted tows, missing tows, gaps and laps	
	inel	
	/ Panels	
	formation for NDE Standards Provided by Consortium Member #4	
	Specimens #81-98	
	formation for NDE Standards Provided by Consortium Member #5	
	eliverables	
	cement/Resin System	172
	n Bag Lay-up (Figure D.5-1)	
	tion Method – VaRTM	
D.5.5 Cure Cy	vcle	175
	/iscosity Profile - 310 °F	
	Manufacturing	
	ion Data	
	nformation for NDE Standards Provided by Consortium Member #6	
List of Figures		
6	e use of NDT methods average response for fabrication and in-service NDT	
0	ents.	5
	g averaged across NDT Technicians from 1 to 7, the frequency of use of NDT	
0	s used on the structures fabricated or inspected.	6
	icy of occurrence, according to NDT Technicians, for each defect type that is	0
ē ,	ed including manufacturing and in-service composite structures.	7
	e difficulty of inspection according to Engineers and Managers who work in	••• /
	cturing or in-service NDT.	7
	that non-NDT engineers and non-NDT R&D personnel are concerned about	
•	design, test, analysis or fabrication roles.	8
	areas of NDT development according to NDT and manufacturing engineers	
	areas of NDT development, according to NDT R&D managers and	
6	ners.	9
	areas of NDT development according to non-NDT engineers and non-NDT	
	ersonnel.	. 10
Figure D.21. Standar	d cure cycle	.72
Figure D.2-2. Medium	n porosity cure cycle	.73
	prosity cure cycle	
	g orientation of NASA-S-D delamination specimen.	
	(left) and Gate (4) PEUT scan results from NASA-S-D specimen	
Figure D.2-6. Images	of NASA-S-D step specimen.	.77
Figure D.2-7. Scannin	g orientation of NASA-S-MP porosity specimen.	.79
Figure D.2-8. Gate 2 I	PEUT scan results from NASA-S-MP porosity specimen.	. 80
	of NASA-S-MP porosity specimen.	

Figure D.2-10.	Scanning orientation of NASA-S-HP porosity specimen.	
Figure D.2-11.	Gate 2 PEUT scan results from NASA-S-HP porosity specimen	
Figure D.2-12.	Images of NASA-S-HP porosity specimen	
Figure D.2-13.	Scan orientation for NASA-W-5D wedge specimen.	
Figure D.2-14.	Gate 2 scan results of NASA-W-5D wedge specimen.	
Figure D.2-15.	Images of NASA-W-5D wedge specimen.	
Figure D.2-16.	Scan orientation for NASA-W-20D wedge specimen.	91
Figure D.2-17.	PEUT scan results of NASA-W-20D wedge specimen.	
-		

Figure D.2-18.	Dimensions of NASA-W-20D wedge specimen.	92
Figure D.2-19.	Images of NASA-W-20D wedge specimen.	93
Figure D.2-20.	Scan orientation for NASA-W-35D wedge specimen.	95
Figure D.2-21.	PEUT scan results from (a, upper left) Gate 1, (b, upper right) Gate 2, (c, lower left)	
	Gate 3, (d, lower right) and Gate 4.	
	Dimensions of NASA-W-35D wedge specimen.	
	Images of NASA-W-35D wedge specimen.	
	Scanning orientation of NASA-RP-01D delamination specimen	
	Gate 6 PEUT scan results of NASA-RP-01D specimen	
•	Gate 7 PEUT scan results of NASA-RP-01D specimen	
	Photos of NASA-RP-01D specimen.	102
Figure D.2-28.	PEUT Scan setup of the lower flat (left), mid curve (right), and upper flat (lower)	
	area	102
Figure D.2-29.	TTUT scan results from the upper flat edge (left), mid curve (right), and lower flat	
	edge (lower) areas	
Figure D.2-30.	Calculation of the attenuation coefficient and percent porosity for the NASA-RP-01D	
	low-porosity specimen	
•	TTUT setup for the lower flat (left), mid curve (right), and upper flat (lower) areas	
•	Images of NASA-RP-01D specimen as seen in Figure D.2-31.	106
Figure D.2-33.	TTUT scan results of the upper flat edge (left), mid curve (right), and lower flat edge	
	(lower) areas.	108
Figure D.2-34.		
	medium-porosity specimen	109
Figure D.2-35.	TTUT setup of the lower flat area (left), mid curve (right), and upper flat area	
	(lower)	
	Scanning orientation of NASA-RP-10D delamination specimen	
	Gate 6 PEUT scan results of NASA-RP-10D specimen.	
	Gate 7 PEUT scan results of NASA-RP-10D specimen.	
	PEUT setup for the lower flat (left), mid curve (right), and upper flat (lower) areas	
	Images of NASA-RP-10D specimen.	
	PEUT scan results from NASA-RD-10D low-porosity specimen.	
	TTUT scan setup for NASA-RD-10D specimen.	
	Images of NASA-RP-10D low-porosity specimen.	
	Scanning orientation of NASA-RP-20D specimen.	
	Gate 6 PEUT scan results of NASA-RP-20D specimen.	
•	Gate 7 PEUT scan results of NASA-RP-20D specimen.	122
Figure D.2-47.	PEUT scan setup for the lower flat (left), mid curve (right), and upper flat (lower)	100
E' D 2 40	areas.	
Ų	Photos of NASA-RP-20D specimen.	
	Scanning orientation of NASA-RP-20D low-porosity specimen.	
	TTUT scan results from NASA-RP-20D low-porosity specimen.	
	Images of NASA-RP-20D low-porosity specimen.	
•	Scanning orientation of NASA-RP-40D specimen.	
	Gate 6 PEUT scan results of NASA-RP-40D specimen.	
0	Gate 7 PEUT scan results of NASA-RP-40D specimen.	130
Figure D.2-55.	PEUT scan setup for the lower flat (left), mid curve (right), and upper flat (lower)	121
Eiguna D 2 50	areas.	
U	Images of NASA-RP-40D specimen.	
Figure D.4-1.	TEC cure graphs.	
Figure D.4-2.	An 11×11 -inch spare impact panel created but not impacted	
Figure D.5-1.	Vacuum bag lay-up for a flat panel and flange	1/3
	V	

Figure D.5-2.	Snag panel lay-up	. 173
Figure D.5-3.	Baron autoclave.	.174
Figure D.5-4.	VaRTM process.	.174
Figure D.6-1.	Graphic representation of typical layup.	185
Figure D.6-2.	Defect-free standards.	185
Figure D.6-3.	Wrinkle standards.	. 186
Figure D.6-4.	Porosity standards.	. 186
Figure D.6-5.	Basic manufacturing flow for NDT Standards.	
Figure D.6-6.	Process variables for NASA-005-Tube-STANDARD-001 and -002.	. 187
Figure D.6-7.	Process variables for NASA-005-Tube-Wrinkle-001 and -002	. 188
Figure D.6-8.	Process variables for NASA-005-Tube-Porosity-001 and -002.	. 189
Figure D.6-9.	Process variables for NASA-005-Tube-Porosity-003 and -004.	. 190
Figure D.6-10.	Standard showing good front and back wall signal definition	. 192
Figure D.6-11.	Standard showing strong intermediate reflection with significant back-wall signal	
	attenuation	. 192
Figure D.6-12.	Standard showing smaller intermediate reflection with back-wall signal attenuation	. 192
Figure D.6-13.	Standard showing complete back-wall signal loss	. 193
	NASA-005-Tube-Standard 001 and 002 defect free	
Figure D.6-15.	NASA-005-Tube-Wrinkle 001 and 002	. 194
Figure D.6-16.	Close-up of wrinkle surface on OML of NASA-005-Tube-Wrinkle-001.	. 194
Figure D.6-17.	NASA-005-Tube-Porosity 001 and 002.	. 195
Figure D.6-18.	NASA-005-Tube-Porosity 003 and 004 show porosity of varying degrees	. 195
Figure D.6-19.	NASA-005-STANDARD-001 and -002.	. 196
Figure D.6-20.	NASA-005-Wrinkle-001 and -002.	. 196
Figure D.6-21.	NASA-005-Porosity-001 and -002.	. 196
Figure D.6-22.	NASA-005-Porosity-003 and -004.	. 197

List of Tables

Table A.2-1.	Summary of top survey answers to questions about composite defects.	.2
Table A.4-1.	Table of respondents by industry sector.	
Table A.4-2.	Table of respondents by company or institution.	
Table A.4-3.	Table of respondents by work group function	.4
Table A.4-4.	Table of respondents by type composite structure, indicating the type with which they primarily work.	5
Table A.4-5.	Indexed listing of flaw types as shown in Figures A.4-3, A.4-4, and A.4-5	
Table A.4-6.	Indexed listing of areas of NDT that needed further development as shown in Figures A.4-6, A.4-7 and A.4-8.	8
Table A.4-7.	NDT R&D methods, according to those who identify themselves as working in R&D	10
Table A.4-8.	The needs for improved reference standards in the composite industry are represented by the response to the survey question: "Do you deal with flaws that need to be better	
	represented in your standards?"	11
Table C.2-1.	Specific specimens tested by each partner, organized by defect type	46
Table D.4-1.	Configurations of impact specimen standards	62
Table D.6-1.	Layup sequence for tubular shaped standards	84
Table D.6-2.	Ply drop-off definition unidirectional plies (flats)	85
Table D.6-3.	Full wrap plies were two pieces with butt trim locations from the conic apex1	85

Nomenclat	ture
μA	Microampere
μm	Micrometer/Micron
μs	Microseconds
1D	One-Dimensional
2D	Two-Dimensional
3D	Three-Dimensional
ABS	Acrylonitrile Butadiene Styrene
ACAD	Air Coupled Acoustic Drive
ACC	Advanced Composites Consortium
ACP	Advanced Composites Project
ACT	Air Coupled Transducer
ADR	Assisted Defect Recognition
AFP	Automated fiber placement
AISI	American Iron and Steel Institution
AMT	Active Microwave Thermography
ANSI	American National Standards Institute
APF	Automated Fiber Placement
ARC	Ames Research Center
ASME	American Society of Mechanical Engineers
ASNT	American Society of Nondestructive Testing
ASTM	American Society for Testing and Materials
ATL	Automated Tape Lay-Up
AWG	Arbitrary Waveform Generator
AWS	American Welding Society
BMS	Boeing Material Specification
BSI	British Standards Institution
BVID	Barely Visible Impact Damage
BW	Back Wall
С	Celsius
CAD	Computer-Aided Design
CAFA	Combined Analytical Finite Element Approach
CCD	Charge-coupled Device
CDRH	Center for Devices and Radiological Health
CFRP	Carbon Fiber Reinforced Polymer
CMOS	complementary metal oxide semiconductor
CNN	Convolutional Neural Network
CO_2	Carbon Dioxide
COPV	Composite Over-Wrap Pressure Vessel
CPV	Composite Pressure Vessel
CR	Computed Radiography
CST	Charge Simulation Technique
CT	Computed Tomography
CTE	Coefficient of Thermal Expansion
DAQ dB	Data Acquisition Decibel
	Decider Decidels Per Inch
dB/in	
DDA DOE	Digital Detector Array
DOF	Degree of Freedom
DR	Digital Radiography
DRC	Digital Radiography Center
ECT	Eddy Current Thermography
EFIT	Elastodynamic Finite Integration Technique

FBH	Flat-bottom holes
FD	Finite Difference
FDA	Food and Drug Administration
FEA	Finite Element Analysis
FEM	Finite Element Method
FEP	
	Fluorinated Ethylene Propylene
FLIR	Forward-looking Infrared
FMC	Full Matrix Capture
FOD	Foreign Object Debris
FOV	Field of View
ft-lbs	Foot Pounds
GE	General Electric
GHz	Gigahertz
GN ₂	Gaseous Nitrogen
gsm	Grams per square meter
GWUT	Guided Wave Ultrasound
Hz	Hertz
ID	Inner Diameter
IDIQ	Indefinite Delivery/Indefinite Quantity
IEC	International Electrotechnical Commission
IML	Inner Mold Line
in	Inch
in/min	Inches per Minute
InSb	Indium Antimonide
ipm	Images per Minute
IR	Infrared
IRT	Infrared Thermography
ISTIS	In Situ Thermal Inspection System
J/cm ²	Joules Per Square Centimeter
K	Kelvin
KeV	Kiloelectron Volt
kg	Kilograms
kg/cm ²	kilogram per square centimeter
kHz	Kilohertz
kV	Kilovolts
kW	kilowatt
LaRC	Langley Research Center
LBI	Laser Bond Inspection
LMCO	Lockheed-Martin Company
LPS	Local Positioning System
LIS	Line Scenning Thermography
	Line Scanning Thermography
LŢ	Lock-In Thermography
m^2	Square Meter
m²/hr	Meters Square per Hour
mA	Miliampere
MECAD	Mechanically Coupled Acoustic Drive
MGBM	Multi-Gaussian Beam Model
MHz	Megahertz
mHz	Millihertz
mK	Millikelvin
	Millimeter
mm MDo	
MPa	Megapascals
ms	Meter per Second
MS/s	Megasamples/second
	viii

maaa	Millisecond
msec	
MSFC	Marshall Space Flight Center
NAS	National Aerospace Standard
NASA	National Aeronautics and Space Administration
Nd:Glass	Neodymium Glass Laser
NDE	Nondestructive Evaluation
NDI	Nondestructive Inspection
NDT	Nondestructive Test
NEDT	Noise Equivalent Differential Temperature
NGIS	Northrop Grumman Innovation Systems
nm	Nanometer
ns	Nanosecond
OEM	Original Equipment Manufacturer
OML	Outer Mold Line
ONR	Office of Naval Research
OSHA	Occupational Safety and Health Administration
PA	Phased Array
PCA	Principal Component Analysis
	Pulse Echo Ultrasound
PEUT	
PMC	Polymer Matrix Composite
PML	Perfectly Matched Layer
POC	Point of Contact
PoD	Probability of Detection
PPT	Pulsed-Phase Thermography
psi	Pounds Per Square Inch
PT	Pressure-Sensitive Tape
PTFE	Polytetraflouroethylene (Teflon [™])
PVDF	polyvinylidene fluoride
PWI	Plane Wave Imaging
PW-UTC	Pratt Whitney – United Technology Corporation
PZT	Piezoelectric Sensors/Transducer
R&D	Research and Development
RAH	Refresh After Heat
RBH	Refresh Before Heat
RGB	Red, Green, and Blue
RMS	Root Mean Squared
ROI	Region of Interest
RPF	Release Ply Fabric
RSG	Rotated-Staggered Grid
RVE	Representative Volume Element
	Seconds
s SAE	
	Society of Automotive Engineers
SAFE	Semi-Analytical Finite Element
SAR	Synthetic Aperture Radar
sec	Seconds
SHM	Structural Health Monitoring
SLDV	Scanning Laser Doppler Vibrometer
SMAAART	Structures, Materials, Aerodynamics, Aerothermodynamics, and Acoustics
	Research and Technology
SME	Subject Matter Expert
SNR	Signal to Noise Ratio
SOFI	Spray on Foam Insulation
SoP	State-of-Practice
sq. ft/hr	square foot per hour
	:

SSFT	Single-Side Flash Thermography
SSIR	Single-Sided Infrared Thermography
SVD	Singular Value Decomposition
TC2	Technical Challenge 2
TDRS	Time Domain Reflectometry Systems
TFM	Total Focus Method
Tg	Glass Transition Temperature
THz	Terahertz
TPS	Thermal Protection System
TSR	Thermographic Signal Reconstruction
TT	Through Transmission
TTIR	Through-Transmission Infrared Thermography
TTUT	Through-Transmission Ultrasound
TWI	Thermal Wave Imaging System
USC	University of South Carolina
UT	Ultrasound
VaRTM	Variation Resin Transfer Molding
VSHM	Visualized Structural Health Monitoring
XCT	X-ray Computed Tomography

Appendix A NASA Advanced Composites Project NDE – State of the Practice Report¹

A.1 Introduction

In the Advanced Composites Project (ACP), NASA is collaborating with members of the aerospace industry to reduce the timeline to develop and certify composite structure for commercial and military aeronautic vehicles. NASA and industry have identified three focus areas, or technical challenges, as having major impact on the current certification timeline. One focus area, Technical Challenge (TC2) – Rapid Inspection, is concerned with increasing the inspection throughput by the development of quantitative and practical inspection methods, data management methods, models, and modeling tools. One of the objectives in TC2 is to develop tools for rapid quantitative characterization of defects. The adoption of composite materials in aircraft manufacturing for use in structural applications continues to increase but is still relatively new to the industry and has relatively large development and certification costs in comparison to metallic structures. Traditional methods of nondestructive evaluation (NDE) used for isotropic materials such as metals may not be adequate for composite applications and is a contributing factor to the cost and complexity of developing new structural composites. Additionally, the defects of interest in composite materials are significantly different from metals.

Therefore, under the ACP, TC2, NASA initiated an assessment of the current state-of-practice (SoP) in the aerospace industry for the NDE of composite structural components and a determination of what factors influence the NDE process for composites. The survey was developed and executed as a team effort under a contract to The Boeing Company (point of contact (POC): Dr. Gary Georgeson, Boeing) with participation from General Electric (GE), Pratt Whitney-United Technology Corp. (PW-UTC) and Lockheed-Martin Company (LMCO). NASA provided technical oversite of the survey development and execution.

The goal of the survey was to assess the current SoP for NDE/nondestructive testing (NDT) of composite parts and structure, drawing from as large a cross-section of the industry as practical. Therefore, this assessment spanned the fixed-wing, rotary-wing, and propulsion segments of the aircraft industry and received input from a corresponding cross-section of other industries such as the automotive and power generation. The assessment sought to identify critical defect types, current inspection methods, NDE data exchange methods, processes and methods suitable for automation or improvement, and other issues associated with the inspection and certification of composite aerospace structures.

This appendix is intended to provide a broad overview of the survey. Included in the appendix are an executive summary, the design of survey, select survey results for particular questions and categories and a discussion of recommendations and next steps based on the survey results.

A.2 Executive Summary

The results of the survey represent the responses from relevant POCs involved in composite design, testing, fabrication, inspection, NDT equipment sales, NDT Research and Development (R&D), and NDT management. One hundred fifty-three individuals, representing about 1/10th of those invited to participate, took the survey. Nearly half (46%) currently work in the aerospace

¹NASA SMAAART Contract No. NNL10AA05B, Task Order NNL15AB47T

industry, with the remainder working in other composite related industries such as the automotive industry. The survey results are summarized here in the Executive Summary, and described in more detail in the sections following.

The primary composite structure type of interest is the graphite epoxy laminate structure, followed by sandwich structure, particularly honeycomb. The type of NDT methods that are most common are Visual and Tap Testing, followed by Through-Transmission Ultrasound (TTUT), Pulse Echo Ultrasound (PEUT), X-ray methods (Digital, Computed Tomography (CT), and Film – in that order), Infrared Thermography (IRT), and Low-Frequency Ultrasound (UT)/Bond Testing.

NDT methods ripe for automation and cost/flow time reductions appear to be those most commonly used for manufacturing inspection and have not generally been fully automated for either data collection or analysis. These are Visual, UT methods (TTUT and PEUT), and IRT. Digital Radiography (DR) and CT are already automated methods. Visual, Tap testing, and Low-Frequency UT/Bond Testing are primarily used for in-service inspection, though automation of these could move them more into manufacturing inspection for selected structures.

Composite manufacturing methods that use a level of automation, such as Automated Fiber Placement (AFP), or Automated Tape Lay-Up (ATL) could benefit from post-fabrication and inprocess automated NDT processes, because this could enable more automated manufacturing methods.

Table A.2-1 summarizes the top survey answers to questions about composite defects. The most common composite defects addressed today, according to survey respondents, are delaminations, disbonds, and weak bonds (bond integrity/strength). In addition to being the most common, these three defects also receive the largest amount of research in the industry. The type of defects that are viewed as most challenging to address are microcracking, bond integrity/strength, and moisture ingress. It is important to note when separated as a group, fabricators had porosity, foreign material, and fiber waviness, along with delaminations/disbonds, at the top of their list of most common defects they encounter.

Rank	Most Challenging	Frequency of Defect	Better Standards	Defects of	Effect to
	Defect		Needed	Concern	Structure
1	Microcracking	Delaminations	Porosity	Disbonds	Disbonds
2	Bond Integrity/ Strength	Disbonds	Disbonds	Delaminations	Delaminations
3	Moisture Ingress	Bond Integrity/ Strength	Wrinkles / Fiber Waviness	Foreign Material	Bond Integrity/ Strength
4	Heat Damage	Porosity of Laminates	Delaminations	Microcracking	Wrinkles/ Fiber Waviness
5	Wrinkles/ Fiber Waviness	Moisture Ingress	Bond Integrity/ Strength	Bond Integrity/ Strength	Porosity

Table A.2-1. Summary of top survey answers to questions about composite defects.

Most respondents (64%) agreed that they deal with flaws that need better representation in their physical reference standards. Porosity standards are the greatest need, followed by delaminations/disbonds, ply waviness/wrinkles, bond integrity/strength, and microcracks.

The vast majority of respondents said yes to "Do you have fatigue life concerns?" and "Are you concerned about fatigue in the presence of undetected in-service damage?" This result indicates research and development of methods that can measure or correlate fatigue is needed for in-service NDT. Additionally, porosity, foreign material, and fiber waviness, along with

delaminations/disbonds, are at the top of composite fabricator's list of most common defects in greatest need of good NDT reference standard.

The number one need for NDT development according to stress/design/test engineers (non-NDT engineers) is "addressing critical defect types that require quantitative defect correlation for residual strength and durability." The NDT community and respondents conducting R&D also selected this as the highest need.

A.3 Survey Design

The Composites Industry SoP Survey questionnaire was developed by the industry team members on the project (Boeing, PW-UTC, GE, and LMCO) through a series of collaborative meetings. The survey was designed to collect background information on the respondent initially and then provide the respondent with a specific set of questions best suited to their specific job function. Background information included industry sector; company/institution type, size and U.S./foreign designation; work group function, composite material; composite structure type, years worked with composites; years worked in NDT; and primary job function.

The primary job function selected by a respondent in the background portion of the survey determined the remaining questions that the respondent would be given. In this way, the questions could be individually tailored to the respondents and more meaningful results could be obtained. While some questions were common to all, others were unique to one or more job functions. The selection options for the 'job function' question were 'Fabricator,' 'In-Service,' 'NDT R&D,' 'Equipment Supplier,' 'Supporting Technology,' and 'General Category,' which included instructors, non-NDT managers, and other NDT-related jobs they could specify. Each selection had specific options one could select, thereby providing additional clarity to the survey-taker and further refinement in respondent data.

Once the survey format and questions were completed and approved by the industry team members, the survey was compiled into a digital format that guided the respondents through the set of questions designed for them based on their answer for 'primary job function.' The survey was made available to willing survey-takers through an online server link sent to them via an email.

Designated industry team members who had some level of professional relationship or history with the particular POCs contacted industry POCs beforehand via phone calls or emails. In order to get a broad perspective, the POCs selected included individuals outside the NDT community, such as composite stress and design engineers. In addition, participants in a drawing for a signed NASA poster at the ASNT (American Society of Nondestructive Testing) 2015 annual meeting were invited to complete the survey as part of the drawing. A third set of survey-takers were gathered from a mass email to all the attendees of the same ASNT conference. To help ensure a good level of participation, as well as representative answers, all survey-takers were given the option of remaining anonymous, by selecting that option at the end of the survey.

A.4 Survey Results

A.4.1 Respondent Information

One hundred fifty-three respondents took the survey, representing about 1/10th overall of those who were sent an email directly requesting participation. Table A.4-1 shows that less than half (46%) of the respondents work in the aerospace industry, yet this represented the largest industry segment. Other industries (Automotive/Transportation, Power Generation, Pipeline,

Infrastructure, Wind Power Generation Petro/Chemical, Other) were represented by 7–10% each of the total response.

Table A.4-1. Table of respondents by industry sector.

(<u>Note</u>: Since respondents can choose more than one industry sector, the table represents the percent of total responses, not respondents).

Industry Sector	Percent Responses	
Aerospace	46%	
Automotive/Transportation	10%	
Wind Power Generation	9%	
Other	8%	
Power Generation (exclusive of wind power)	7%	
Infrastructure	7%	
Petro/Chemical	7%	
Pipeline	6%	

The response by company or institution was well represented by a full range of respondents, with 'Integrator/ Original Equipment Manufacturer (OEM)' being the largest group (Table A.4-2). Table A.4-3 shows that the work group function for respondents was represented mostly by composites NDT (32%) and Metals NDT (25%). Composite Design (14%), NDT Instrument/Systems Provider (12%), and Composite Manufacturing (11%) represent the remaining work groups (with 7% representing 'Other').

Table A.4-2. Table of respondents by company or institution.

(Note that since respondents can choose more than one institution, the table represents the percent of total responses, not respondents).

Company Type	Percent Responses
Integrator/OEM	23%
Fabricator/Supplier of Comp. Structures	13%
NDT Equipment Developer/Supplier	13%
Facility Specializing in NDE for Multiple Customers	12%
Research Lab	12%
NDT Training Company	9%
Government	8%
University/College	4%
Other	4%
Fabricator / supplier of materials used to make composites	1%

Table A.4-3. Table of respondents by work group function

(Note that since respondents can choose more than one work group, the table represents the percent of total responses, not respondents).

Work Group Function	Percent Responses		
NDT of Composites	32%		
NDT of Metals	25%		
Composites Design	14%		
Developer or Provider of NDT Systems	12%		
Composites Manufacturing	11%		
Other NDT Applications	7%		

A.4.1.1 General Results

The primary composite structure type of interest is the graphite epoxy laminate structure, making up 67% of responses; followed by sandwich structure, particularly honeycomb, as shown in Table A.4-4. The type of instrumented manufacturing NDT methods that are most common (when fabrication and in-service NDT are averaged together) are Visual, Tap Testing, TTUT, PEUT, X-ray methods (DR), CT, and Film – in that order, IRT, and Eddy Current methods. The relative use of the methods is shown in Figure A.4-1.

primarily work	•
Composite Structure Type	Percent Respondents
Solid Laminates	67%
Honeycomb Sandwich	17%
Other Sandwich Structure	8%
Other Structure Type	5%
Foam Core Sandwich	2%
Other Eddy Current Microwave Terahertz X-ray CT Digital Radiography Film Radiography Acoustic Emission Laser Shearography IR Thermography Tap Testing Low frequency Ultrasound Array-based Ultrasound Air Coupled Ultrasound Air Coupled Ultrasound Hand-held TTU Automated Pulse Echo Ultrasound Remote Visual Inspection Visual	Ranking: Visual Tap Testing TT UT PE UT X-Ray Methods IR Thermography Eddy Current
0 1	2 3 4 5 6
	Frequency of Use

Table A.4-4. Table of respondents by type composite structure, indicating the type with which theyprimarily work.

Figure A.4-1. Relative use of NDT methods average response for fabrication and in-service NDT respondents.

Answer to the question: What inspection techniques are currently used? (1 = never, 7 = always)

Since the ACP is interested in the cost and time related to the NDE of composite structure during development, fabrication, and certification, the NDT methods used during manufacturing development or fabrication are most relevant. The fabrication and in-service NDT methods can be separated using specific respondent categories. The results are shown in Figure A.4-2. According to NDT technicians, the most common NDT methods used are Visual, TTUT and PEUT, Tap testing, DR and X-ray CT (XCT), IRT, and finally Low-Frequency UT methods.

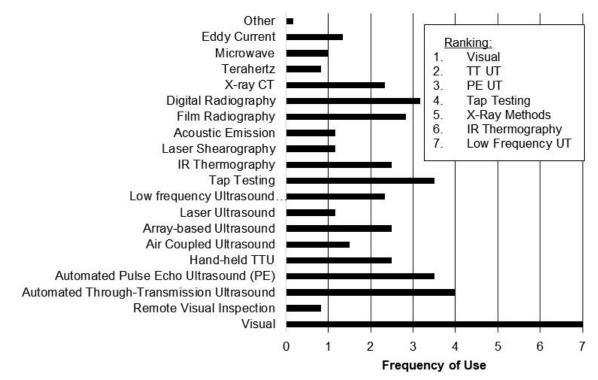


Figure A.4-2. Ranking averaged across NDT Technicians from 1 to 7, the frequency of use of NDT methods used on the structures fabricated or inspected.

A series of survey questions posed to the respondents dealt with the types of flaws they encountered in their jobs. Table A.4-5 is the list of flaw types that were presented to the respondents and these are used in the results presented in Figures A.4-3, A.4-4 and A.4-5. Figure A.4-3 shows the responses from NDT Technicians related to the frequency of occurance for each type of flaw (1 = less frequent, 7 = very frequent). For in-service NDT technicians moisture ingress, heat damage, porosity in repairs and foreign materials repairs are the most frequently occuring flaw types.

Index	Flaw Type	Index	Flaw Type
1	Delaminations	10	Fiber Waviness
2	Disbonds	11	Density anomalies
3	Foreign Material	12	Porosity in repairs
4	Microcracking	13	Fiber Waviness in repair
5	Bond integrity/strength	14	Bond integrity/strength in repairs
6	Moisture Ingress	15	Foreign material in repairs
7	Heat Damage	16	Heat Damage in repairs
8	Porosity in Laminates	17	Density anomalies in Repairs
9	Porosity over Core	18	Other

Table A.4-5. Indexed listing of flaw types as shown in Figures A.4-3, A.4-4, and A.4-5.

Figure A.4-4 shows the results of asking NDT Engineers and Managers working in manufacturing or in-service NDT to rank the difficulty of inspection (1 = not difficult, 7 = very difficult), for each type of flaw in Table A.4-5. Figure A.4-4 shows that NDT Engineers and Managers agreed that fiber waviness in repairs, bond integrity/strength in repairs and heat damage in repairs are the most difficult to inspect.

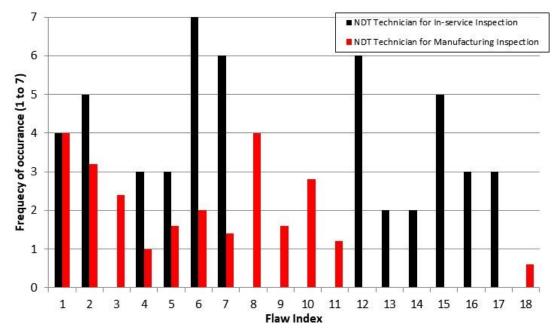


Figure A.4-3. Frequency of occurrence, according to NDT Technicians, for each defect type that is addressed including manufacturing and in-service composite structures. The numbers on horizontal axis refer to the flaws listed in Table A.4-5.

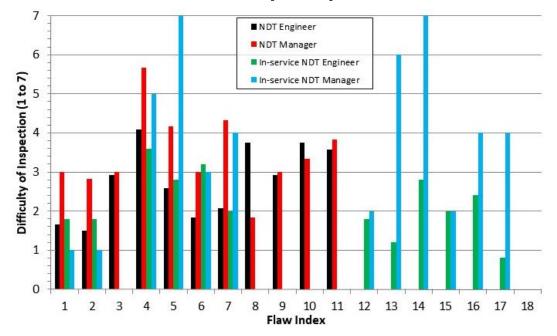


Figure A.4-4. Average difficulty of inspection according to Engineers and Managers who work in manufacturing or in-service NDT. The numbers on horizontal axis refer to the flaws listed in Table A.4-5.

Next, non-NDT engineers and non-NDT R&D personnel were asked for which flaw types are they most concerned about in their design, test, analysis or fabrication roles (1 = not concerned, 7 = very concerned). Since this question was not desiged for in-service personnel, the respondents were only given flaw types 1-11 and "Other" from Table A.4-5. Figure A.4-5 shows the flaws of

greatest concern for both non-NDT engineers and non-NDT R&D personnel are delaminations, disbonds and bond integrity / strength.

Figure A.4-5. Defects that non-NDT engineers and non-NDT R&D personnel are concerned about in their design, test, analysis or fabrication roles. The numbers on horizontal axis refer to the flaws listed in Table A.4-5.

The survey attempted to capture areas of NDT that needed further development. To do this responents were provided a list (Table A.4-6) of NDT areas and asked to rate each item in the list from 1 to 7 (1 = not needed, 7 = strongly needed).

Table A.4-6. Indexed listing of areas of NDT that needed further development as shown in Figures
A.4-6, A.4-7 and A.4-8.

Index	NDT Area	Index	NDT Area
1	Addressing critical defect types that require	10	Analysis of data acquired from automated
	quantitative characterization for residual		inspections
	strength and durability		
2	Addressing of sources of manufacturing and	11	Improved Identification of critical flaw types
	in-service flaws that are of concern		
3	Improving identification and quantification of	12	Better NDE standards for composite critical
	risk factors for composite structures		flaws
	Methods used for meaningful data delivery to	13	Reduction in Costs in labor and time
	individuals responsible for dispositioning the		associated with the inspection processes and
	part		methods currently used
5	Methods for archiving the inspection data	14	In-process inspection (during fabrication
			before part completion)
6	Process used for dispositioning the part when	15	Methods for in-service inspection
	flaws are detected		
7	New parameters for characterization of	16	Probability of detection or improve
	flaws/damage		characterization of inspection performance;
8	Automated inspection techniques	17	Improved resolution of anomalous
			indications;
9	Automated defect recognition and analysis	18	Other

Figure A.4-6 show the responses from NDT and Manufacturing Engineers. Figure A.4-7 represents the responses according to NDT R&D Managers and Researchers. Finally, Figure A.4-8 represents the responses according to non-NDT engineers and non-NDT R&D personnel. Figures A.4-6, A.4-7, and A.4-8 indicate a wide spread need in improvements for NDT in general.

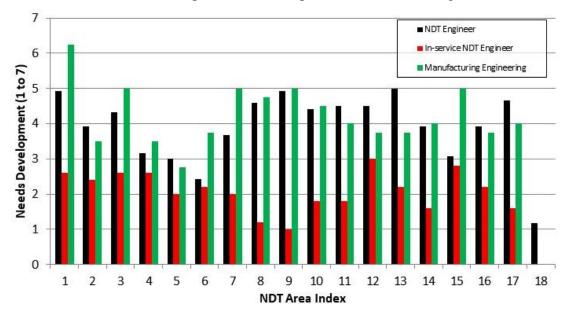


Figure A.4-6. Needed areas of NDT development according to NDT and manufacturing engineers. The numbers on horizontal axis refer to the NDT areas listed in Table A.4-6.

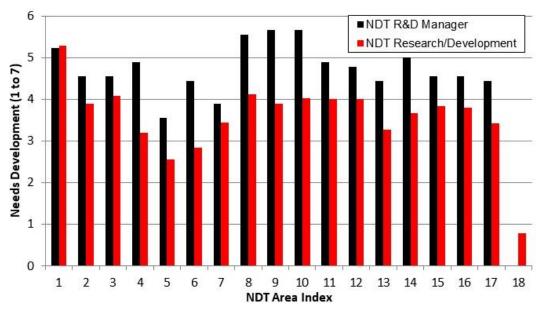


Figure A.4-7. Needed areas of NDT development, according to NDT R&D managers and researchers. The numbers on horizontal axis refer to the NDT areas listed in Table A.4-6.

Figure A.4-8. Needed areas of NDT development according to non-NDT engineers and non-NDT R&D personnel.

The numbers on horizontal axis refer to the NDT areas listed in Table A.4-6.

The survey also attempted to capture which methods of NDT further development was already taking place. To do this responents were asked: "In which of the following areas of NDT have you conducted research and/or development, or have used in your research?" Respondents were encouraged to select as many NDT methods as applied. Table A.4-7 shows the NDT methods and percentage of respondent who selected each area. The results indicate that there is a very broad and relatively uniform effort to develop NDT technology and methods.

NDT Method	Percent Response	NDT Method	Percent Response
Visual	5%	IRT	8%
Remote Visual Insp.	3%	Laser Shearography	4%
Automated TTU	8%	Acoustic Emission	4%
Automated PE-UT	11%	Film Radiography	3%
Hand-held TTU	6%	Digital Radiography	5%
Air Coupled UT	5%	XCT	6%
Array-based UT	8%	Terahertz (THz)	3%
Laser UT	5%	Microwave	2%
Low Frequency UT	5%	Eddy Current	5%
Tap Testing	3%	Other	2%

Table A.4-7. NDT R&D methods, according to those who identify themselves as working in R&D.

Over 65% of respondents answered 'Yes' to this question: "Do you deal with flaws that need to be better represented in your standards?" For those that answered 'Yes', they were further asked: "Which flaws need to be better represented by standards?" Table A.4-8 shows the flaw types and the percent of respondents that indicated this type needs better standards. Table A.4-8 demonstrates that good porosity standards are currently the biggest need. Several respondents commented that universal standards are needed that can be used for composite parts.

Table A.4-8. The needs for improved reference standards in the composite industry are represented by the response to the survey question: "Do you deal with flaws that need to be better represented in your standards?"

Flaw Type	Percent Response	Flaw Type	Percent Response
Porosity	25.27%	Bond Quality	10.99%
Delamination	9.89%	Foreign Material	3.30%
Microcracks	7.69%	Thermal Damage	2.20%
Wrinkles	10.99%	Voids	1.10%
Disbonds	10.99%	Fatigue Cracking	1.10%
Fiber Waviness	7.69%	Density	3.30%
Kissing Bonds	3.30%	Density Anomolies	2.20%

A.4.2 Recommendations

Based on the survey results, there are near-term opportunities to impact the composites certification timeline and costs. Porosity, foreign material, and fiber waviness, along with delaminations/disbonds, are at the top of composite fabricators' list of most common defects. Additionally, the NDE methods suitable for automation appear to be those that are most common for manufacturing, including Visual, UT methods, IRT, and Low-Frequency UT/Bond Testing. Composite manufacturing methods that use a level of automation, such as AFP, or ATL could benefit from post-fabrication and in-process automated NDT processes, because this could enable more automated manufacturing methods. Further, efforts aimed at improving standards for composites should be done. Porosity standards are of particular interest and need, as Table A.4-8 shows.

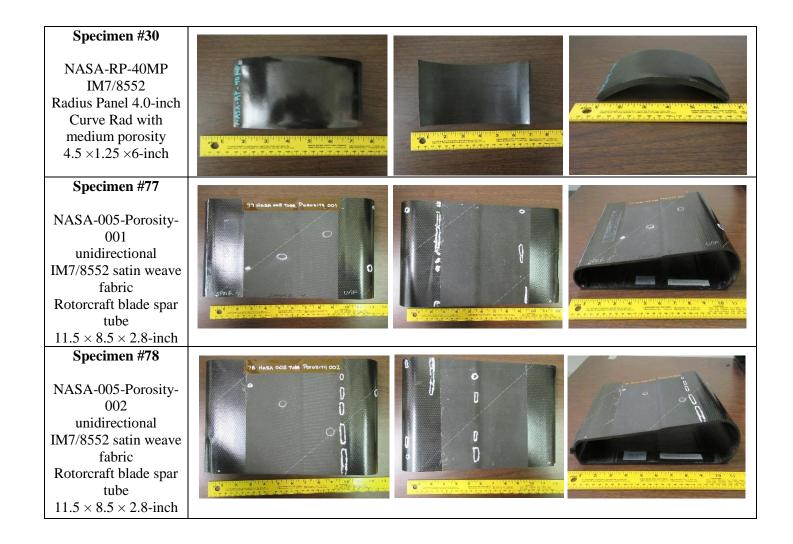
Collaborative opportunities with design and stress analysis activities should be sought wherever possible. The number one need for NDT development according to stress/design/test engineers (non-NDT engineers) is "addressing critical defect types that require quantitative defect correlation for residual strength and durability." It is important to note that this was also selected as the highest need by the NDT community and respondents conducting R&D (Figures A.4-6 through A.4-8), and should be a high priority for the NASA ACP going forward.

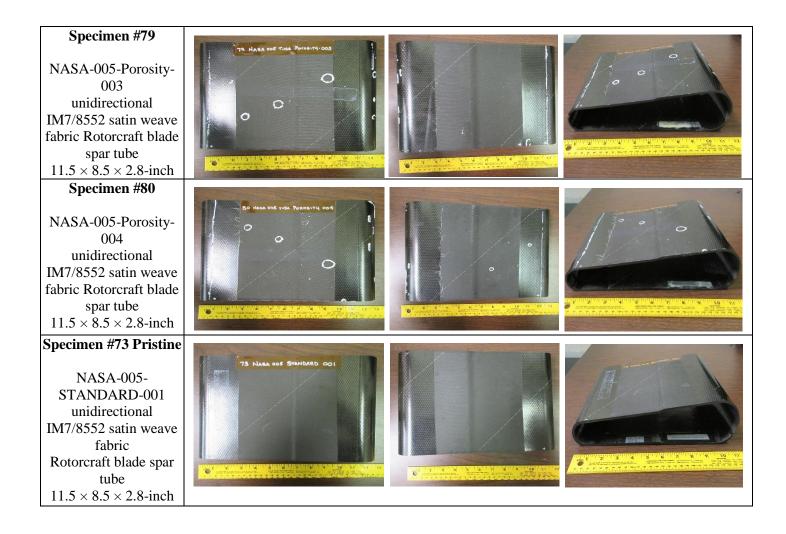
Finally, automation of in-service inspection technologies like tap testing and Low-Frequency UT/bond testing may not initially reduce certification timelines, but can reduce composite maintenance costs and enable greater availability of composite platforms. Automation of technologies may also provide timeline benefits if they can be inserted into the manufacturing inspection of certain structures, like honeycomb structure.

A.5 Next Steps

Based on the results of this SoP assessment, NASA procured from the ACP industry partners a set of 64 composite specimens (standards) that contain a range of controlled defects representing those typically found in aerospace composite materials. The standards include 22 with various types of simulated delaminations, 20 with varying amounts of porosity, 9 with AFP tow defects, 7 with fiber wrinkling, 2 with microcracking, and 2 with bond integrity or weak bond defects. A majority, 46, of the standards used an IM7/8552 or IM7/8552-1 material system with the fibers being either uni-directional, braided, woven, or slit-tape. A few of the standards, 10 in total, used BMS 8-276 material system and 8 used T-800SC Triaxial Braid [0/+60/-60] with 3M AMD-825. The geometries produced include 21 flat panels, 10 S-curved panels, 9 wedges, 8 radius corner standards, 8 rotorcraft blade-spar tubes, 4 step, and 4 flange standards.

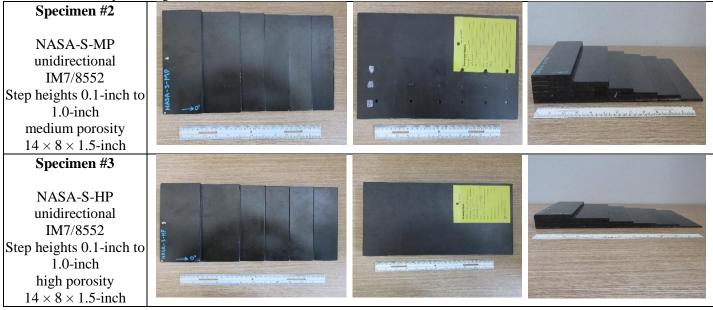
NASA has developed a complete database documenting all of the standards fabricated. Further, NASA has conducted an inter-laboratory round-robin inspection of these standards among the members of the NASA Advanced Composites Consortium (ACC). The ACC is a public-private partnership with five organizations to advance knowledge about composite materials, reduce the certification timeline and improve the performance of future aircraft. The NDE techniques used in the round-robin testing included, but are not limited to ultrasound, laser based ultrasound, thermography, and XCT. The data compiled from this round robin testing are presented in the other sections of this Handbook document.

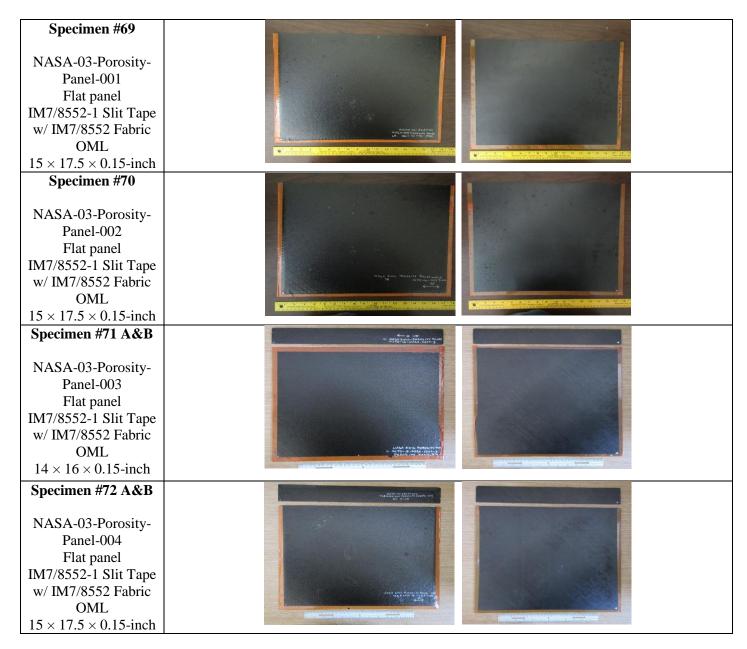

Appendix BAppendix BOverview of Standards: Photos and
Descriptions – Listed by Defect Type

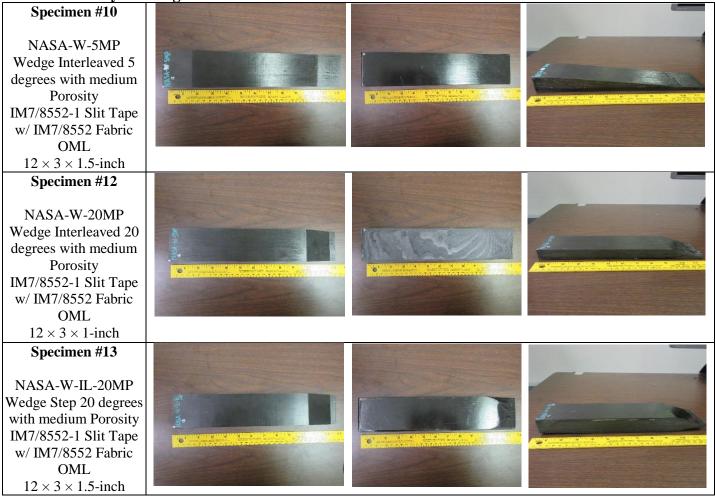

Consortium members fabricated 98 composite laminate standards with representative defect types typical in a manufacturing environment based on the results of the survey discussed in Appendix A. These defects are positioned within both flat panels and geometrically complicated locations and include defects ranging from delaminations and porosity to Automated Fiber Placement (AFP) tow defects and impact damage. Descriptions and photographs are detailed in this appendix, organized by defect type.

B.1 Porosity

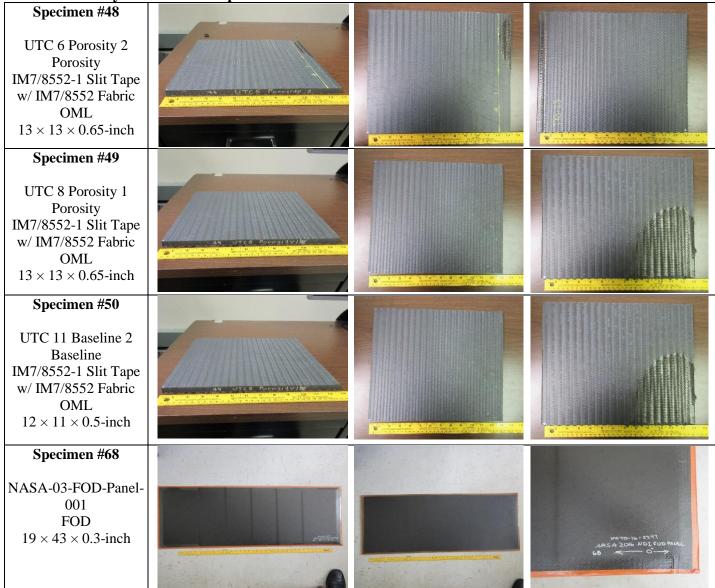
B.1.1 Porosity in Radii


Specimen # 22NASA-RP-01MPIM7/8552Radius Panel 0.1-inchCurve Rad withmedium porosity4.5 × 2.5 × 4-inch		the second se	
Specimen #26 NASA-RP-10MP IM7/8552 Radius Panel 1.0-inch Curve Rad with medium porosity 4.5 ×2.5 ×4-inch	inter de recuerde de serve serve de la contra de la contr		
Specimen #28 NASA-RP-20MP IM7/8552 Radius Panel 2.0-inch Curve Rad with medium porosity 4.5 ×2.0 ×4-inch	and the second s		



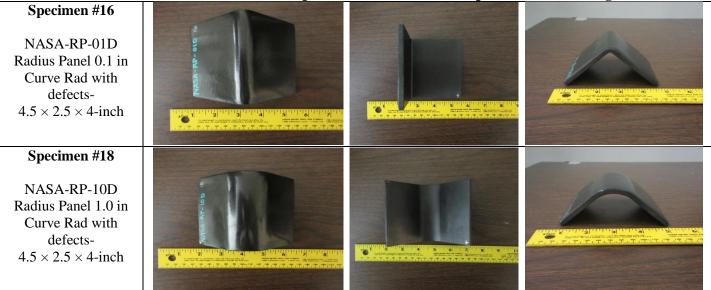


B.1.2 Porosity in Step or Flat Panels

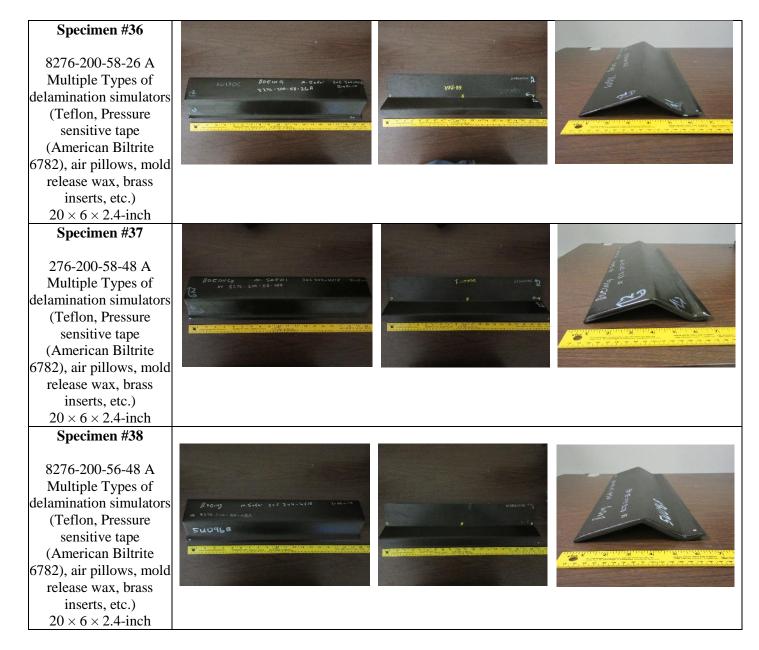


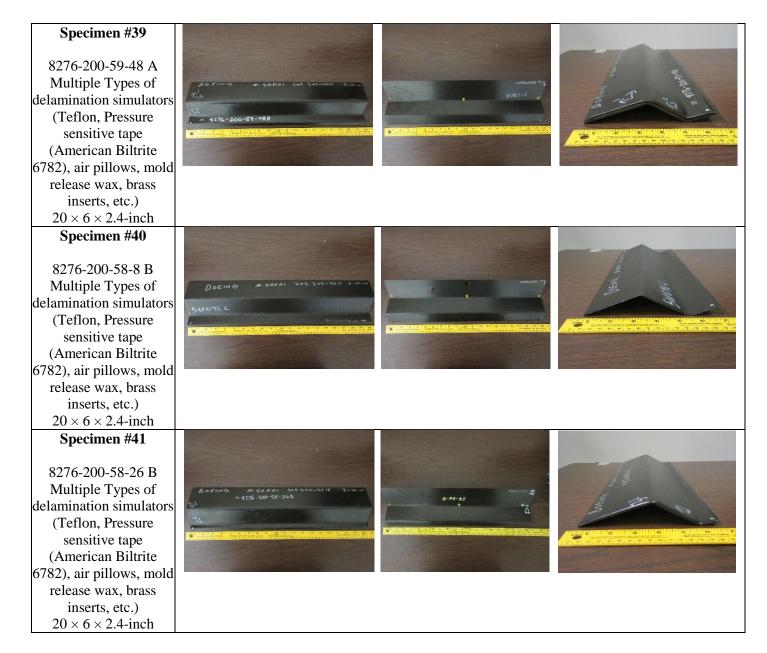
B.1.3 Porosity in Wedges

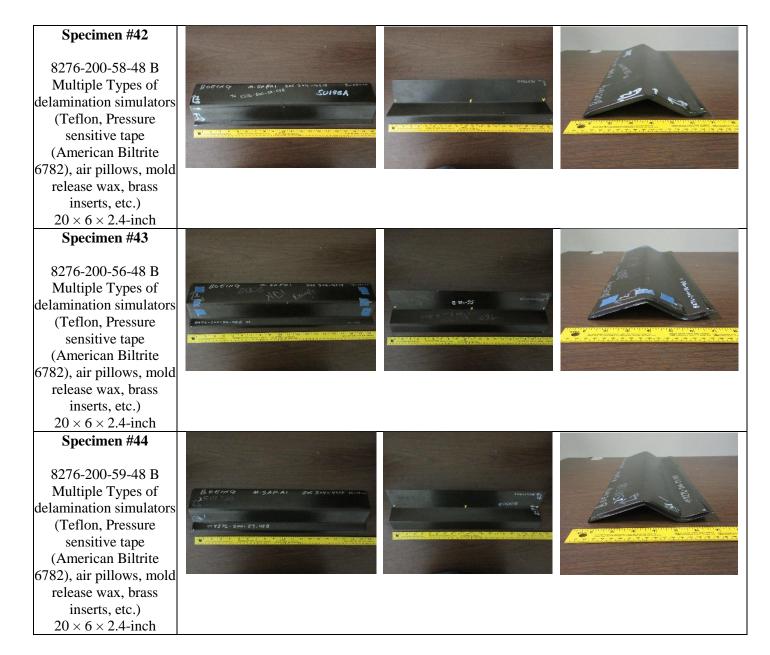
B.1.4 Porosity in Woven Composites


B.2 FOD and Inclusion

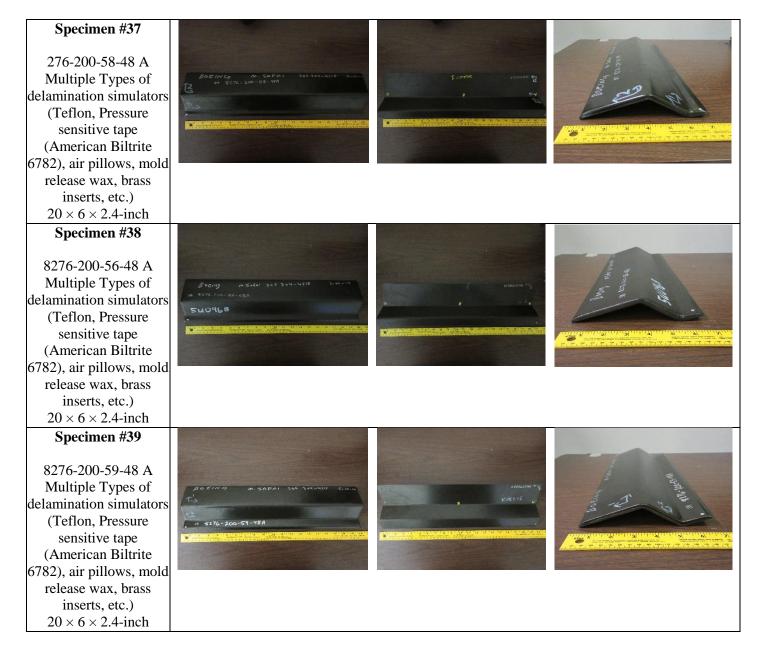
B.2.1 FOD and Inclusion

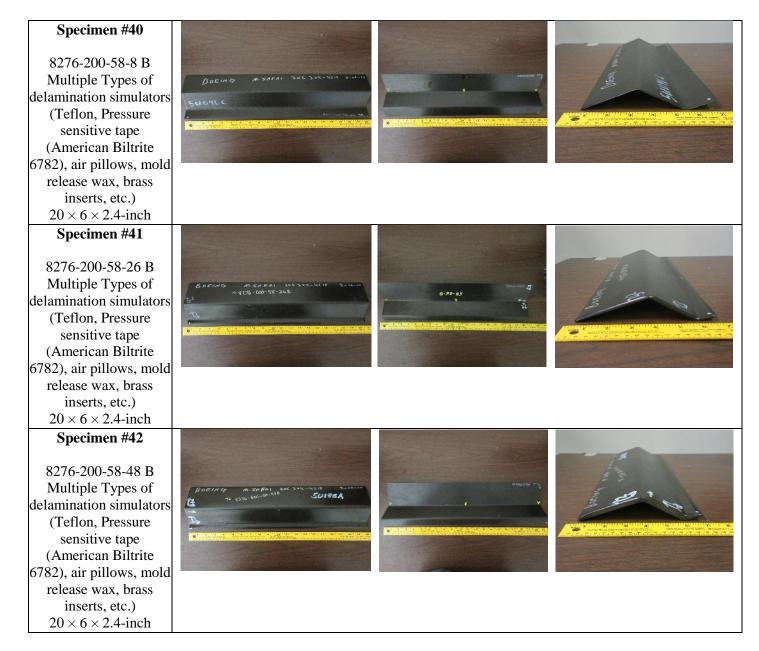



B.3 Delaminations


B.3.1 Delaminations at Radii (14 w/ multiple delams at different depths – GE & Boeing)

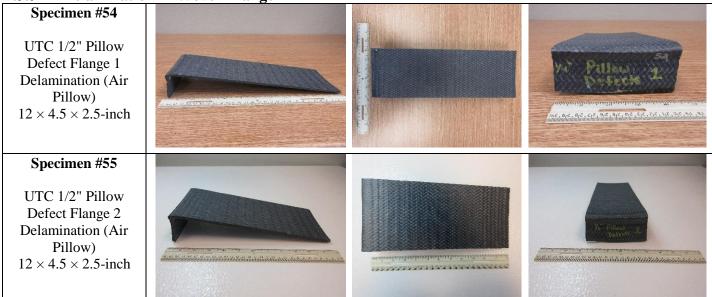
Specimen #19		
NASA-RP-20D Radius Panel 2.0 in Curve Rad with defects- 4.5 × 1.5 × 4-inch		
Specimen #20		
NASA-RP-40D Radius Panel 4.0 in Curve Rad with defects- 4.5 × 1.25 × 6-inch		
Specimen #35		
8276-200-58-8 A Multiple Types of delamination simulators (Teflon, Pressure sensitive tape (American Biltrite 6782), air pillows, mold release wax, brass inserts, etc.) $20 \times 6 \times 2.4$ -inch	Zavada v vy	

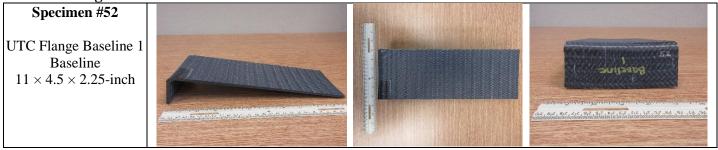


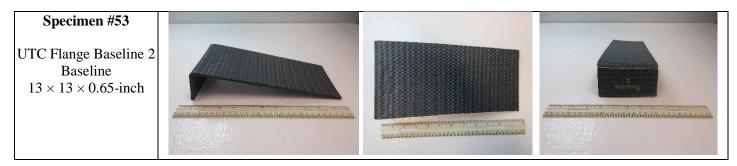


B.3.2 Delaminations In Flat or Step Panels (1 step GE; 10 'S' panels Boeing)

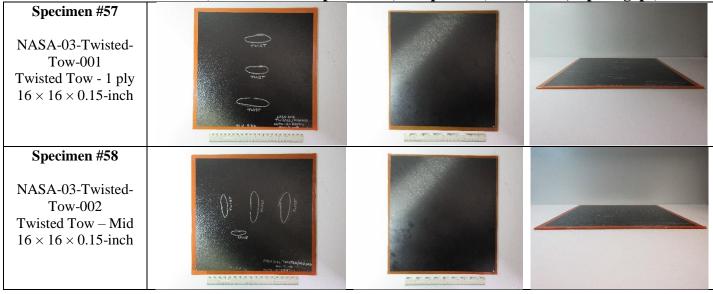

B.3.3 Delamination in Wedge Panels


Specimen #5 NASA-W-20D Wedge Step 20 degrees with defects 12 × 3 × 1.1-inch		
Specimen #6 NASA-W-35D Wedge Step 35 degrees with defects 12 × 7 × 1.5-inch		
Specimen #7 NASA-W-IL-5D Wedge Interleaved 5 degrees with defects $12 \times 3 \times 1.1$ -inch		
Specimen #8 NASA-W-IL-20D Wedge Interleaved 20 degrees with defects $12 \times 3 \times 1.1$ -inch		


B.3.4 Delaminations in Woven Composites



B.3.5 Delamination in Woven Flange

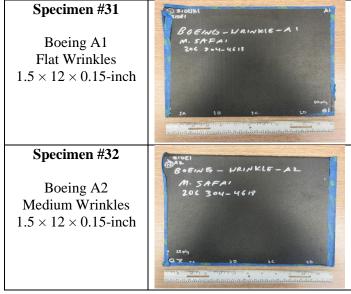

B.3.6 Flange Baseline

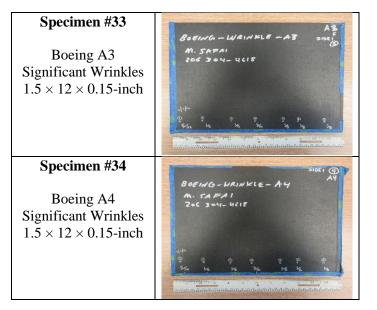
B.4 AFP Fiber Defects (wringles, tow snags)

B.4.1 Tow Defects in AFP (automated fiber placement) composites (twists, folds, laps & gaps)

Specimen #60 NASA-03-Folded-Tow- 001 Folded Tow - 1 ply 16 × 16 × 0.15-inch	Dera Dera Dera Dera Dera Dera	
Specimen #61 NASA-03-Folded-Tow- 002 Folded Tow – Mid 16 × 16 × 0.15-inch	Da Da Da Marine de Caracteria	00.5
Specimen #62 NASA-03-Missing- Tow-001 Missing Tow - 1 ply 16 × 16 × 0.15-inch	MISSING TOB INSERVE TOB INSERVE TOB	
Specimen #63 NASA-03-Missing- Tow-002 Missing Tow – Mid $16 \times 16 \times 0.15$ -inch	The reverse The re	

B.4.2 Bridging Jog	ggle in AFP	
Specimen #64 NASA-03-Bridged- Joggle-001 Bridging – Joggle 12 × 9 × 1.3-inch		BET BET BET BET
Specimen #65 NASA-03-Bridged- Joggle-002 Bridging – Joggle 12 × 9 × 1.3-inch		анаранаранаранаранаранаранаранаранарана
Specimen #66 NASA-03-Bridged- Joggle-003 Bridging – Joggle 12 × 9 × 1.3-inch		24 b wor 3t with Los 3t with Los 2th Man 2sin Briber Pauls
Specimen #67 NASA-03-Bridged- Joggle-004 Bridging – Joggle 12 × 9 × 1.3-inch		H OF ST THE JOS - IN-SEL WAS BOILD BE DATE:

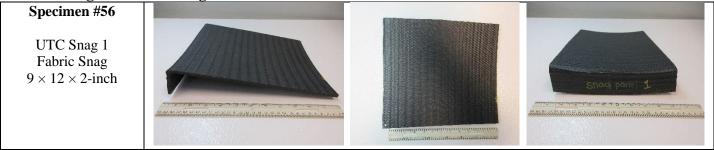

B.4.2 Bridging Joggle in AFP


B.4.3 Detection of Tow Orientation in AFP Composite

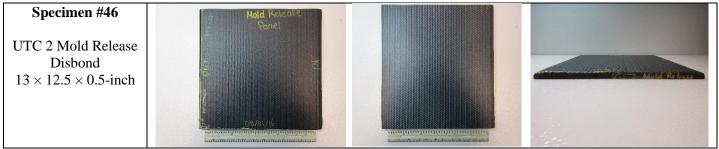
B.5 Fiber Defects (wrinkles, tow snags)

B.5.1 Detection of Fiber Wrinkling in Flat Panels

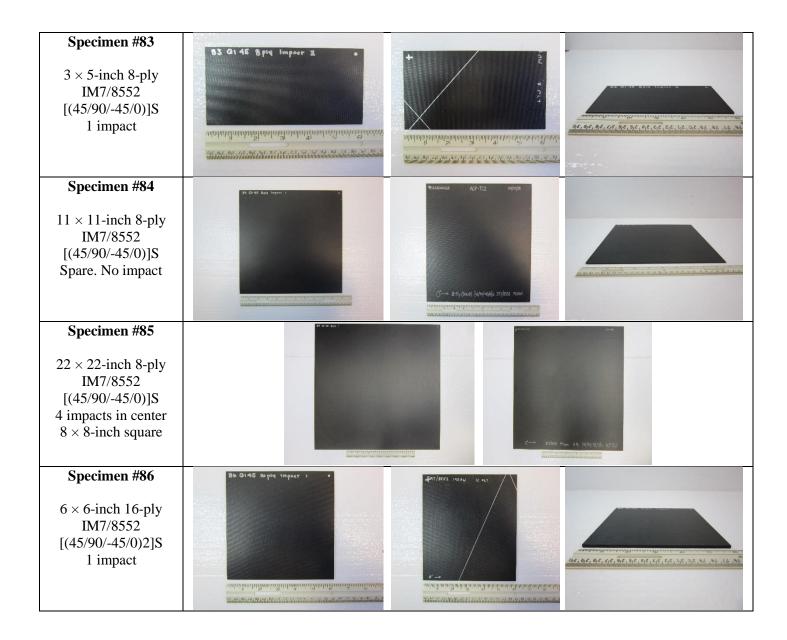
B.5.2 Detection of Wrinkling in Radii

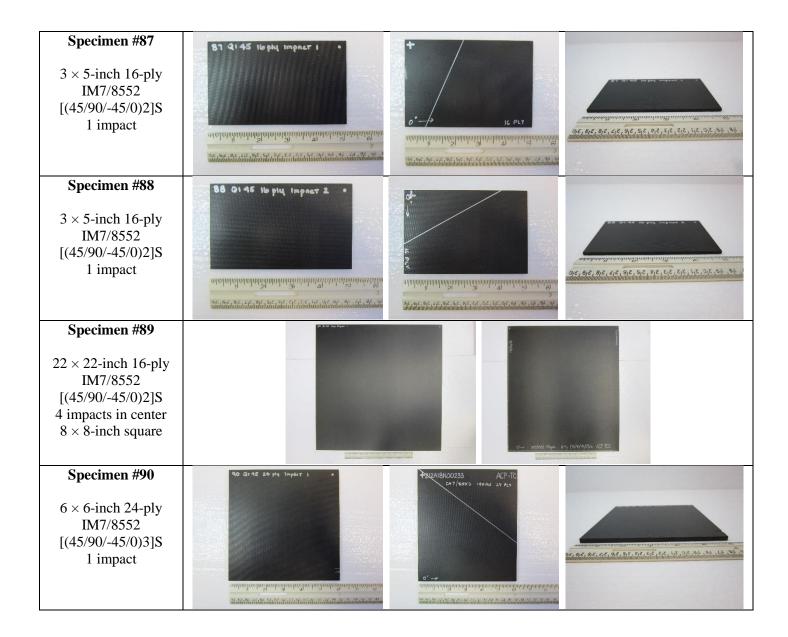


B.5.3 Fabric SNA in Woven Composites



B.5.4 Snag in Woven Flange


B.6 Bond Strength

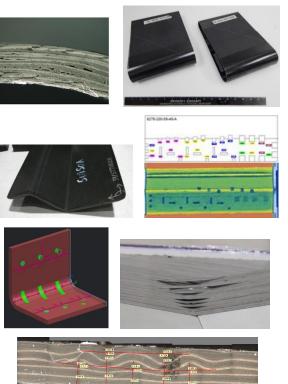

B.6.1 Mold Release

B.7 Impact Damage

1 8			
B.7.1 Static Impact			
Specimen #81 6 × 6-inch 8-ply IM7/8552 [(45/90/-45/0)]S 1 impact	אין		25, 55, 57, 17, 77, 77, 77, 77, 77, 77, 77, 77, 7
Specimen #82 3 × 5-inch 8-ply IM7/8552 [(45/90/-45/0)]S 1 impact	1957 OI 42 Seid Jackver, 1	ar nor ar ve ar	92.94.95.05.02.94.95.02.02.02.03.03.03.03.03.03.03.03.03.03.03.03.03.

Specimen #91 3 × 5-inch 24-ply IM7/8552 [(45/90/-45/0)3]S 1 impact	קו קו איז		Ale the Second State and the s
Specimen #92 3 × 5-inch 24-ply IM7/8552 [(45/90/-45/0)3]S 1 impact	אב או אל בא או זייני זייני בא ארע זייניין אייניין אייניען אייען אייניען אייניען איינען אייען אייען אייען אייען אייען איינען איינען אייען א	ocracios estas actos estas estas en estas actos en estas e estas estas e	And a state of the
Specimen #93 6 × 6-inch 32-ply IM7/8552 [(45/90/-45/0)4]S 1 impact	95 Q1 45 SZ Ply Ingener 1		The 9-2, 9-2, cite 9-2, 5-2, 9-2, cite 1-2, 3-2, cite 3-
Specimen #94 3 × 5-inch 32-ply IM7/8552 [(45/90/-45/0)4]S 1 impact	action we can act actual the rest take are concerned as the age automodulation and an and a state and a state and a state at a state and a state and a state and a state and a state at a state and a state and a state and a state and a state at a state and a state and a state and a state and a state at a state and a state and a state and a state and a state at a state and a state and a state and a state and a state at a state and a state and a state and a state and a state at a state and a state and a state and a state and a state at a state and a state at a state and a state and a state a	94 21 45 82 pt4 1mp3er 1 יוויזיקטערעינערעינערעינערעינערעינערעינערעינערעי	анараандагаан ал даагаан ал даагаа Тар 65, 65, 65, 65, 67, 67, 67, 67, 67, 67, 67, 67, 68, 68, 68, 64, 64

Specimen #95	95 Q1 95 32 ply Impact 2 .	+	
3 × 5-inch 32-ply IM7/8552 [(45/90/-45/0)4]S 1 impact	ตรางรายรายรายรายรายรายรายรายรายรายรายรายราย แน่นปนนนในนนนโนโนนนนโนนนนโนนนนโนนนนโนนนนโ	ac. 26. 36. 146. 36. 35. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	205, 505, 905, 155, 902, 952, 952, 522, 523, 524, 534, 834
Specimen #96 6 × 6-inch 18-ply IM7/8552 [45/90/-45/0/0/45/90/- 45/0]S 1 impact	de Let 18 bei 3eebee. 1		015, 912, 415, 92, 512, 912, 52, 52, 52, 52, 52, 52, 52, 52, 52, 5
Specimen #97 3 × 5-inch 18-ply IM7/8552 [45/90/-45/0/0/45/90/- 45/0]S 1 impact	ar and a second a	ervertige fest sigt zich fest eine eine eine eine eine eine eine ein	16. 16. 56. 51. 55. 53. 57. 52. 59. 59. 59. 39.
Specimen #98 3 × 5-inch 18-ply IM7/8552 [45/90/-45/0/0/45/90/- 45/0]S 1 impact	ac Par de res de de de la comparada de la comparad encomparada de la comparada de la comparad	autorinaria da la construcción de la construcción d	DE 25 ST 45 C 25 ST 45 E 25 ST 45 E 25 ST 45 ST


Appendix C Round-Robin Test Matrix

C.1 Round-Robin Testing

C.1.1 Introduction

As discussed in detail in Appendix A, each ACP industry partner fabricated a set of composite specimens (standards) that contain a range of controlled defects representing those of higher concern for aerospace composite materials. The "Indefinite Delivery/Indefinite Quantity (IDIQ) contract mechanism was used to procure specimens, resulting in a "best effort" approach to creating a library of specimens with common, realistic defects. Each consortium company chose or was assigned standards to fabricate based on manufacturing capabilities. Defect types included manufacturing defects such as varying amounts of porosity (in a range typically found in autoclave cured aerospace composites) and varying degrees of fiber waviness (both in-plane and out-of-plane), as well as inserts representing delamination type defects. Appendix B includes the round-robin test matrix grouped by defect type. Consortium members fabricated 88 specimens as detailed below.

- Materials:
 - 66 are made of IM7/8552 or IM7/8552-1
 - 10 are made of 8276 tape
 - 12 are T-800SC triaxial braid fabric
- Geometries:
 - 44 Flat panels
 - 10 S curve (__/) panels
 - 9 Wedge panels
 - 8 Radius corner panels
 - 8 Rotorcraft blade spar tubes
 - 4 Step panels
 - 5 Flange panels
- Defects:
 - 27 Delamination
 - 21 Porosity
 - 11 AFP tow defects
 - 9 Fiber orientation (in and out of plane)
 - 1 Bond integrity
 - 1 FOD panel
 - 18 Impact damage

C.2 Test Matrix

The standards fabricated under Phase I were tested in a round-robin approach where ACP TC2 Consortium members circulated the specimens to each other based on the defect type and appropriate available NDE test equipment located at each members' laboratories. Three or more partners tested eleven specimens. Boeing tested 14 specimens with 10 techniques. The University of South Carolina (USC) tested 13 standards with one technique. Northrop Grumman Innovation Systems (NGIS) tested eight standards with four techniques. GE tested 25 specimens with one technique. NASA tested 44 specimens with five techniques. Table C.2-1 details the specific

specimens tested by each partner, organized by defect type. The color code key represents the fabrication origin of the specimens without reference to the company name.

Key:

ACC Manufacturing Partner Number									
1 2 3 4 5 6									
Partner and Testing Acronyms:									

Partner and T	esting Actonyms:
NGIS	Northrop Grumman Innovation Systems
NASA	National Aeronautics and Space Administration
GE	General Electric
Boeing	The Boeing Company
USC	University of South Carolina
PEUT	Pulse-Echo Ultrasound
TTUT	Through transmission Ultrasound
GWUT	Guided Wave Ultrasound
SSIR	Single sided infrared thermography
TTIR	Through transmission infrared thermography
XCT	X-ray Computed Tomography
DR	Digital Radiography
CR	Computed Radiography

Damage Type	Geometry / Location	#	Reference Standard	Structure	Material	Configuration / Radius	Defects and features	Dimensions (inches)	Partner: Tests			
				22	NASA-RP-01MP	Uni-ply 0/90/45)	IM7/8552	0.1" radial inside curve	Radius Panel 0.1 in Curve Rad with medium porosity	4.5 X 2.5 X 4	NASA: SSIR, TTIR	
		26	NASA-RP-10MP	Uni-ply 0/90/45)	IM7/8552	1.0" radial inside curve	Radius Panel 1.0 in Curve Rad with medium porosity	4.5 X 2.5 X 4	NASA: SSIR, TTIR			
		28	NASA-RP-20MP	Uni-ply 0/90/45)	IM7/8552	2.0" radial inside curve	Radius Panel 2.0 in Curve Rad with medium porosity	4.5 X 2.0 X 4	NASA: SSIR, TTIR			
Porosity	Porosity in radii	30	NASA-RP-40MP	Uni-ply 0/90/45)	IM7/8552	4.0" radial inside curve	Radius Panel 4.0 in Curve Rad with medium porosity	4.5 X 1.25 X 6	NASA: PEUT, TTUT USC: GWUT			
Porc		77	NASA-005-Porosity-001	Quasi-isotropic	IM7/8552 satin weave fabric and unidirectional	Rotorcraft blade spar tube	Porosity	11.5 X 8.5 X 2.8	GE: PEUT, TTUT			
		78	NASA-005-Porosity-002	Quasi-isotropic	IM7/8552 satin weave fabric and unidirectional	Rotorcraft blade spar tube	Porosity	11.5 X 8.5 X 2.8	GE: PEUT, TTUT			
	-				79	NASA-005-Porosity-003	Quasi-isotropic	IM7/8552 satin weave fabric and unidirectional	Rotorcraft blade spar tube	Porosity	11.5 X 8.5 X 2.8	NASA: PEUT GE: PEUT, TTUT
		80	NASA-005-Porosity-004	Quasi-isotropic	IM7/8552 satin weave fabric and unidirectional	Rotorcraft blade spar tube	Porosity	11.5 X 8.5 X 2.8	GE: PEUT, TTUT			
	Porosity baseline	73	NASA-005-STANDARD-001	Quasi-isotropic	IM7/8552 satin weave fabric and unidirectional	Rotorcraft blade spar tube	Pristine	11.5 X 8.5 X 2.8	GE: PEUT, TTUT			

Table C.2-1. Specific specimens tested by each partner, organized by defect type.

Damage Type	Geometry / Location	#	Reference Standard	Structure	Material	Configuration / Radius	Defects and features	Dimensions (inches)	Partner: Tests
		2	NASA-S-MP	Uni-ply 0/90/45)	IM7/8552	Step heights: 0.1" - 1.0"	Step with medium porosity	14 x 8 x 1.5	GE: PEUT, TTUT NASA: XCT NGIS: PEUT, SSIR, TTIR
		3	NASA-S-HP	Uni-ply 0/90/45)	IM7/8552	Step heights: 0.1" - 1.0"	Step with high porosity	14 x 8 x 1.5	GE: PEUT, TTUT NASA: XCT NGIS: PEUT, SSIR, TTIR
	Porosity in flat	69	NASA-03-Porosity-Panel-001	Fiber Placed Panel	IM7/8552-1 Slit Tape w/ IM7/8552 Fabric OML	Flat panel	Porosity	15 X 17.5 X 0.15	NASA: PEUT GE: PEUT, TTUT NGIS: PEUT, TTUT, TTIR, SSIR
	(or step) panels	70	NASA-03-Porosity-Panel-002	Fiber Placed Panel	IM7/8552-1 Slit Tape w/ IM7/8552 Fabric OML	Flat panel	Porosity		NASA: PEUT GE: PEUT, TTUT NGIS: PEUT, TTUT, TTIR, SSIR
sity		71A&B	NASA-03-Porosity-Panel-003	Fiber Placed Panel	IM7/8552-1 Slit Tape w/ IM7/8552 Fabric OML	Flat panel	Porosity	14 X 16 X 0.15	GE: PEUT, TTUT NASA: PEUT, XCT NGIS: PEUT, TTUT, SSIR, TTIR
Porosity		72A&B	NASA-03-Porosity-Panel-004	Fiber Placed Panel	IM7/8552-1 Slit Tape w/ IM7/8552 Fabric OML	Flat panel	Porosity	15 X 17.5 X 0.15	GE: PEUT, TTUT NASA: PEUT, XCT NGIS: PEUT, TTUT, SSIR, TTIR
		10	NASA-W-5MP	Uni-ply 0/90/45)	IM7/8552	Height: 0.25"-1.0", 5 deg slope	Wedge Interleaved 5 deg with medium porosity	12 X 3 X 1.5	GE: PEUT, TTUT NASA: XCT
	Porosity in wedges	12	NASA-W-20MP	Uni-ply 0/90/45)	IM7/8552	Height: 0.25"-1.0", 20 deg slope	Wedge Interleaved 20 deg with medium porosity	12 X 3 X 1	GE: PEUT, TTUT NASA: XCT
		13	NASA-W-IL-20MP	Uni-ply 0/90/45)	IM7/8552	Height: 0.25"-1.0", 20 deg slope	Wedge Step 20 deg with medium porosity	12 X 3 X 1.5	GE: PEUT, TTUT NASA: XCT
	Porosity in woven	48	UTC 6 Porosity 2	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flat panel	Porosity	13 X 13 X 0.65	GE: PEUT, TTUT NASA: XCT
	composites	49	UTC 8 Porosity 1	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flat panel	Porosity	13 X 13 X 0.65	GE: PEUT, TTUT
	Porosity in woven baseline	50	UTC 11 Baseline 2	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flat panel	Baseline	12 X 11 X 0.5	GE: PEUT, TTUT NASA: PEUT

Damage Type	Geometry / Location	#	Reference Standard	Structure	Material	Configuration / Radius	Defects and features	Dimensions (inches)	Partner: Tests		
FOD & Inclusions	FOD	68	NASA-03-FOD-Panel-001	Fiber Placed Panel	IM7/8552-1 Slit Tape w/ IM7/8552 Fabric OML	Flat panel	FOD	19 X 43 X 0.3	GE: PEUT, TTUT NASA: XCT NGIS: PEUT, TTUT		
		16	NASA-RP-01D	Uni-ply 0/90/45)	IM7/8552	0.1" radial inside curve, delams along curve & flat surfaces	Radius Panel 0.1 in Curve Rad with defects	4.5 X 2.5 X 4	USC: GWUT		
		18	NASA-RP-10D	Uni-ply 0/90/45)	IM7/8552	1.0" radial inside curve, delams along curve & flat surfaces	Radius Panel 1.0 in Curve Rad with defects	4.5 X 2.5 X 4	USC: GWUT		
		19	NASA-RP-20D	Uni-ply 0/90/45)	IM7/8552	2.0" radial inside curve, delams along curve & flat surfaces	Rad with defects	4.3 \ 1.3 \ 4			
		20	NASA-RP-40D	Uni-ply 0/90/45)	IM7/8552	4.0" radial inside curve, delams along curve & flat surfaces	Radius Panel 4.0 in Curve Rad with defects	4.5 X 1.25 X 6	USC: GWUT NASA: PEUT		
suo	Delaminations at	35	8276-200-58-8 A	laminate	8276 Tape	S curve (/) <u>58°</u> slant with two 0.2° radii	Multiple types of delamination simulators (teflon, graton tape, air pillows, mold release wax, brass inserts, etc)	20 X 6 X 2.4	Boeing: PEUT, SSIR, DR, CR, XCT		
Delaminations	Radii (multiple delams at	36	8276-200-58-26 A	۳	8276 Tape	S curve (/) <u>58°</u> slant with two 0.2° radii	"	20 X 6 X 2.4	Boeing: PEUT, SSIR, DR, CR, XCT		
Dela	different depths)	37	8276-200-58-48 A	۳	8276 Tape	S curve (1^{-}) <u>58°</u> slant with two 0.2° radii	11	20 X 6 X 2.4	Boeing: PEUT, SSIR, DR, CR, XCT NASA: PEUT, XCT		
		38	8276-200-56-48 A	n	8276 Tape	S curve ($_/$) <u>56°</u> slant with two 0.2° radii	"	20 X 6 X 2.4	Boeing: PEUT, SSIR, DR, CR, XCT		
				39	8276-200-59-48 A	T	8276 Tape	S curve ($_/$) <u>59</u> ° slant with two 0.2° radii	IJ	20 X 6 X 2.4	Boeing: PEUT, SSIR, DR, CR, XCT NASA: XCT
		40	8276-200-58-8 B	"	8276 Tape	S curve ($//$) <u>58°</u> slant with two 0.2° radii	II	20 X 6 X 2.4	Not Tested		
		41	8276-200-58-26 B	"	8276 Tape	S curve (/) <u>58°</u> slant with two 0.2° radii	"	20 X 6 X 2.4	NASA: XCT		
		42	8276-200-58-48 B	"	8276 Tape	S curve (/) <u>58°</u> slant with two 0.2° radii	11	20 X 6 X 2.4	Not Tested		
		43	8276-200-56-48 B	II	8276 Tape	S curve (/) 56° slant with two 0.2° radii	"	20 X 6 X 2.4	NASA: XCT		
		44	8276-200-59-48 B	II	8276 Tape	S curve ($_/$) <u>59°</u> slant with two 0.2° radii	"	20 X 6 X 2.4	NASA: XCT		

Damage Type	Geometry / Location	#	Reference Standard	Structure	Material	Configuration / Radius	Defects and features	Dimensions (inches)	Partner: Tests								
		1	NASA-S-D	Uni-ply 0/90/45)	IM7/8552	Step heights: 0.1" - 1.0", Delams: Ply 1, Mid Ply, Last Ply	Step with FBH defects	14 x 8 x 1.5	GE: PEUT, TTUT NGIS: PEUT								
		35	8276-200-58-8 A	laminate	8276 Tape	S curve ($_/^-$) <u>58°</u> slant with two 0.2° radii	Multiple types of delamination simulators (teflon, graton tape, air pillows, mold release wax, brass inserts, etc)	20 X 6 X 2.4	Boeing: TTUT, SSIR, DR, CR, Backscatter, XCT								
	-	36	8276-200-58-26 A	n	8276 Tape	S curve ($_/^-$) 58° slant with two 0.2° radii	"	20 X 6 X 2.4	Boeing: TTUT, SSIR, DR, CR, XCT								
suo	Deleminations In	37	8276-200-58-48 A	n	8276 Tape	S curve ($_/$) <u>58°</u> slant with two 0.2° radii	"	20 X 6 X 2.4	Boeing: PEUT, SSIR, DR, CR, XCT NASA: PEUT								
linati	Delaminations In flat or step	38	8276-200-56-48 A	n	8276 Tape	S curve ($_/^-$) 56° slant with two 0.2° radii	"	20 X 6 X 2.4	Boeing: TTUT, DR, CR, XCT								
Delaminations	panels	39	8276-200-59-48 A	"	8276 Tape	S curve ($_/^-$) 59° slant with two 0.2° radii	"	20 X 6 X 2.4	Boeing: TTUT, DR, CR, XCT NASA: XCT								
	-		40	8276-200-58-8 B	n	8276 Tape	S curve ($_/$) <u>58°</u> slant with two 0.2° radii	"	20 X 6 X 2.4	Not Tested							
					41	8276-200-58-26 B	n	8276 Tape	S curve ($_/^-$) 58° slant with two 0.2° radii	"	20 X 6 X 2.4	Not Tested					
							ŀ			42	8276-200-58-48 B	"	8276 Tape	S curve ($_/$) <u>58°</u> slant with two 0.2° radii	н	20 X 6 X 2.4	Not Tested
					43	8276-200-56-48 B	n	8276 Tape	S curve ($_/$) <u>56°</u> slant with two 0.2° radii	"	20 X 6 X 2.4	NASA: XCT					
		44	8276-200-59-48 B	II	8276 Tape	S curve ($_/^-$) 59° slant with two 0.2° radii	11	20 X 6 X 2.4	NASA: XCT								

Damage Type	Geometry / Location	#	Reference Standard	Structure	Material	Configuration / Radius	Defects and features	Dimensions (inches)	Partner: Tests
		4	NASA-W-5D	Uni-ply 0/90/45)	IM7/8552	Height: 0.25"-1.0", 5 deg slope, delams start-end of slope	Wedge Step 5 deg with defects	12 X 3 X 1.5	Not Tested
		5	NASA-W-20D	Uni-ply 0/90/45)	IM7/8552	Height: 0.25"-1.0", 20 deg slope, delams start-end of slope	Wedge Step 20 deg with defects	12 X 3 X 1.1	Not Tested
	Delaminations in	6	NASA-W-35D	Uni-ply 0/90/45)	IM7/8552	Height: 0.25"-1.0", 35 deg slope, delams start-end of slope	Wedge Step 35 deg with defects	12 X 7 X 1.5	Not Tested
	wedge panels	7	NASA-W-IL-5D	Uni-ply 0/90/45)	IM7/8552	Height: 0.25"-1.0", 5 deg slope, delams start-end of slope	Wedge Interleaved 5 deg with defects	12 X 3 X 1.1	Not Tested
బ		8	NASA-W-IL-20D	Uni-ply 0/90/45)	IM7/8552	Height: 0.25"-1.0", 20 deg slope, delams start-end of slope	Wedge Interleaved 20 deg with defects	12 X 3 X 1.1	GE: PEUT, TTUT
Delaminations		11	NASA-W-IL-5D	Uni-ply 0/90/45)	IM7/8552	Height: 0.25"-1.0", 5 deg slope	Wedge Step 5 deg with defects	12 X 3 X 1.5	ge: Peut, ttut Nasa: Xct
Delan	Delaminations in	45	NASA-TAB-FBH-FLAT	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flat panel	Delam/disbond (FBH)	16 X 10 X 0.75	GE: PEUT, TTUT NASA: XCT USC: GWUT
	woven composites	47	NASA-TAB-P-FLAT	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flat panel	Delamination (Air Pillow)	13 X 13 X 0.5	GE: PEUT, TTUT NASA: PEUT, XCT USC: GWUT
	Delamination in	54	NASA-TAB-05P-FLANGE1	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flange	Delamination (Air Pillow)	12 X 4.5 X 2.5	GE: PEUT, TTUT
	woven flange	55	NASA-TAB-05P-FLANGE2	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flange	Delamination (Air Pillow)	12 X 4.5 X 2.5	NASA: SSIR, TTIR
	Flange baseline	52	NASA-TAB-BASE1-FLANGE	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flange	Baseline	11 X 4.5 X 2.25	GE: PEUT, TTUT
	r lange baseline	53	NASA-TAB-BASE2-FLANGE	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flange	Baseline	13 X 13 X 0.65	Not Tested

Damage Type	Geometry / Location	#	Reference Standard	Structure	Material	Configuration / Radius	Defects and features	Dimensions (inches)	Partner: Tests
		57	NASA-03-Twisted-Tow-001	Fiber Placed Panel	IM7/8552-1 Slit Tape	Flat panel	Twisted Tow - 1 ply	16 X 16 X 0.15	NASA: PEUT, SSIR, TTIR
	Tow defects in	58	NASA-03-Twisted-Tow-002	Fiber Placed Panel	IM7/8552-1 Slit Tape	Flat panel	Twisted Tow - Mid	16 X 16 X 0.15	NASA: PEUT, SSIR, TTIR
nags)	AFP (automated fiber placement)	60	NASA-03-Folded-Tow-001	Fiber Placed Panel	IM7/8552-1 Slit Tape	Flat panel	Folded Tow - 1 ply	16 X 16 X 0.15	NASA: PEUT, SSIR, TTIR
N SI	composites	61	NASA-03-Folded-Tow-002	Fiber Placed Panel	IM7/8552-1 Slit Tape	Flat panel	Folded Tow - Mid	16 X 16 X 0.15	NASA: PEUT, SSIR, TTIR
ss, to	(twists, folds, laps & gaps)	62	NASA-03-Missing-Tow-001	Fiber Placed Panel	IM7/8552-1 Slit Tape	Flat panel	Missing Tow - 1 ply	16 X 16 X 0.15	NASA: PEUT, SSIR, TTIR
(wrinkles		63	NASA-03-Missing-Tow-002	Fiber Placed Panel	IM7/8552-1 Slit Tape	Flat panel	Missing Tow - Mid	16 X 16 X 0.15	NASA: PEUT, SSIR, TTIR
w) s		64	NASA-03-Bridged-Joggle-001	Fiber Placed Panel	IM7/8552-1 Slit Tape	Flat panel	Bridging - Joggle	12 X 9 X 1.3	Not Tested
Defects	Bridging joggle	65	NASA-03-Bridged-Joggle-002	Fiber Placed Panel	IM7/8552-1 Slit Tape	Flat panel	Bridging - Joggle	12 X 9 X 1.3	Not Tested
Fiber D	in AFP	66	NASA-03-Bridged-Joggle-003	Fiber Placed Panel	IM7/8552-1 Slit Tape	Flat panel	Bridging - Joggle	12 X 9 X 1.3	Not Tested
<u>ь</u>		67	NASA-03-Bridged-Joggle-004	Fiber Placed Panel	IM7/8552-1 Slit Tape	Flat panel	Bridging - Joggle	12 X 9 X 1.3	Not Tested
AF	Detection of tow orientation in AFP composite	59	NASA-03-Steered-Tow-003	Fiber Placed Panel	IM7/8552-1 Slit Tape	Flat panel	Tow Orientation	46.5 X 46.5 X 0.15	Not Tested

Damage Type	Geometry / Location	#	Reference Standard	Structure	Material	Configuration / Radius	Defects and features	Dimensions (inches)	Partner: Tests
		31	Wrinkle A1	Thin laminates	8552-1 slit tape	Flat panel	Flat wrinkles	1.5 X 12 X 0.15	Boeing: SSIR USC: GWUT NASA: XCT, PEUT
	Detection of fiber wrinkling in	32	Wrinkle A2	Thin laminates	8552-1 slit tape	Flat panel	Medium wrinkles	1.5 X 12 X 0.15	Boeing: SSIR USC: GWUT NASA: XCT, PEUT
tow snags)	flat panels	33	Wrinkle A3	Thin laminates	8552-1 slit tape	Flat panel	Significant wrinkles	1.5 X 12 X 0.15	Boeing: SSIR USC: GWUT NASA: XCT, PEUT
Defects (wrinkles, to		34	Wrinkle A4	Thin laminates	8552-1 slit tape	Flat panel	Significant wrinkles	1.5 X 12 X 0.15	Boeing: SSIR USC: GWUT NASA: XCT, PEUT
icts (w	Detection of	75	NASA-005-Wrinkle-001	Quasi-isotropic	IM7/8552 satin weave fabric and unidirectional	Rotorcraft blade spar tube	Out of plane wrinkle	11.5 X 8.5 X 2.8	Not Tested
er Defe	wrinkling in radii	76	NASA-005-Wrinkle-002	Quasi-isotropic	IM7/8552 satin weave fabric and unidirectional	Rotorcraft blade spar tube	Out of plane wrinkle	11.5 X 8.5 X 2.8	NASA: PEUT
Fiber	Baseline	74	NASA-005-STANDARD-002	Quasi-isotropic	IM7/8552 satin weave fabric and unidirectional	Rotorcraft blade spar tube	Pristine	11.5 X 8.5 X 2.8	Not Tested
	Fabric snag in woven composites	51	NASA-TAB-SNAG13-FLAT	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flat panel	Fabric Snag	12 X 13 X 0.5	Not Tested
	Snag in woven flange	56	NASA-TAB-SNAG1-FLAT	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flange	Fabric Snag	9 X 12 X 2	NASA: XCT
Bond strength panels (LBID)	Mold Release 1 UTC	46	NASA-TAB-MOLDREL2-FLAT	Triaxial Braid, 0/+60/-60	T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825	Flat panel	Disbond	13 X 12.5 X 0.5	NASA: PEUT, XCT

Damage Type	Geometry / Location	#	Reference Standard	Structure	Material	Configuration / Radius	Defects and features	Dimensions (inches)	Partner: Tests
		81	QI_45 8ply 6x5 Impact 1	[(45/90/-45/0)]S	IM7/8552	Flat panel	1 impact 0.34"	6"x5"	NASA: SSIR, PEUT Boeing: XCT, CR
		82	QI_45 8ply 3x6 Impact 1	[(45/90/-45/0)]S	IM7/8552	Flat panel	1 impact 0.82"	3"x6"	NASA: SSIR, PEUT, XCT Boeing: XCT, CR
		83	QI_45 8ply 3x6 Impact 2	[(45/90/-45/0)]S	IM7/8552	Flat panel	1 impact 0.37"	3"x6"	NASA: SSIR, PEUT, XCT Boeing: XCT, CR
		84	QI_45 8ply 11x11 Impact 1	[(45/90/-45/0)]S	IM7/8552	Flat panel	Spare-no impact	11"x11"	Spare - not tested
		85	QI_45 8ply 22x22 Impact 1	[(45/90/-45/0)]S	IM7/8552	Flat panel	4 impacts 0.22"-0.54"	22"x22"	NASA: SSIR Boeing: CT, CR, Backscatter, Shearography
		86	QI_45 16ply 6x6 Impact 1	[(45/90/-45/0)2]S	IM7/8552	Flat panel	1 impact 0.2"	6"x6"	NASA: SSIR, PEUT Boeing: XCT, CR
	Low energy impacts in flat panels (BVID)	87	QI_45 16ply 3x5 Impact 1	[(45/90/-45/0)2]S	IM7/8552	Flat panel	1 impact 1.28"	3"x5"	NASA: SSIR, PEUT, XCT Boeing: XCT, CR
		88	QI_45 16ply 3x5 Impact 2	[(45/90/-45/0)2]S	IM7/8552	Flat panel	1 impact 0.88"	3"x5"	NASA: SSIR, PEUT, XCT Boeing: XCT, CR
Jamage		89	QI_45 16ply 22x22 Impact 1	[(45/90/-45/0)2]S	IM7/8552	Flat panel	4 impacts 0.22"-0.75"	22"x22"	NASA: SSIR Boeing: XCT, CR, Shearography
Impact Damage		90	QI_45 24ply 6x6 Impact 1	[(45/90/-45/0)3]S	IM7/8552	Flat panel	1 impact 1"	6"x6"	NASA: SSIR, PEUT Boeing: XCT, CR
		91	QI_45 24ply 3x5 Impact 1	[(45/90/-45/0)3]S	IM7/8552	Flat panel	1 impact 1.11"	3"x5"	NASA: SSIR, PEUT, XCT Boeing: XCT, CR
		92	QI_45 24ply 3x5 Impact 2	[(45/90/-45/0)3]S	IM7/8552	Flat panel	1 impact 1"	3"x5"	NASA: SSIR,PEUT, XCT Boeing: XCT, CR
		93	QI_45 32ply 6x6 Impact 1	[(45/90/-45/0)4]S	IM7/8552	Flat panel	1 impact 0.23"	6"x6"	NASA: SSIR, PEUT Boeing: XCT, CR
		94	QI_45 32ply 3x5 Impact 1	[(45/90/-45/0)4]S	IM7/8552	Flat panel	1 impact 1.12"	3"x5"	NASA: SSIR, PEUT, XCT Boeing: XCT, CR
		95	QI_45 32ply 3x5 Impact 2	[(45/90/-45/0)4]S	IM7/8552	Flat panel	1 impact 0.25"	3"x5"	NASA: SSIR, PEUT, XCT Boeing: XCT, CR
		96	TC1 18ply 6x6 Impact 1	[45/90/-45/0/0/45/90/-45/0]S	IM7/8552	Flat panel	1 impact 0.3"	6"x6"	NASA: SSIR, PEUT Boeing: XCT, CR
		97	TC1 18ply 3x5 Impact 1	[45/90/-45/0/0/45/90/-45/0]S	IM7/8552	Flat panel	1 impact 0.92"	3"x5"	NASA: SSIR,PEUT, XCT Boeing: XCT, CR
		98	TC1 18ply 3x5 Impact 2	[45/90/-45/0/0/45/90/-45/0]S	IM7/8552	Flat panel	1 impact 0.96"	3"x5"	NASA: SSIR, PEUT, XCT Boeing: XCT, CR

Appendix D Manufacturing and Design Documents and Validation Reports from IDIQ

As discussed in detail in Appendix A, each ACP industry partner fabricated a set of composite specimens (standards) that contain a range of controlled defects representing those typically found in aerospace composite materials. Each consortium company chose or was assigned standards to fabricate based on manufacturing capabilities. Defect types included such manufacturing defects such as varying amounts of porosity (in a range typically found in autoclave cured aerospace composites) and varying degrees of fiber waviness (both in-plane and out-of-plane), as well as inserts representing delamination type defects. Appendix D details the manufacturing information for each type of standard as fabricated and organized by partner. The specimen numbers as assigned in the round-robin test matrix (Appendix B) are included for each set of standards.

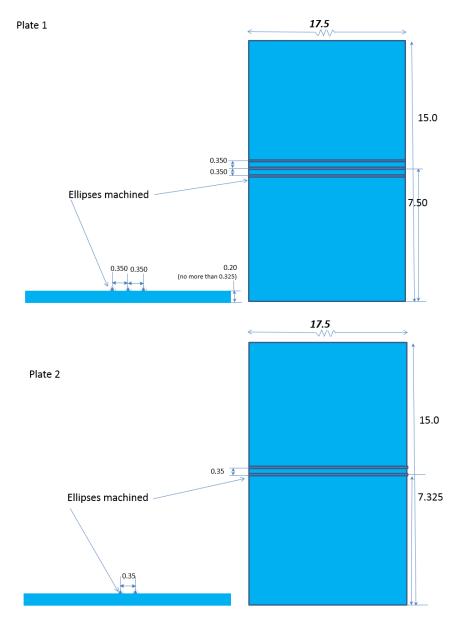
Consortium		Description
Member	Number/Name	
Number		
1	31	Thin laminate IM7/8552-1 slit tape Flat wrinkles
1	32	Thin laminate IM7/8552-1 slit tape Medium wrinkles
1	33	Thin laminate IM7/8552-1 slit tape Significant wrinkles
1	34	Thin laminate IM7/8552-1 slit tape Significant wrinkles
1	35	8276 tape, S curve (/) <u>58°</u> slant with two 0.2° radii Multiple types of delamination simulators (Polytetraflouroethylene (PTFE), American Biltrite 6782, air pillows, mold release wax, brass inserts, etc.)
1	36	8276 tape, S curve (/ ⁻) <u>58°</u> slant with two 0.2° radii Multiple types of delamination simulators (PTFE, American Biltrite 6782, air pillows, mold release wax, brass inserts, etc.)
1	37	8276 tape, S curve (/ ⁻) <u>58°</u> slant with two 0.2° radii Multiple types of delamination simulators (PTFE, American Biltrite 6782, air pillows, mold release wax, brass inserts, etc.)
1	38	8276 tape, S curve (/ ⁻) <u>56°</u> slant with two 0.2° radii Multiple types of delamination simulators (PTFE, American Biltrite 6782, air pillows, mold release wax, brass inserts, etc.)
1	39	8276 tape, S curve (/ ⁻) <u>59°</u> slant with two 0.2° radii Multiple types of delamination simulators (PTFE, American Biltrite 6782, air pillows, mold release wax, brass inserts, etc.)
1	40	8276 tape, S curve (/) <u>58°</u> slant with two 0.2° radii Multiple types of delamination simulators (PTFE, American Biltrite 6782, air pillows, mold release wax, brass inserts, etc.)

D.1	Manufacturing Information for NDE Standards Provided b	y Consortium Member #1
------------	--	------------------------

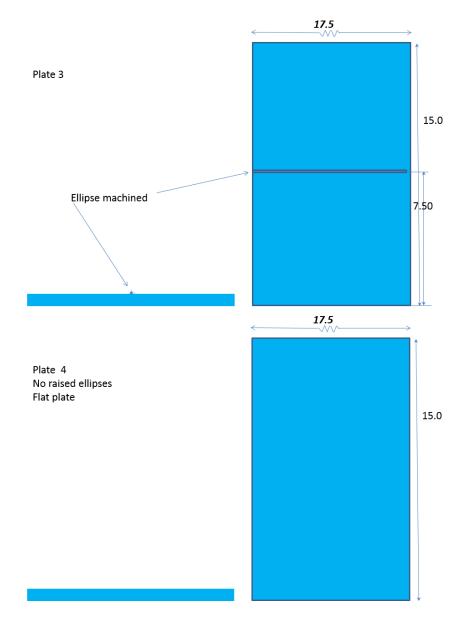
1	41	8276 tape, S curve ($_/$) <u>58</u> ° slant with two 0.2° radii
		Multiple types of delamination simulators (PTFE, American Biltrite 6782,
		air pillows, mold release wax, brass inserts, etc.)
1	42	8276 tape, S curve ($_/^{-}$) <u>58°</u> slant with two 0.2° radii
		Multiple types of delamination simulators (PTFE, American Biltrite 6782,
		air pillows, mold release wax, brass inserts, etc.)
1	43	8276 tape, S curve ($_/$) <u>56°</u> slant with two 0.2° radii
		Multiple types of delamination simulators (PTFE, American Biltrite 6782,
		air pillows, mold release wax, brass inserts, etc.)
1	44	8276 tape, S curve ($_/$) <u>59°</u> slant with two 0.2° radii
		Multiple types of delamination simulators (PTFE, American Biltrite 6782,
		air pillows, mold release wax, brass inserts, etc.)

D.1.1 Wrinkle specimens

D.1.1.1 Specimens 31, 32, 33, 34

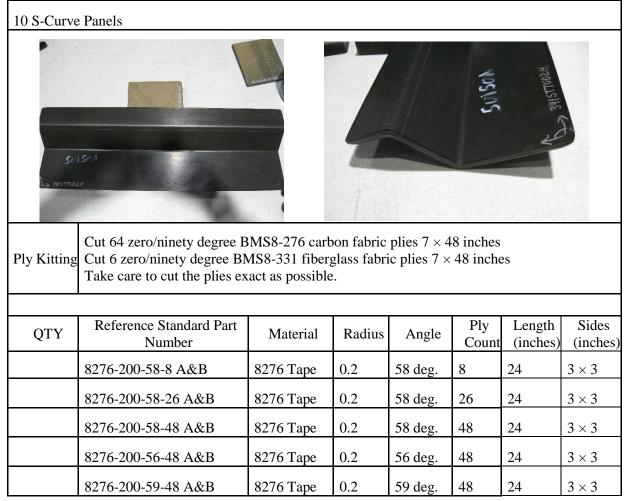

Standard designation,	#31, #32, #33, #34				
type, and general	NASA – 02- laminate-wrinkle—001-018				
purpose.	Multiple panels fabricated with wrinkles of varying wavelength and amplitude a				
	multiple depths. (see example micrographs from similar specimens below)				
	1002/m				
	0226 0 0221 0 0025 0				
	0.00% m 0.002 m				
	0.001 m 0.200 m 0.007 m 0.009 m 0.009 m				
	0.077 0 0.000 0				
	0206 m 0221 m 0026 m 0025 m				
	0.022 m 0.022 m 0.022 m				
	0.027 m 0.000 m 0.0000 m 0.000 m 0.0000 m 0.000 m 0.0000 m 0.000000 m 0.0000				
	0.00 0.000				
	0.000 is				
Fabrication processes	Tool Prep: The tool is cleaned with acetone followed by a thorough wipe down				
and procedures (e.g.,	with a release agent such as Frekote 710 LV. Complete 3 coats of the release				
material type, tool prep,	agent.				
material handling	Defect Placement: Tape is layered on wrinkle tool surface up to required depth				
requirements, defect	for that individual standard. Plies are pressed into place using hand pressure.				
placement, ply debulk	Handling: Wear clean impervious gloves while handling the material and lab				
intervals, bagging, cure	coat.				
cycle, machining)					
required					
	Bagging:				
	The bagging scheme is shown in profile below.				

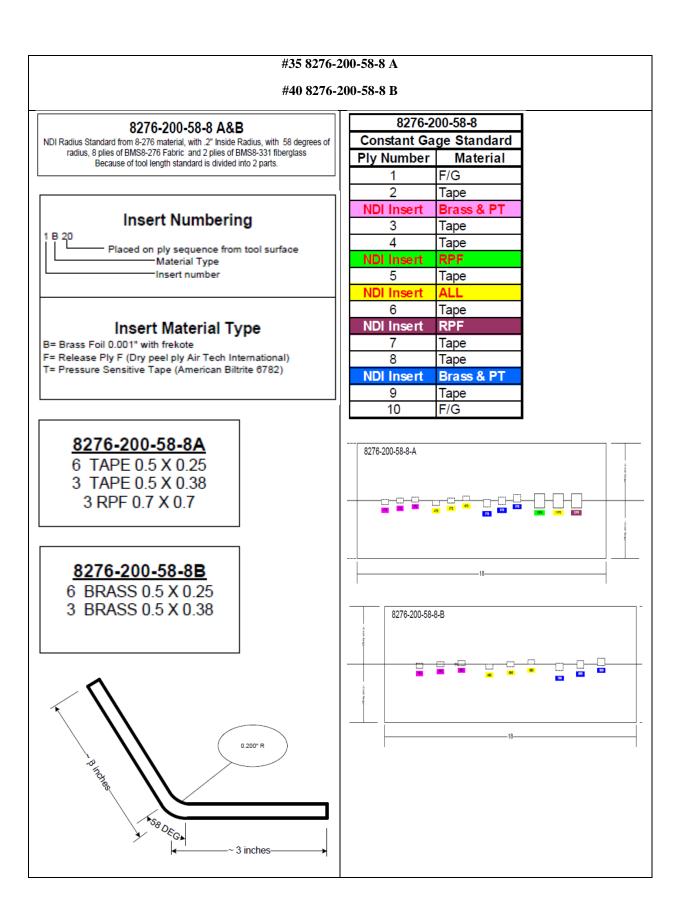
	Breather Vacuum Bag
	Tape Seal Caul Plate
	Edge Dam Non-porous FEP
	Thermocouple Breather String*
	Tool
	Frekote Panel Lay-up Bag Sealant
	*The breather string must be in contact with the edge of the part and extend
	beyond the seal to touch the breather pad material as shown in the overhead
	view below.
	Backside:
	Cured part is removed from the wrinkle tool and the required number of cured
	plies (dependent on each individual standard) will be bonded to the backside of
	the part to cover wrinkles and fill troughs with bonding agent.
List of materials,	Material: IM7/8552-1 Carbon Fiber/Epoxy full impregnated tape
processes, tools and	Ply Schedule: [45/0/-45/90]3s
equipment used for the	Tool Type: Utilize a rolling cart capable of withstanding the autoclave. The tool
fabrication of the	surface will be either steel or aluminum
standard.	Bagging Materials:
	A400 Release Film 10 oz. breather cloth (N10)
	Silicone Edge Dam Edge Breather Tape
	Vacuum Bagging Material
Standard	Visual. Currently only destructive visual exam can fully characterize the defects.
characterization and	Seeking NDI methods to detect and characterize defect features (i.e. depth,
verification method(s)	wavelength, amplitude, location)
Comments	Individual panels are cut from a larger plate. One edge of each panel is polished
	for micrograph inspection to verify wrinkle characteristics.


Wrinkle Standard Plan

Peak to Peak Amplitude of Wrinkle	Depth to Trough	Panel Thickness
	0.035	
	0.055	0.3
0.01	0.05	0.15
0.01	0.05	0.3
	0.065	0.15
	0.005	0.3
	0.035	0.15
	0.055	0.3
0.02	0.05	0.15
0.02		0.3
	0.065	0.15
		0.3
	0.035	0.15
	0.055	0.3
0.02	0.05	0.15
0.03	0.05	0.3
	0.045	0.15
	0.065	0.3

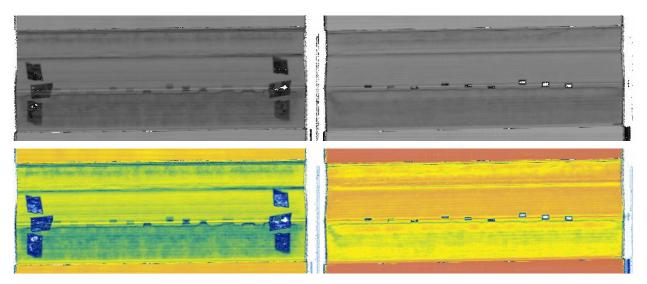
Wrinkle Tool Plates

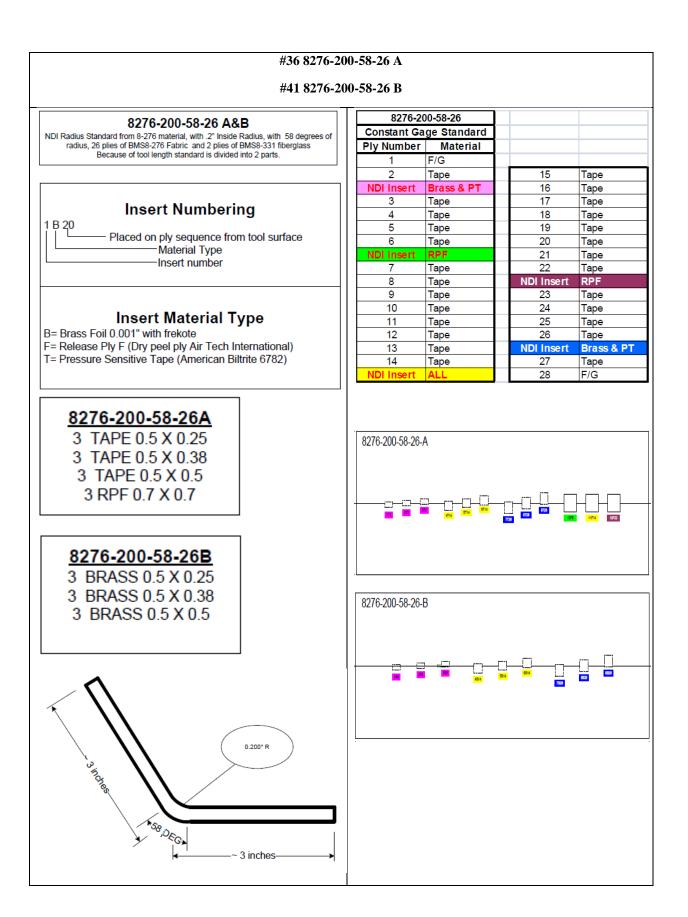



Wrinkle Tool Plates

D.1.2 S-Curve panels with imbedded inserts Partner #1

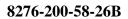
D.1.2.1 Specimens 35, 36, 37, 38, 39, 40, 41, 42, 43, 44

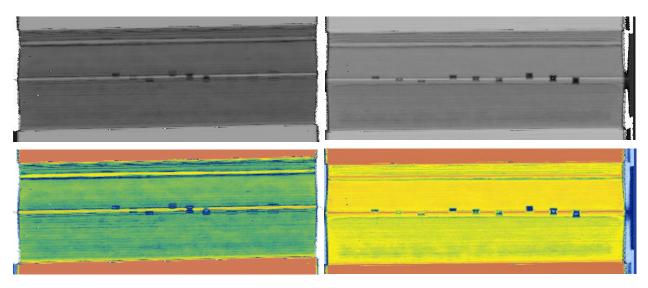




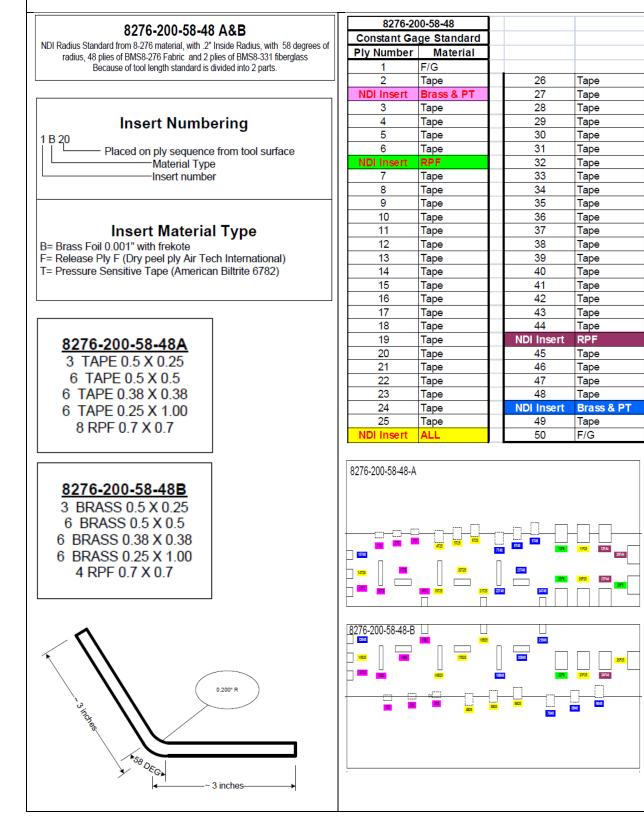
Validation Data

8276-200-58-8A


8276-200-58-8B



Validation Data


8276-200-58-26A

#37 8276-200-58-48 A

#42 8276-200-58-48 B

Validation Data

8276-200-58-48A

#38 8276-200-56-48 A

#43 8276-200-56-48 B

8276-200-56-48 A&B

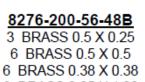
NDI Radius Standard from 8-276 material, with .2" Inside Radius, with 56 degrees of radius, 48 plies of BMS8-276 Fabric and 2 plies of BMS8-331 fiberglass Because of tool length standard is divided into 2 parts.

Insert Numbering

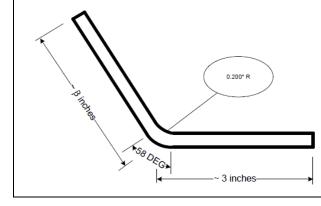
1 B 20

Placed on ply sequence from tool surface Material Type Insert number

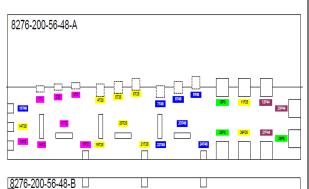
Insert Material Type

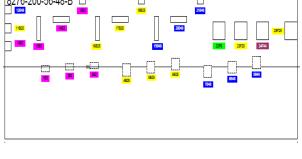

B= Brass Foil 0.001" with frekote

F= Release Ply F (Dry peel ply Air Tech International)


T= Pressure Sensitive Tape (American Biltrite 6782)

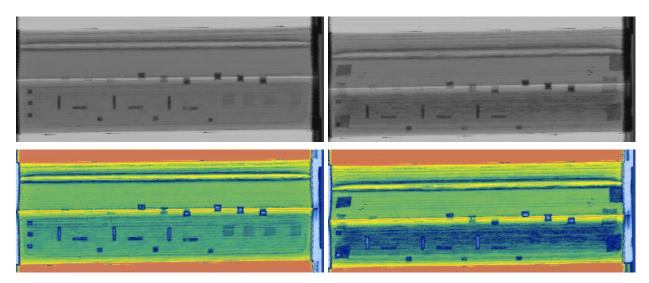
8276-200-56-48A

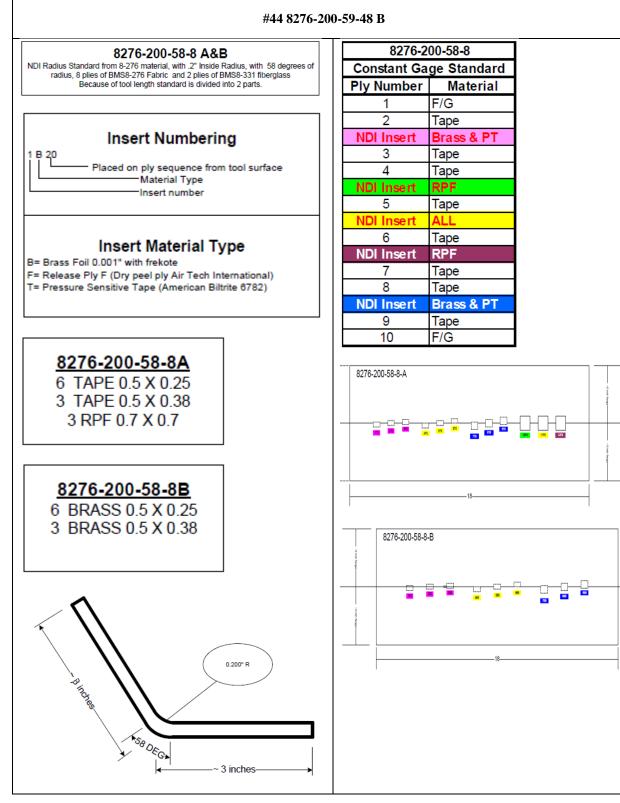

3 TAPE 0.5 X 0.25 6 TAPE 0.5 X 0.5 6 TAPE 0.38 X 0.38 6 TAPE 0.25 X 1.00 8 RPF 0.7 X 0.7



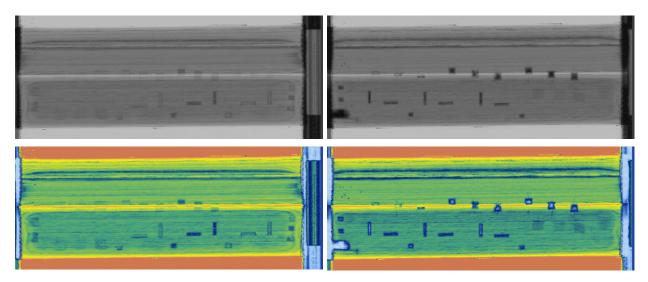
6 BRASS 0.25 X 1.00 4 RPF 0.7 X 0.7

8276-20	00-56-48		
Constant Gage Standard			
Ply Number	Material		
1	F/G		
2	Таре	26	Таре
NDI Insert	Brass & PT	27	Таре
3	Таре	28	Таре
4	Таре	29	Таре
5	Таре	30	Таре
6	Таре	31	Таре
NDI Insert	RPF	32	Таре
7	Таре	33	Таре
8	Таре	34	Таре
9	Таре	35	Таре
10	Таре	36	Таре
11	Таре	37	Таре
12	Таре	38	Таре
13	Таре	39	Таре
14	Таре	40	Таре
15	Таре	41	Таре
16	Таре	42	Таре
17	Таре	43	Таре
18	Таре	44	Таре
19	Таре	NDI Insert	RPF
20	Таре	45	Таре
21	Таре	46	Таре
22	Таре	47	Таре
23	Таре	48	Таре
24	Таре	NDI Insert	Brass 8
25	Таре	49	Таре
NDI Insert	ALL	50	F/G




Validation Data

8276-200-56-48A



#39 8276-200-59-48 A

Validation Data

8276-200-59-48A

Consortium	Specimen	Description
Member	Number/ Name	
Number		
2	1	Uni-ply 0/90/45), IM7/8552
2	NASA-S-D	Step heights: 0.1 inch to 1.0 inch, Delaminations: Ply 1, Mid Ply, Last
	NASA-S-D	
		Ply Store with EDU defects
2	2	Step with FBH defects
2	2 NASA S MD	Uni-ply 0/90/45), IM7/8552,
	NASA-S-MP	Step heights: 0.1 inch to 1.0 inch
		Step with medium porosity
2	3	Uni-ply 0/90/45)
	NASA-S-HP	IM7/8552
		Step heights: 0.1 inch to 1.0 inch
		Step with high porosity
2	4	Uni-ply 0/90/45)
	NASA-W-5D	IM7/8552
		Height: 0.25 inch-1.0 inch, 5 degrees slope, delaminations start-end of
		slope
		Wedge Step 5 degrees with defects
2	5	Uni-ply 0/90/45)
	NASA-W-20D	IM7/8552
		Height: 0.25 inch-1.0 inch, 20 degrees slope, delaminations start-end of
		slope
		Wedge Step 20 degrees with defects
2	6	Uni-ply 0/90/45)
	NASA-W-35D	IM7/8552
		Height: 0.25 inch-1.0 inch, 35 degrees slope, delaminations start-end of
		slope
		Wedge Step 35 degrees with defects
2	7	Uni-ply 0/90/45)
	NASA-W-IL-5D	IM7/8552
		Height: 0.25 inch-1.0 inch, 5 degrees slope, delaminations start-end of
		slope
_	-	Wedge Interleaved 5 degrees with defects
2	8	Uni-ply 0/90/45)
	NASA-W-IL-20D	
		Height: 0.25 inch-1.0 inch, 20 degrees slope, delaminations start-end of
		slope
		Wedge Interleaved 20 degrees with defects
2	10	Uni-ply 0/90/45)
	NASA-W-5MP	IM7/8552
		Height: 0.25 inch-1.0 inch, 5 degrees slope
2	11	Wedge Interleaved 5 degrees with medium porosity
2	11	Uni-ply 0/90/45)
	NASA-W-IL-5D	IM7/8552
		Height: 0.25 inch-1.0 inch, 5 degrees slope
		Wedge Step 5 degrees with defects

D.2 Manufacturing Information for NDE Standards Provided by Consortium Member #2

Consortium	Specimen	Description
Member	Number/ Name	
Number		
2	12	Uni-ply 0/90/45)
	NASA-W-20MP	IM7/8552
		Height: 0.25 inch-1.0 inch, 20 degrees slope
		Wedge Interleaved 20 degrees with medium porosity
2	13	Uni-ply 0/90/45)
	NASA-W-IL-	IM7/8552
	20MP	Height: 0.25 inch-1.0 inch, 20 degrees slope
2	1.6	Wedge Step 20 degrees with medium porosity
2	16	Uni-ply 0/90/45)
	NASA-RP-01D	IM7/8552
		0.1 inch radial inside curve, delaminations along curve & flat surfaces Radius Panel 0.1 inch Curve Rad with defects
2	18	Uni-ply 0/90/45)
2	NASA-RP-10D	IM7/8552
		1.0 inch radial inside curve, delaminations along curve & flat surfaces
		Radius Panel 1.0 inch Curve Rad with defects
2	19	Uni-ply 0/90/45)
	NASA-RP-20D	IM7/8552
		2.0 inch radial inside curve, delaminations along curve & flat surfaces
		Radius Panel 2.0 inch Curve Rad with defects
2	20	Uni-ply 0/90/45)
	NASA-RP-40D	IM7/8552
		4.0 inch radial inside curve, delaminations along curve & flat surfaces
		Radius Panel 4.0 inch Curve Rad with defects
2	22	Uni-ply 0/90/45)
	NASA-RP-01MP	IM7/8552
		0.1 inch radial inside curve
2	26	Radius Panel 0.1 inch Curve Rad with medium porosity Uni-ply 0/90/45)
2	NASA-RP-10MP	IM7/8552
		1.0 inch radial inside curve
		Radius Panel 1.0 inch Curve Rad with medium porosity
2	28	Uni-ply 0/90/45)
	NASA-RP-20MP	IM7/8552
		2.0 inch radial inside curve
		Radius Panel 2.0 inch Curve Rad with medium porosity
2	30	Uni-ply 0/90/45)
	NASA-RP-40MP	IM7/8552
		4.0 inch radial inside curve
		Radius Panel 4.0 in Curve Rad with medium porosity

D.2.1 Baseline, Defect and Porosity in Wedges and Flat Panels

D.2.1.1 Manufacturing - Specimens 1, 2, 3, 4, 5, 6, [7, 8, 10, 11, 12, 13]², 16, 18, 19, 20, [22, 26, 28, 30]³

Layup

All panels (baseline, defect and porosity) were laid up using a quasi-isotropic stacking sequence, [0/90/45/-45]ns, *n* varied on the panel type. For the wedge panels, the ply drops were stepped or interleaved along the slope. The stepped plies were simply arranged so each successive ply was shorter than the one below it. The interleaved plies were agented symmetrically, so short plies and longer plies were alternated in the stackup sequence. In both cases, a full set of plies, $(0,90,\pm45)$, was placed as a cover layer over the exposed ply drops of the completed stack.

Cure Cycles

The baseline and defect panels were cured using the recommended cure cycle from the material supplier, Hexcel, and is shown in Figure D.2-1. The medium porosity panels were cured using a modified cure cycle, where the autoclave pressure was halved, as shown in Figure D.2-2. One high porosity panel was also cured using a modified cure cycle, where no autoclave pressure was applied but vacuum was maintained, as shown in Figure D.2-3. The medium porosity cycle, (Figure D.2-2), commonly generated 2% to 4% porosity.

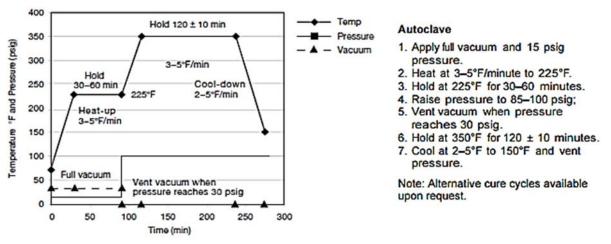


Figure D.2.-1. Standard cure cycle.

² No manufacturing documentation received from OEM.

³ No manufacturing documentation received from OEM.

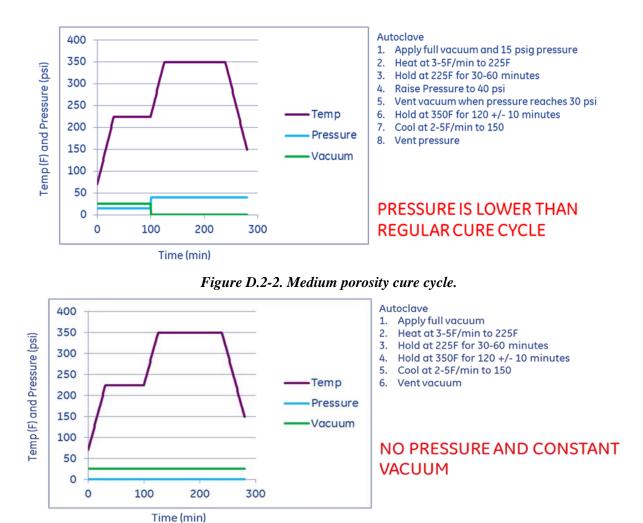


Figure D.2-3. High porosity cure cycle.

D.2.1.2 Specimen Validation

Specimen #1

2 PTFE inserts per row (rad. 0.25in, thickness 0.002in)

3 Flat-Bottom Holes Per Row (rad. 0.25in, 1 ply 1, 2 mid ply)

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
2	NASA-S-D Delamination Panel	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.1 to 1.0 inch Delaminations: Ply 1, Mid Ply	14 in.	8 in.

Validation Test Details

Measurement Type

	. 1
PEUT, Sharp	X
Focus	Λ
TTUT	
TTUT Phased	
Array (PA)	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

Х

Detection Features in Standard (Flaws Present)

RPF Tape Defect	
Delamination /	x
Disbond	Λ
Microcrack	
Porosity	
Other	

Transducer/Equipment Specifications

Transducer Make/Model	Olympus V307
Transducer Frequency	5 MHz
Transducer Focus, Diameter	2.0 in. Focal Length, 1.0 in. Dia.
Transducer Peak-Peak/root mean squared	100V
(RMS) Voltage	100 V
Scanning Spatial Resolution	0.010 in.
Pulser Make/Model	JSR DPR35G
Pulser Gain	45.03 dB
Pulser Damping	1000 Ohms
Pulser Filters	HP-1MHz, LP-22MHz

Testing Specifications

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence
Data Points Captured	6 Gates
Sampling Frequency	100 million/sec
Data Acquisition (DAQ) Model	0
Averages (if applicable)	
Final File Format	OKOS

Testing Notes

Gate 1: Near surface to Ply 1 inspectionGate 2: Ply 1 to mid-ply inspectionGate 3: Mid-ply area inspectionGate 4: Last ply to back wall inspectionGate 5: Back wall area inspectionGate 6: All-ply level inspection

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

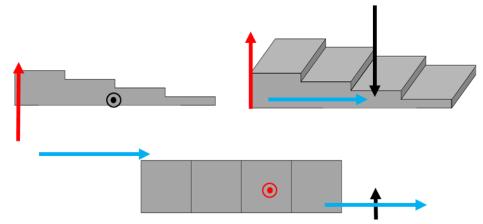


Figure D.2-4. Scanning orientation of NASA-S-D delamination specimen.

Figures & Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 3, and Gate 4 (total gate width is 8.00us of each). Measurement method detected 80% of known defects.

Note:

Region A: Ply 1 PTFE insert Region B: Mid-ply PTFE insert Region C: Ply 1 flat-bottom hole Region D: Mid-ply flat-bottom hole Region E: Mid-ply flat-bottom hole

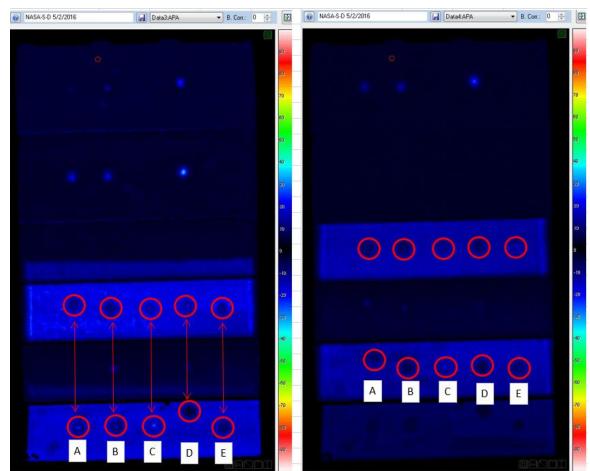


Figure D.2-5. Gate 3 (left) and Gate (4) PEUT scan results from NASA-S-D specimen.

Specimen Photos

Figure D.2-6. Images of NASA-S-D step specimen.

Specimen #2

Medium Porosity Specimen

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
2	NASA-S-MP Delamination Panel	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.1 to 1.0 inch Delaminations: Ply 1, Mid Ply	14 in.	8 in.

Validation Test Details

Measurement Type

PEUT, Sharp Focus	X
TTUT	
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

Curved Radius	
Flat Panel	
Step	X
Wedge	
Other	

Detection Features in Standard (Flaws Present)

APF Tape Defect	
Delamination /	
Disbond	
Microcrack	
Porosity	X
Other	

Transducer/Equipment Specifications

Transducer Make/Model	Olympus V307
Transducer Frequency	5 MHz
Transducer Focus, Diameter	2.0in. Focal Length, 1.0in. Dia.
Transducer Peak-Peak/RMS Voltage	100V
Scanning Spatial Resolution	0.010 in.
Pulser Make/Model	JSR DPR35G
Pulser Gain	N/A
Pulser Damping	1000 Ohms
Pulser Filters	HP-1MHz, LP-22MHz

Testing Specifications

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence
Data Points Captured	6 Gates
Sampling Frequency	100 million/sec
DAQ Model	0
Averages (if applicable)	
Final File Format	OKOS

Testing Notes

Gate 1: Near Surface to Ply 1 inspectionGate 2: Ply 1 to mid-inspectionGate 3: Mid Ply area inspectionGate 4: Last Ply to back wall inspectionGate 5: Back wall area inspectionGate 6: All ply level inspection

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

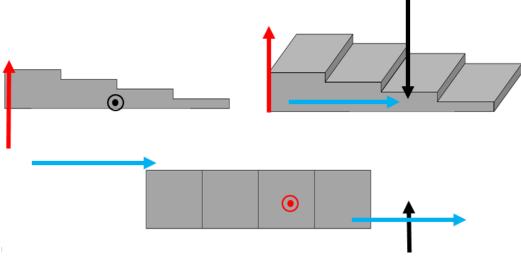


Figure D.2-7. Scanning orientation of NASA-S-MP porosity specimen.

Figures & Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 2 (total gate width is 8.00us). Measurement method detected 80% of known defects.

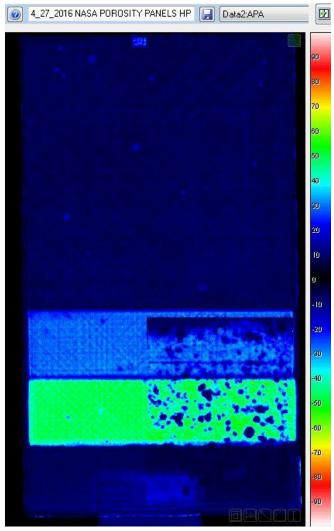


Figure D.2-8. Gate 2 PEUT scan results from NASA-S-MP porosity specimen.

Specimen Photos

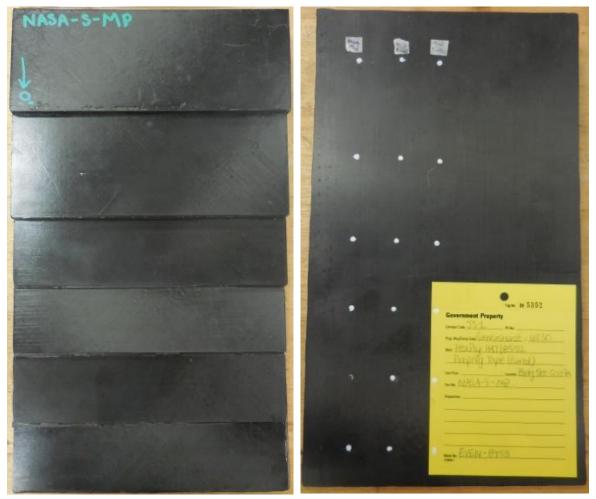


Figure D.2-9. Images of NASA-S-MP porosity specimen.

Specimen #3

High Porosity Specimen

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
2	NASA-S-HP Porosity Specimen	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.1 to 1.0 inch Delaminations: Ply 1, Mid Ply	14 in.	8 in.

Validation Test Details

Measurement Type

	• 1
PEUT, Sharp	X
Focus	Λ
TTUT	
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

	•
Curved Radius	
Flat Panel	
Step	X
Wedge	
Other	

Detection Features in Standard (Flaws Present)

APF Tape Defect	
Delamination/Disbond	
Microcrack	
Porosity	Χ
Other	

Transducer/Equipment Specifications

Transducer Make/Model	Olympus V307
Transducer Frequency	5 MHz
Transducer Focus, Diameter	2.0in. Focal Length, 1.0in. Dia.
Transducer Peak-Peak/RMS Voltage	100V
Scanning Spatial Resolution	0.010 in.
Pulser Make/Model	JSR DPR35G
Pulser Gain	N/A
Pulser Damping	1000 Ohms
Pulser Filters	HP-1MHz, LP-22MHz

Testing Specifications

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence
Data Points Captured	6 Gates
Sampling Frequency	100 million/sec
DAQ Model	0
Averages (if applicable)	
Final File Format	OKOS

Testing Notes

Gate 1: Near Surface to Ply 1 inspectionGate 2: Ply 1 to mid inspectionGate 3: Mid-Ply area inspectionGate 4: Last Ply to back wall inspectionGate 5: Back wall area inspectionGate 6: All ply level inspection

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

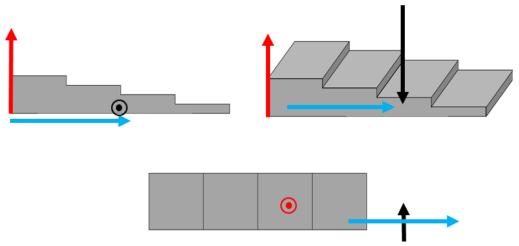


Figure D.2-10. Scanning orientation of NASA-S-HP porosity specimen.

Figures & Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 2 (total gate width is 8.00us). Measurement method detected 80% of known defects.

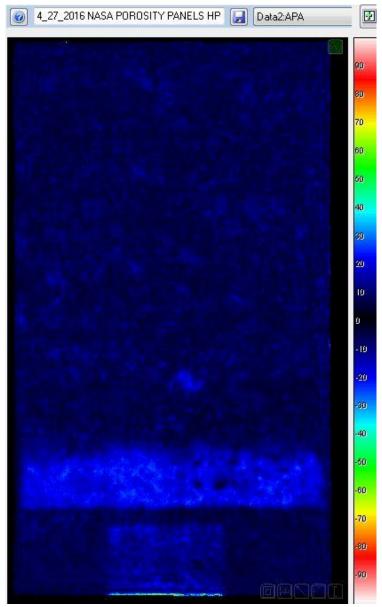


Figure D.2-11. Gate 2 PEUT scan results from NASA-S-HP porosity specimen.

Specimen Photos

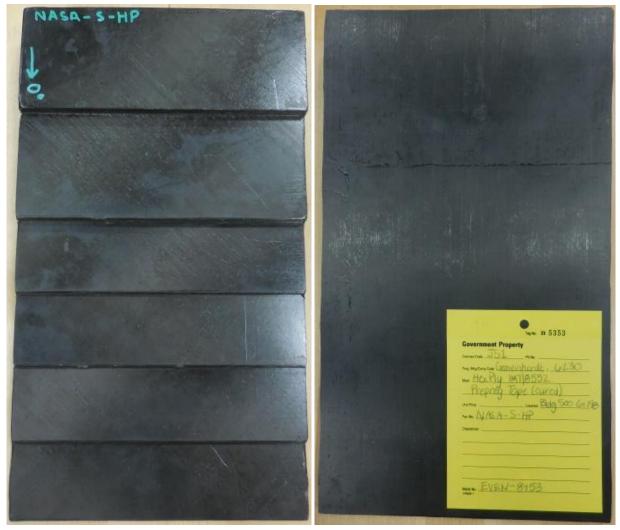


Figure D.2-12. Images of NASA-S-HP porosity specimen.

Specimen #4

3 PTFE Inserts per Row (rad. 0.25in, thickness 0.002in), 12 Total

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
2	NASA-W- 5D	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.25 to 1.0 inch Wedge Angle: 5 deg. Delaminations: Ply 1, Mid Ply, Last Ply	12 in.	3 in.

Validation Test Details

Measurement Type

PEUT, Sharp	X
Focus	Λ
TTUT	
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

Curved Radius	
Flat Panel	
Step	
Wedge	Χ
Other	

Detection Features in Standard (Flaws Present)

APF Tape Defect	
Delamination /	v
Disbond	X
Microcrack	
Porosity	
Other	

Transducer/Equipment Specifications

Transducer Make/Model	Olympus V307
Transducer Frequency	5 MHz
Transducer Focus, Diameter	2.0in. Focal Length, 1.0in. Dia.
Transducer Peak-Peak/RMS Voltage	100V
Scanning Spatial Resolution	0.010 in.
Pulser Make/Model	JSR DPR35G
Pulser Gain	41.00 dB
Pulser Damping	1000 Ohms
Pulser Filters	HP-1MHz, LP-22MHz

Testing Specifications

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence
Data Points Captured	6 Gates
Sampling Frequency	100 million/sec
DAQ Model	0
Averages (if applicable)	
Final File Format	OKOS

Testing Notes

Gate 1: Near Surface to Ply 1 inspectionGate 2: Ply 1 to Mid-inspectionGate 3: Mid Ply area inspectionGate 4: Last Ply to back wall inspectionGate 5: Back wall area inspectionGate 6: All-ply level inspection

Scan Orientation

Red Arrow: Indexing Direction Blue Arrow: Scanning Direction Black Arrow: Surface normal to measuring instrument.

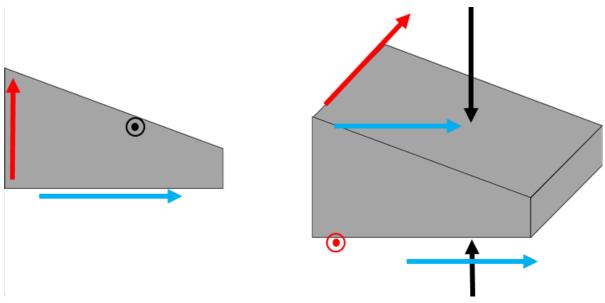


Figure D.2-13. Scan orientation for NASA-W-5D wedge specimen.

Figures & Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 2 (total gate width is 4.00us). Measurement method detected 80% of known defects.

Note: Outlined regions are PTFE inserts.

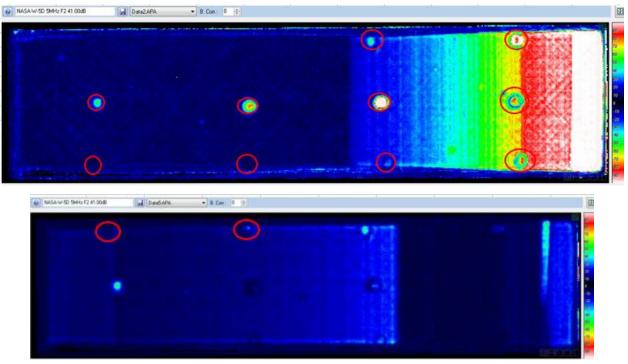


Figure D.2-14. Gate 2 scan results of NASA-W-5D wedge specimen.

Specimen Photos

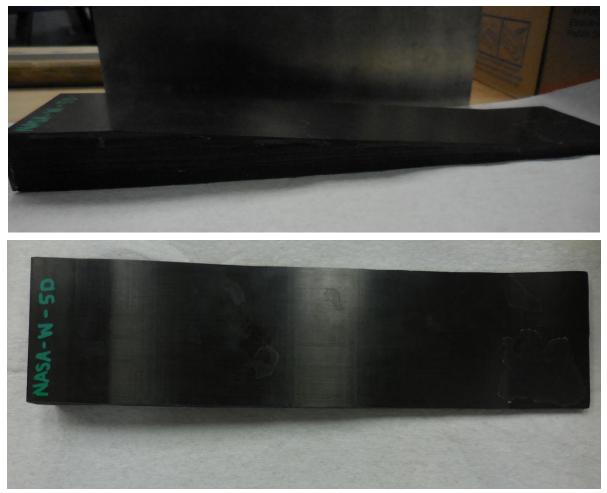


Figure D.2-15. Images of NASA-W-5D wedge specimen.

Specimen #5

3 PTFE Inserts per Row (rad. 0.25in, thickness 0.002in), 12 Total

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
2	NASA-W- 20D	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.25 to 1.0 inch Wedge Angle: 20 deg. Delaminations: Ply 1, Mid Ply, Last Ply	12 in.	3 in.

Validation Test Details

Measurement Type

PEUT, Sharp FocusXTOUTTTUTTTUT PAHigh Res. CTFlash IRT		• •
Focus II TTUT III TTUT PA III High Res. CT Flash IR	PEUT, Sharp	v
TTUT PA High Res. CT Flash IR	Focus	Λ
High Res. CT Flash IR	TTUT	
Flash IR	TTUT PA	
	High Res. CT	
	Flash IR	
Laser UT	Laser UT	
Other	Other	

Standard Configuration

Curved Radius	
Flat Panel	
Step	
Wedge	X
Other	

Detection Features in Standard (Flaws Present)

APF Tape Defect	
Delamination /	x
Disbond	Λ
Microcrack	
Porosity	
Other	

Transducer/Equipment Specifications

Olympus V307
5 MHz
2.0in. Focal Length, 1.0in. Dia.
100V
0.010 in.
JSR DPR35G
43.01 dB
1000 Ohms
HP-1MHz, LP-22MHz

Testing Specifications

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence
Data Points Captured	6 Gates
Sampling Frequency	100 million/sec
DAQ Model	0
Averages (if applicable)	
Final File Format	OKOS

Testing Notes

Gate 1: Near Surface to Ply 1 inspectionGate 2: Ply 1 to Mid-inspectionGate 3: Mid Ply area inspectionGate 4: Last Ply to back wall inspectionGate 5: Back wall area inspectionGate 6: All-ply level inspection

Scan Orientation

Red Arrow: Indexing Direction Blue Arrow: Scanning Direction Black Arrow: Surface normal to measuring instrument.

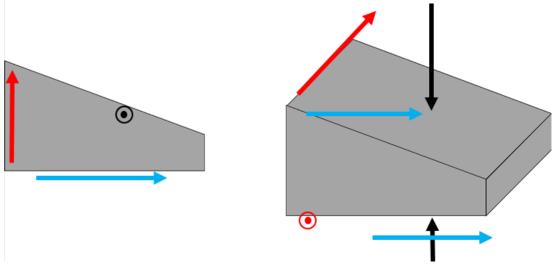


Figure D.2-16. Scan orientation for NASA-W-20D wedge specimen.

Figures & Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 2 (total gate width is 8.00us). Measurement method detected 80% of known defects.

Note: highlighted regions indicate PTFE inserts.

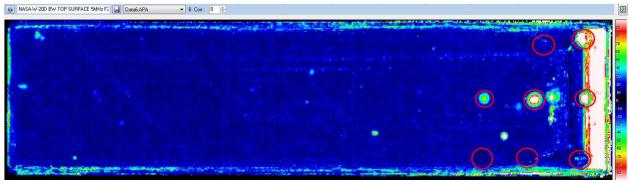


Figure D.2-17. PEUT scan results of NASA-W-20D wedge specimen.

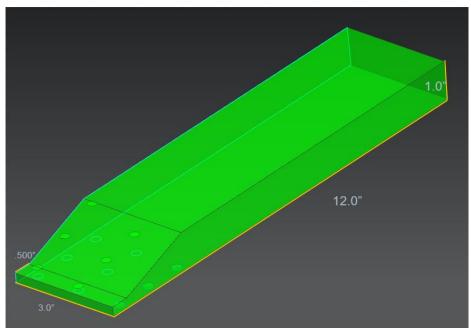


Figure D.2-18. Dimensions of NASA-W-20D wedge specimen.

Specimen Photos

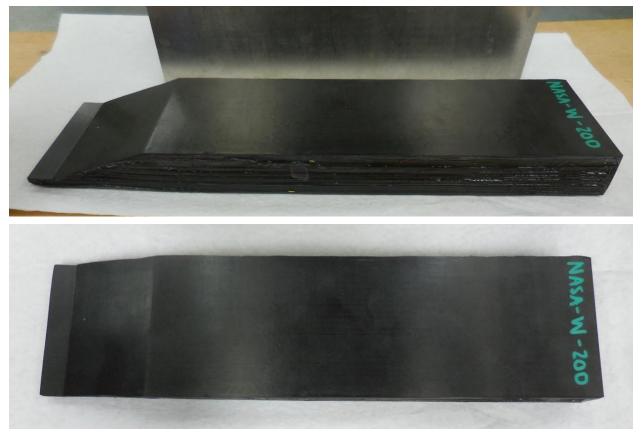


Figure D.2-19. Images of NASA-W-20D wedge specimen.

Specimen #6

3 PTFE Inserts per Row (rad. 0.25in, thickness 0.002in), 12 Total

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
2	NASA-W- 35D	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.25 to 1.0 inch Wedge Angle: 35 deg. Delaminations: Ply 1, Mid Ply, Last Ply	12 in.	7 in.

Validation Test Details

Measurement Type

PEUT, Sharp	x
Focus	Λ
TTUT	
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

Curved Radius	
Flat Panel	
Step	
Wedge	Χ
Other	

Detection Features in Standard (Flaws Present)

APF Tape Defect	
Delamination /	v
Disbond	X
Microcrack	
Porosity	
Other	

Transducer/Equipment Specifications

Transducer Make/Model	Olympus V307
Transducer Frequency	5 MHz
Transducer Focus, Diameter	2.0in. Focal Length, 1.0in. Dia.
Transducer Peak-Peak/RMS Voltage	100V
Scanning Spatial Resolution	0.010 in.
Pulser Make/Model	JSR DPR35G
Pulser Gain	45.03 dB
Pulser Damping	1000 Ohms
Pulser Filters	HP-1MHz, LP-22MHz

Testing Specifications

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence
Data Points Captured	6 Gates
Sampling Frequency	100 million/sec
DAQ Model	0
Averages (if applicable)	
Final File Format	OKOS

Testing Notes

Gate 1: Near Surface to Ply 1 inspectionGate 2: Ply 1 to mid-inspectionGate 3: Mid Ply area inspectionGate 4: Last Ply to back wall inspectionGate 5: Back wall area inspectionGate 6: All-ply level inspection

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

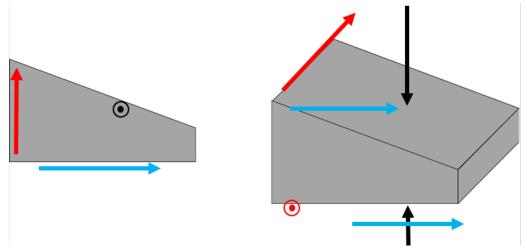


Figure D.2-20. Scan orientation for NASA-W-35D wedge specimen.

Figures and Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 1, Gate 2, Gate 3, and Gate 5 (total gate width is 8.00us of each). Measurement method detected 80% of known defects.

Note: Highlighted regions outline PTFE inserts.

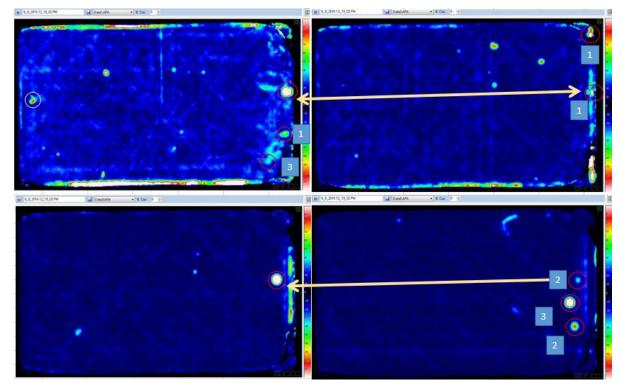


Figure D.2-21. PEUT scan results from (a, upper left) Gate 1, (b, upper right) Gate 2, (c, lower left) Gate 3, (d, lower right) and Gate 4.

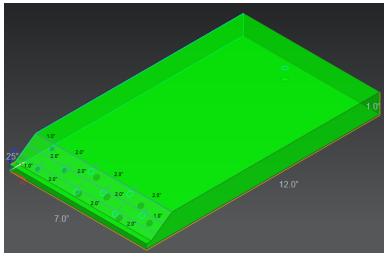


Figure D.2-22. Dimensions of NASA-W-35D wedge specimen.

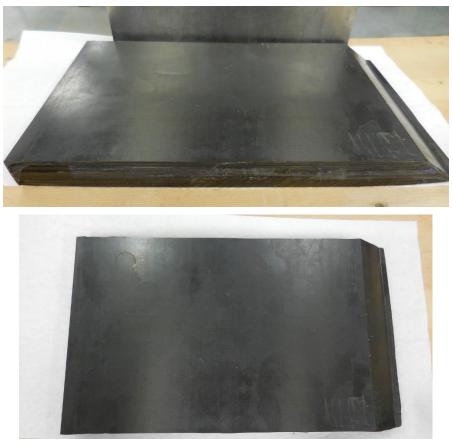


Figure D.2-23. Images of NASA-W-35D wedge specimen.

Standard Configuratio n	Standard Configuratio n	Standard Configurati on	Standard Configurati on	Standard Configuration	Standa rd Config uration	Standa rd Config uration
2	NASA-RP- 01D Delamination Panel	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.25 inch Curve Rad: 0.1 inch Delaminations: Ply 1, Mid Ply, Last Ply	6 in.	4 in.

2 PTFE Inserts (rad. 0.25in, thickness 0.002in)

Validation Test Details

Measurement Type

PEUT, Sharp Focus	X
TTUT	
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

	0
Curved Radius	Χ
Flat Panel	
Step	
Wedge	
Other	
01111	

Detection Features in Standard (Flaws Present)

APF Tape Defect	
Delamination /	x
Disbond	Λ
Microcrack	
Porosity	
Other	

Transducer/Equipment Specifications

Transducer Make/Model	Olympus V307
Transducer Frequency	5 MHz
Transducer Focus, Diameter	2.0in. Focal Length, 1.0in. Dia.
Transducer Peak-Peak/RMS Voltage	100V
Scanning Spatial Resolution	0.010 in.
Pulser Make/Model	JSR DPR35G
Pulser Gain	25.25 dB
Pulser Damping	1000 Ohms
Pulser Filters	HP-1MHz, LP-22MHz

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence
Data Points Captured	7 Gates
Sa,[;omg Frequency	100 million/sec
DAQ Model	0
Averages (if applicable)	
Final File Format	OKOS

Gate 1: Near-surface to ply 1 inspection
Gate 2: Near-surface inspection
Gate 3: Ply 1 area inspection
Gate 4: Mid-ply area inspection
Gate 5: Last-ply area inspection
Gate 6: Ply 1 to back wall inspection
Gate 7: Back wall inspection

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

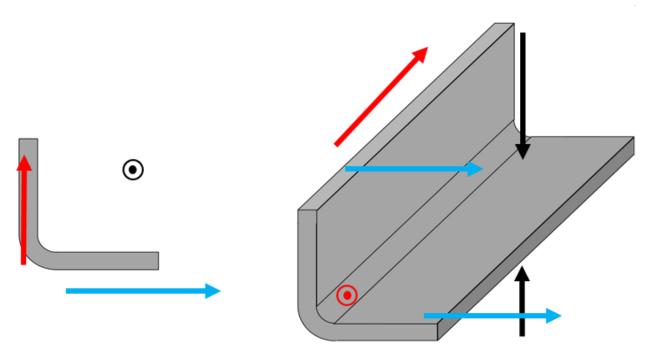


Figure D.2-24. Scanning orientation of NASA-RP-01D delamination specimen.

Figures & Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 6 (total gate width is 4.124us) and Gate 7 (total gate width 1.276us). Measurement method detected 80% of known defects.

Note:

Region A: PTFE inserts

Region B: Nothing

Region C: Air bubbles in water

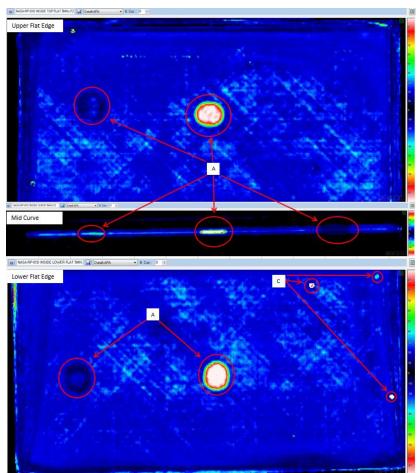


Figure D.2-25. Gate 6 PEUT scan results of NASA-RP-01D specimen.

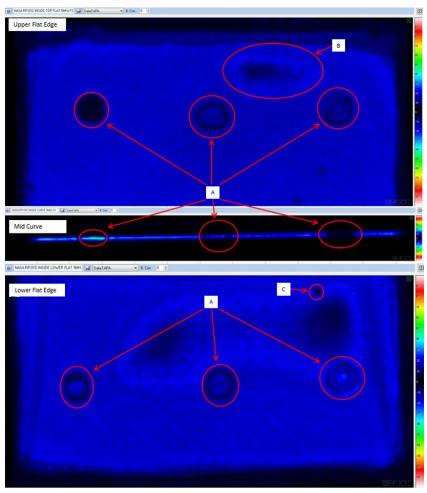


Figure D.2-26. Gate 7 PEUT scan results of NASA-RP-01D specimen.

Figure D.2-27. Photos of NASA-RP-01D specimen.

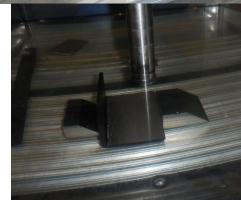


Figure D.2-28. PEUT Scan setup of the lower flat (left), mid curve (right), and upper flat (lower) area.

Low-Porosity Specimen

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
2	NASA-RP- 01D Delamination Panel	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.25 inch Curve Rad: 0.1 inch Delaminations: Ply 1, Mid Ply, Last Ply	6 in.	4 in.

Validation Test Details

Measurement Type

PEUT, Sharp	
Focus	
TTUT	X
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

	•
Curved Radius	X
Flat Panel	
Step	
Wedge	
Other	

Detection Features in Standard (Flaws Present)

APF Tape Defect	
Delamination /	
Disbond	
Microcrack	
Porosity	Χ
Other	

Transducer/Equipment Specifications

Transducer Make/Model	KBA GAMMA	
	NDT INST.	
Transducer Frequency	2.25 MHz	
Transducer Focus, Diameter	6.0in. Focal Length, 0.325in. Dia.	
Transducer Peak-Peak/RMS Voltage	100V	
Scanning Spatial Resolution	0.010 in.	
Pulser Make/Model	JSR DPR35G	
Pulser Gain	Reference: 20.5 dB, Inspection: 27 dB	
Pulser Damping	1000 Ohms	
Pulser Filters	HP-1MHz, LP-22MHz	

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence
Data Points Captured	2 Gates
Sampling Frequency	100 million/sec
DAQ Model	0
Averages (if applicable)	
Final File Format	OKOS

None

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

Figures and Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 2 (total gate width is 2.000us). Measurement method detected 80% of known defects. Circled regions indicate where the PTFE inserts are located.

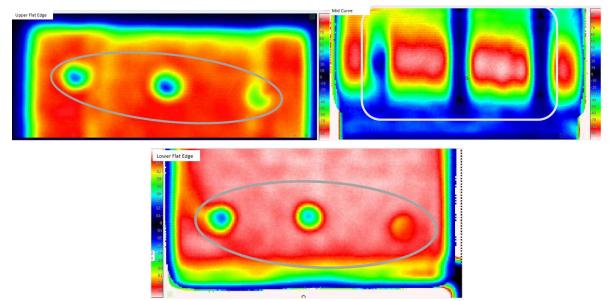


Figure D.2-29. TTUT scan results from the upper flat edge (left), mid curve (right), and lower flat edge (lower) areas.

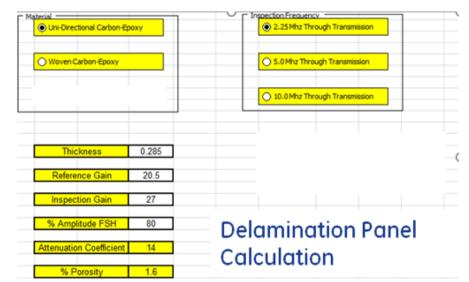


Figure D.2-30. Calculation of the attenuation coefficient and percent porosity for the NASA-RP-01D low-porosity specimen.

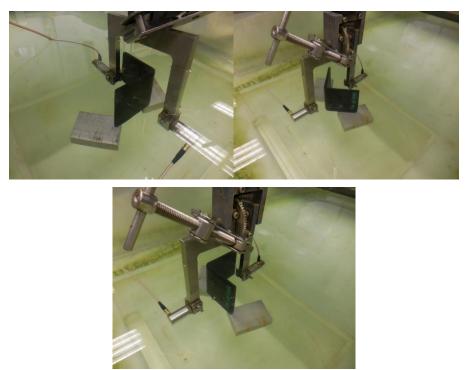


Figure D.2-31. TTUT setup for the lower flat (left), mid curve (right), and upper flat (lower) areas.

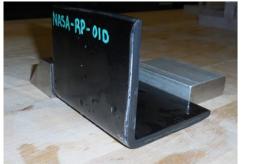


Figure D.2-32. Images of NASA-RP-01D specimen as seen in Figure D.2-31.

Medium-Porosity Specimen

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
2	NASA-RP- 01D Delamination Panel	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.25 inch Curve Rad: 0.1 inch Delaminations: Ply 1, Mid Ply, Last Ply	6 in.	4 in.

Validation Test Details

Measurement Type

PEUT, Sharp	
Focus	
TTUT	Х
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

	-
Curved Radius	Х
Flat Panel	
Step	
Wedge	
Other	

Detection Features in Standard (Flaws Present)

	/
APF Tape Defect	
Delamination /	
Disbond	
Microcrack	
Porosity	Х
Other	

Transducer/Equipment Specifications

Transducer Make/Model	KBA GAMMA	
	NDT INST.	
Transducer Frequency	2.25 MHz	
Transducer Focus, Diameter	6.0in. Focal Length, 0.325in. Dia.	
Transducer Peak-Peak/RMS Voltage	100V	
Scanning Spatial Resolution	0.010 in.	
Pulser Make/Model	JSR DPR35G	
Pulser Gain	Reference: 20.5 dB, Inspection: 52 dB	
Pulser Damping	1000 Ohms	
Pulser Filters	HP-1MHz, LP-22MHz	

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence
Data Points Captured	2 Gates
Sampling Frequency	100 million/sec
DAQ Model	0
Averages (if applicable)	
Final File Format	OKOS

None.

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

Figures and Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 2 (total gate width is 2.000us). Measurement method detected 80% of known defects.

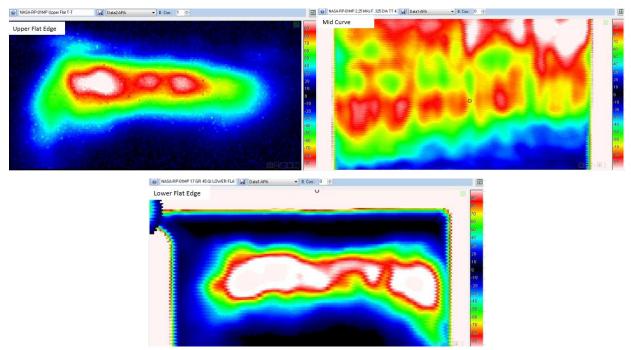


Figure D.2-33. TTUT scan results of the upper flat edge (left), mid curve (right), and lower flat edge (lower) areas.

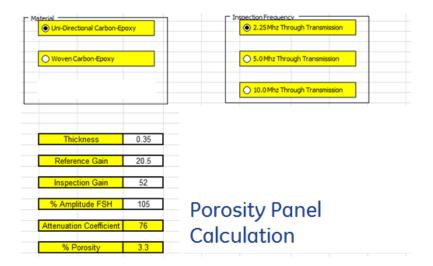


Figure D.2-34. Calculation of the attenuation coefficient and percent porosityfor the NASA-RP-01D medium-porosity specimen.

Figure D.2-35. TTUT setup of the lower flat area (left), mid curve (right), and upper flat area (lower).

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
2	NASA-RP- 10D Delamination Panel	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.25 inch Curve Rad: 1.0 inch Delaminations: Ply 1, Mid Ply, Last Ply	6 in.	4 in.

2 PTFE Inserts (rad. 0.25in, thickness 0.002in)

Validation Test Details

Measurement Type

JI	-
PEUT, Sharp	x
Focus	А
TTUT	
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

Curved Radius	X
Flat Panel	
Step	
Wedge	
Other	

Detection Features in Standard (Flaws Present)

APF Tape Defect	
Delamination /	x
Disbond	Λ
Microcrack	
Porosity	
Other	

Transducer/Equipment Specifications

Transducer Make/Model	Olympus V307
Transducer Frequency	5 MHz
Transducer Focus, Diameter	2.0in. Focal Length, 1.0in. Dia.
Transducer Peak-Peak/RMS Voltage	100V
Scanning Spatial Resolution	0.010 in.
Pulser Make/Model	JSR DPR35G
Pulser Gain	25.25 dB
Pulser Damping	1000 Ohms
Pulser Filters	HP-1MHz, LP-22MHz
10	

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence	
Data Points Captured	7 Gates	
Sampling Frequency	100 million/sec	
DAQ Model	0	
Averages (if applicable)		
Final File Format	OKOS	

Gate 1: Near-surface to ply 1 inspectionGate 2: Near-surface inspectionGate 3: Ply 1 area inspectionGate 4: Mid-ply area inspectionGate 5: Last ply area inspectionGate 6: Ply 1 to back wall inspection

Gate 7: Back wall inspection

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

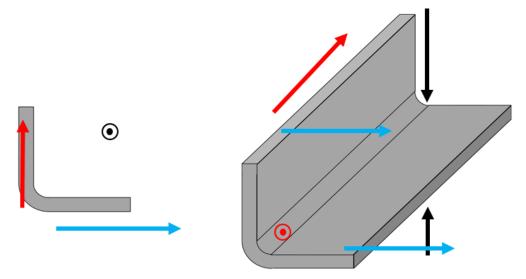


Figure D.2-36. Scanning orientation of NASA-RP-10D delamination specimen.

Figures & Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated Gate 6 (total gate width is 4.124us) and Gate 7 (total gate width 1.276us). Measurement method detected 80% of known defects.

Note:

Region A: PTFE Inserts

Region B: Bubbles

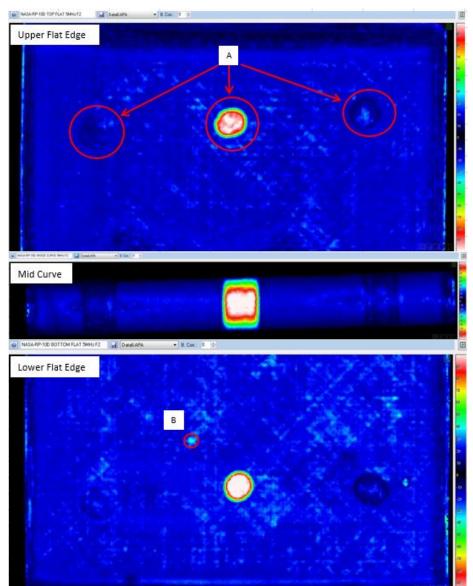


Figure D.2-37. Gate 6 PEUT scan results of NASA-RP-10D specimen.

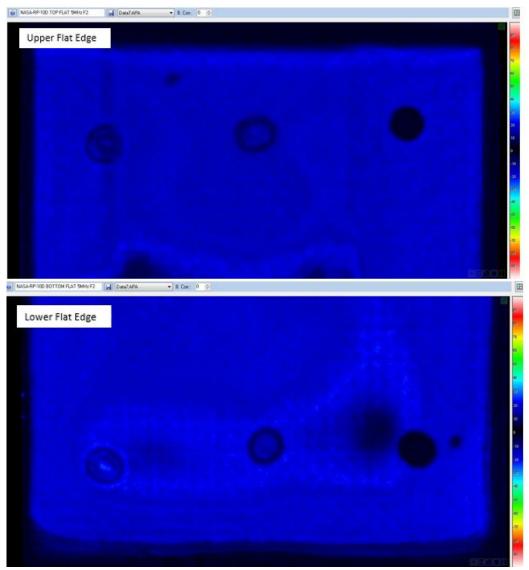


Figure D.2-38. Gate 7 PEUT scan results of NASA-RP-10D specimen.

Figure D.2-39. PEUT setup for the lower flat (left), mid curve (right), and upper flat (lower) areas.

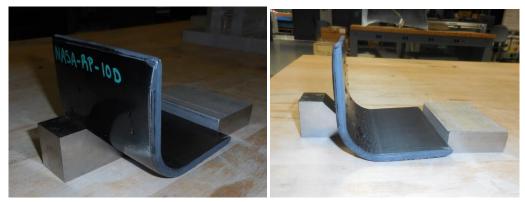


Figure D.2-40. Images of NASA-RP-10D specimen.

Low-Porosity Specimen

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
1	NASA-RP- 10D Delamination Panel	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.25 inch Curve Rad: 1.0 inch Delaminations: Ply 1, Mid Ply, Last Ply	6 in.	4 in.

Validation Test Details

Measurement Type

<i>v</i> 1	
PEUT, Sharp	x
Focus	Λ
TTUT	
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

Curved Radius	X
Flat Panel	
Step	
Wedge	
Other	

Detection Features in Standard (Flaws Present)

APF Tape Defect	
Delamination /	
Disbond	
Microcrack	
Porosity	Х
Other	

Transducer/Equipment Specifications

Transducer Make/Model	KBA GAMMA	
	NDT INST.	
Transducer Frequency	2.25 MHz	
Transducer Focus, Diameter	6.0in. Focal Length, 0.325in. Dia.	
Transducer Peak-Peak/RMS Voltage	100V	
Scanning Spatial Resolution	0.010 in.	
Pulser Make/Model	JSR DPR35G	
Pulser Gain	Reference: 20.5 Db, Inspection: 26 dB	
Pulser Damping	1000 Ohms	
Pulser Filters	HP-1MHz, LP-22MHz	

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence
Data Points Captured	2 Gates
Sampling Frequency	100 million/sec
DAQ Model	0
Averages (if applicable)	
Final File Format	OKOS

None.

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

Figures & Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated Gate 1 (total gate width is 2.000us). Measurement method detected 80% of known defects.

Note: Region A: PTFE Inserts

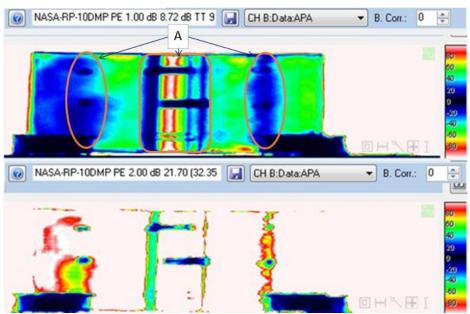


Figure D.2-41. PEUT scan results from NASA-RD-10D low-porosity specimen.

Figure D.2-42. TTUT scan setup for NASA-RD-10D specimen.

Figure D.2-43. Images of NASA-RP-10D low-porosity specimen.

2 Stacked PTFE Inserts (rad. 0.25in, thickness 0.002in) Per Target

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
2	NASA-RP- 20D Delamination Panel	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.25 inch Curve Rad: 2.0 inch Delaminations: Ply 1, Mid Ply, Last Ply	6 in.	4 in.

Validation Test Details

Measurement Type

	• •
PEUT, Sharp	X
Focus	
TTUT	
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

Curved Radius	X
Flat Panel	
Step	
Wedge	
Other	

Detection Features in Standard (Flaws Present)

APF Tape Defect	
Delamination /	x
Disbond	Λ
Microcrack	
Porosity	
Other	

Transducer/Equipment Specifications

Transducer Make/Model	Olympus V307
Transducer Frequency	5 MHz
Transducer Focus, Diameter	2.0in. Focal Length, 1.0in. Dia.
Transducer Peak-Peak/RMS Voltage	100V
Scanning Spatial Resolution	0.010 in.
Pulser Make/Model	JSR DPR35G
Pulser Gain	25.25 dB
Pulser Damping	1000 Ohms
Pulser Filters	HP-1MHz, LP-22MHz

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence	
Data Points Captured	7 Gates	
Sampling Frequency	100 million/sec	
DAQ Model	0	
Averages (if applicable)		
Final File Format	OKOS	

Gate 1: Near-surface to ply 1 inspection Gate 2: Near-surface inspection Gate 3: Ply 1 area inspection Gate 4: Mid-ply area inspection Gate 5: Last ply area inspection Gate 6: Ply 1 to back wall inspection

Gate 7: Back wall inspection

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

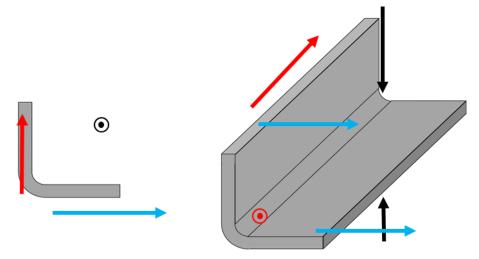


Figure D.2-44. Scanning orientation of NASA-RP-20D specimen.

Figures & Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 6 (total gate width is 4.124us) and Gate 7 (total gate width 1.276us). Measurement method detected 80% of known defects.

Note:

Region A: Air bubble in water

Region B: Saturated noise

Region C: PTFE insert

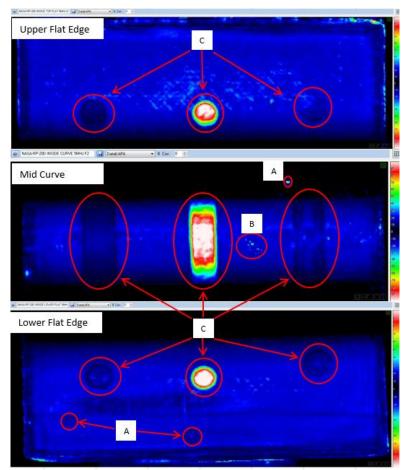


Figure D.2-45. Gate 6 PEUT scan results of NASA-RP-20D specimen.

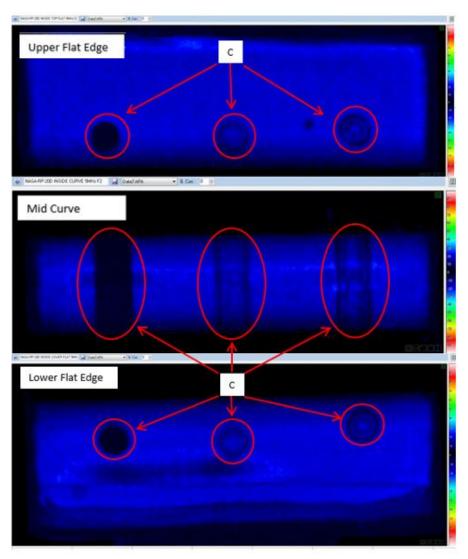


Figure D.2-46. Gate 7 PEUT scan results of NASA-RP-20D specimen.



Figure D.2-47. PEUT scan setup for the lower flat (left), mid curve (right), and upper flat (lower) areas.

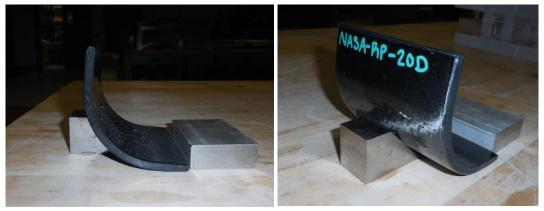


Figure D.2-48. Photos of NASA-RP-20D specimen.

Low-Porosity Specimen

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
1	NASA-RP- 20D Delamination Panel	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.25 inch Curve Rad: 0.1 inch Delaminations: Ply 1, Mid Ply, Last Ply	6 in.	4 in.

Validation Test Details

Measurement Type

PEUT, Sharp	
Focus	
TTUT	Х
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

Curved Radius	Х
Flat Panel	
Step	
Wedge	
Other	

Detection Features in Standard (Flaws Present)

		- /
APF Tape Defect		
Delamination /		
Disbond		
Microcrack		
Porosity	Х	
Other		

Transducer/Equipment Specifications

Transducer Make/Model	A304
Transducer Frequency	2.25 MHz
Transducer Focus, Diameter	2.0in. Focal Length, 1.0in. Dia.
Transducer Peak-Peak/RMS Voltage	100V
Scanning Spatial Resolution	0.010 in.
Pulser Make/Model	JSR DPR35G
Pulser Gain	Reference: -8.03 dB, Inspection: 7.10 dB
Pulser Damping	1000 Ohms
Pulser Filters	HP-1MHz, LP-7.5MHz

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence
Data Points Captured	1 Gates
Sampling Frequency	100 million/sec
DAQ Model	0
Averages (if applicable)	
Final File Format	OKOS

None.

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

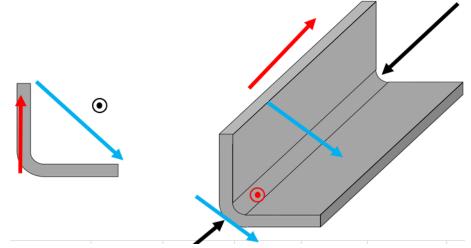


Figure D.2-49. Scanning orientation of NASA-RP-20D low-porosity specimen.

Figures & Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 1 (total gate width is 4.00us). Measurement method detected 80% of known defects.

Note: PTFE inserts are highlighted in Figure D.2-51.

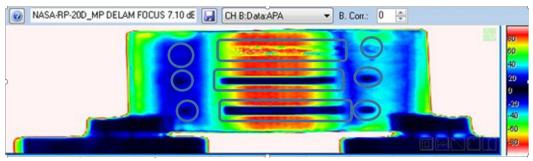


Figure D.2-50. TTUT scan results from NASA-RP-20D low-porosity specimen.

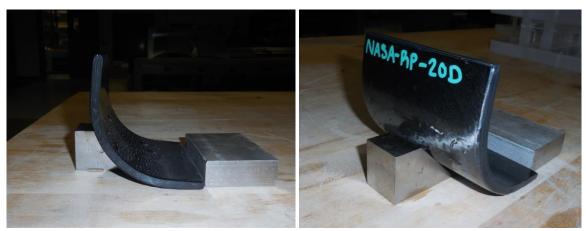


Figure D.2-51. Images of NASA-RP-20D low-porosity specimen.

Member Designation	Reference Standard	Structure	Material	Specimen Notes	Length	Width
2	NASA-RP- 40D Delamination Panel	Uni-Ply (0/90/45)	IM7/8552	Panel Thickness: 0.25 inch Curve Rad: 4.0 inch Delaminations: Ply 1, Mid Ply, Last Ply	6 in.	4 in.

2 PTFE Inserts (rad. 0.25in, thickness 0.002in)

Validation Test Details

Measurement Type

	• •
PEUT, Sharp	x
Focus	28
TTUT	
TTUT PA	
High Res. CT	
Flash IR	
Laser UT	
Other	

Standard Configuration

	0
Curved Radius	X
Flat Panel	
Step	
Wedge	
Other	

Detection Features in Standard (Flaws Present)

	/
APF Tape Defect	
Delamination /	x
Disbond	Λ
Microcrack	
Porosity	
Other	

Transducer/Equipment Specifications

Olympus V307
5 MHz
2.0in. Focal Length, 1.0in. Dia.
100V
0.010 in.
JSR DPR35G
25.25 dB
1000 Ohms
HP-1MHz, LP-22MHz

Waveguide/Wedge/Immersion Details	Immersion, Normal Incidence	
Data Points Captured	7 Gates	
Sampling Frequency	100 million/sec	
DAQ Model	0	
Averages (if applicable)		
Final File Format	OKOS	

Gate 1: Near surface to ply 1 inspectionGate 2: Near surface inspectionGate 3: Ply 1 area inspectionGate 4: Mid-ply area inspectionGate 5: Last ply area inspectionGate 6: Ply 1 to back wall inspectionGate 7: Back wall inspection

Scan Orientation

Red Arrow: Indexing Direction

Blue Arrow: Scanning Direction

Black Arrow: Surface normal to measuring instrument.

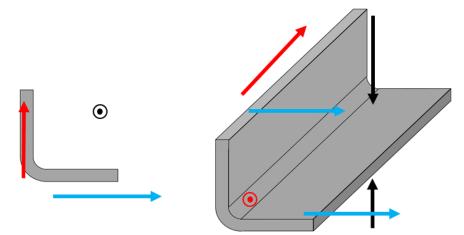


Figure D.2-52. Scanning orientation of NASA-RP-40D specimen.

Figures & Data Highlights

Description: Figure example is post-processed scan along inside curved surface with origin indicated in Step 4 of the cover sheet. Signal to noise was approx. 9.95dB. Image shown is absolute peak amplitude data integrated over Gate 6 (total gate width is 4.124us). Measurement method detected 80% of known defects.

Note: Region A: PTFE insert

Region B: Air bubble in water

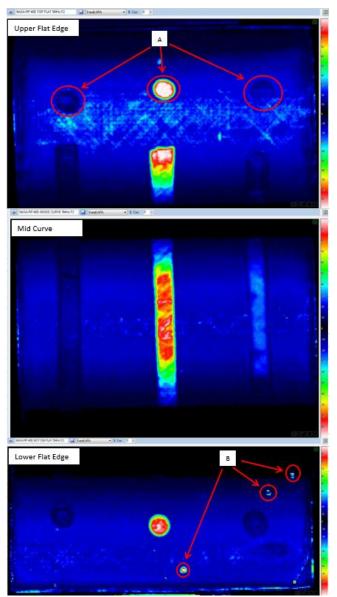


Figure D.2-53. Gate 6 PEUT scan results of NASA-RP-40D specimen.

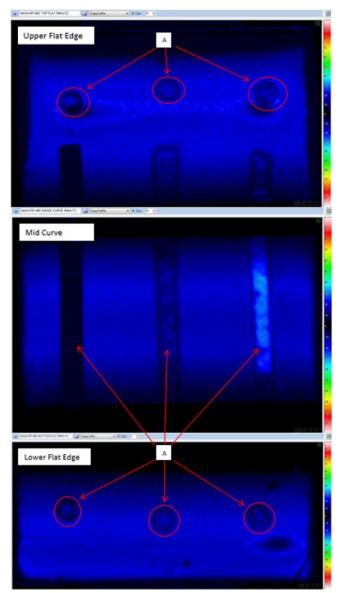
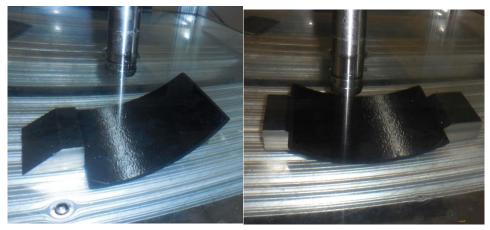



Figure D.2-54. Gate 7 PEUT scan results of NASA-RP-40D specimen.

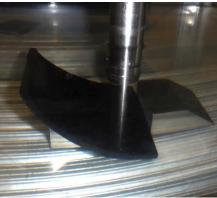


Figure D.2-55. PEUT scan setup for the lower flat (left), mid curve (right), and upper flat (lower) areas.

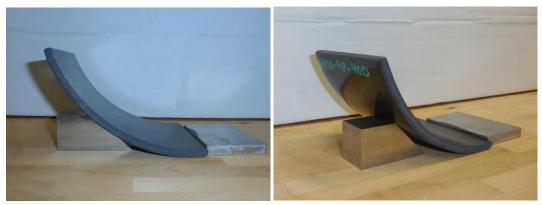


Figure D.2-56. Images of NASA-RP-40D specimen.

Consortium	Specimen Number/Name	Description
Member		
Number		
3	57	Fiber Placed Panel
	NASA-03-Twisted-Tow-001	IM7/8552-1 Slit Tape
		Flat panel
		Twisted Tow - 1 ply
3	58	Fiber Placed Panel
	NASA-03-Twisted-Tow-002	IM7/8552-1 Slit Tape
		Flat panel
		Twisted Tow - Mid
3	59	Fiber Placed Panel
	NASA-03-Steered-Tow-003	IM7/8552-1 Slit Tape
		Flat panel
		Tow Orientation
3	60	Fiber Placed Panel
	NASA-03-Folded-Tow-001	
	NASA-05-Folded-10w-001	IM7/8552-1 Slit Tape
		Flat panel
		Folded Tow - 1 ply
3	61	Fiber Placed Panel
	NASA-03-Folded-Tow-002	IM7/8552-1 Slit Tape
		Flat panel
		Folded Tow - Mid
3	62	Fiber Placed Panel
	NASA-03-Missing-Tow-001	IM7/8552-1 Slit Tape
		Flat panel
		Missing Tow - 1 ply
3	63	Fiber Placed Panel
	NASA-03-Missing-Tow-002	IM7/8552-1 Slit Tape
		Flat panel
		Missing Tow - Mid
3	64	Fiber Placed Panel
	NASA-03-Bridged-Joggle-001	IM7/8552-1 Slit Tape
		Flat panel
		Bridging - Joggle
3	65	Fiber Placed Panel
	NASA-03-Bridged-Joggle-002	IM7/8552-1 Slit Tape
		Flat panel
		Bridging - Joggle
3	66	Fiber Placed Panel
	NASA-03-Bridged-Joggle-003	IM7/8552-1 Slit Tape
	http://www.secondecourter.com	Flat panel
		Bridging - Joggle
-		
3	67	Fiber Placed Panel
	NASA-03-Bridged-Joggle-004	IM7/8552-1 Slit Tape
		Flat panel
		Bridging - Joggle

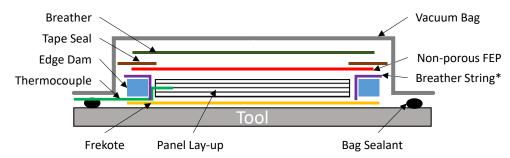
D.3 Manufacturing Information for NDE Standards Provided by Consortium Member #3

Consortium Member Number	Specimen Number/Name	Description
3	68 NASA-03-FOD-Panel-001	Fiber Placed Panel IM7/8552-1 Slit Tape w/ IM7/8552 Fabric OML Flat panel Foreign Object Debris (FOD)
3	69 NASA-03-Porosity-Panel-001	Fiber Placed Panel IM7/8552-1 Slit Tape w/ IM7/8552 Fabric OML Flat panel Porosity
3	70 NASA-03-Porosity-Panel-002	Fiber Placed Panel IM7/8552-1 Slit Tape w/ IM7/8552 Fabric OML Flat panel Porosity
3	71A&B NASA-03-Porosity-Panel-003	Fiber Placed Panel IM7/8552-1 Slit Tape w/ IM7/8552 Fabric OML Flat panel Porosity
3	72A&B NASA-03-Porosity-Panel-004	Fiber Placed Panel IM7/8552-1 Slit Tape w/ IM7/8552 Fabric OML Flat panel Porosity

D.3.1 AFP Defects – twisted tows, missing tows, gaps and laps

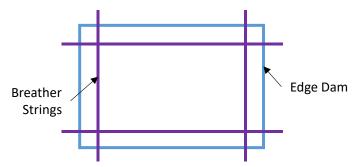
D.3.1.1 Specimens 57, 58, 59⁴, 60, 61, 62, 63, 64, 65, 66, 67

Introduction


As part of the NASA ACC TC2 IDIQ activity, a set of standards from each of the consortium members were to be developed for use in the following phase in order to detect typical defects. These defects are defined by both the state of practice survey generated also during the IDIQ activity, but also by consortium members' experience. One set of defects that were requested were AFP panels, and the defects that are both specific to AFP (e.g., twisted tows, missing tows, etc.) and generic to composite manufacturing (e.g., porosity). The equipment and processes used to manufacture the panels and to scan the panels is described below.

Manufacturing

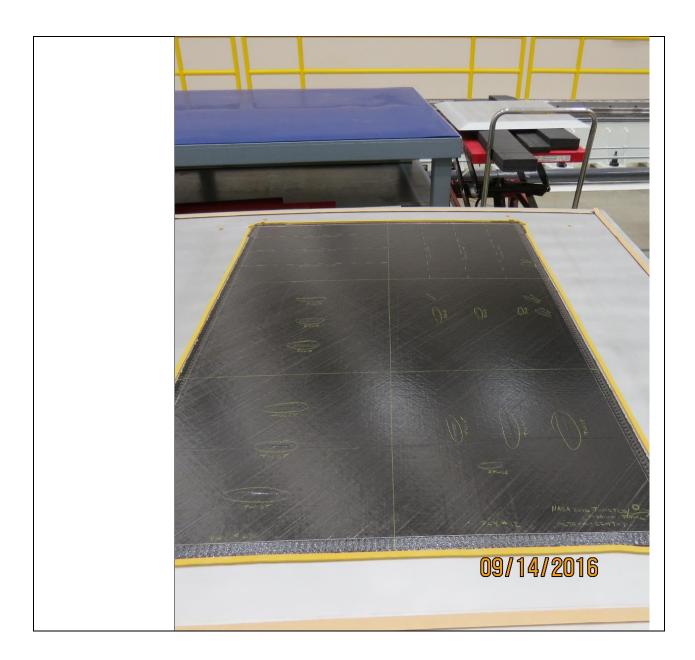
All of the following panels were built using Hexcel's IM7/8552-1 graphite/epoxy autoclave material system. The panels were placed using an Ingersoll Mongoose gantry style AFP machine located at the Lockheed Martin Aeronautics facility in Palmdale, CA. All panels were placed with the following machine parameters unless otherwise noted: Heater: 110 °F, Compaction: 165 lbs, Feedrate: 300 in/min, Roller: 4-inch-wide Roller Durometer 40 Shore A. The cure cycle varied between the panels, but all panels are cured in an autoclave. All panels are bagged in a consistent manner as shown below.

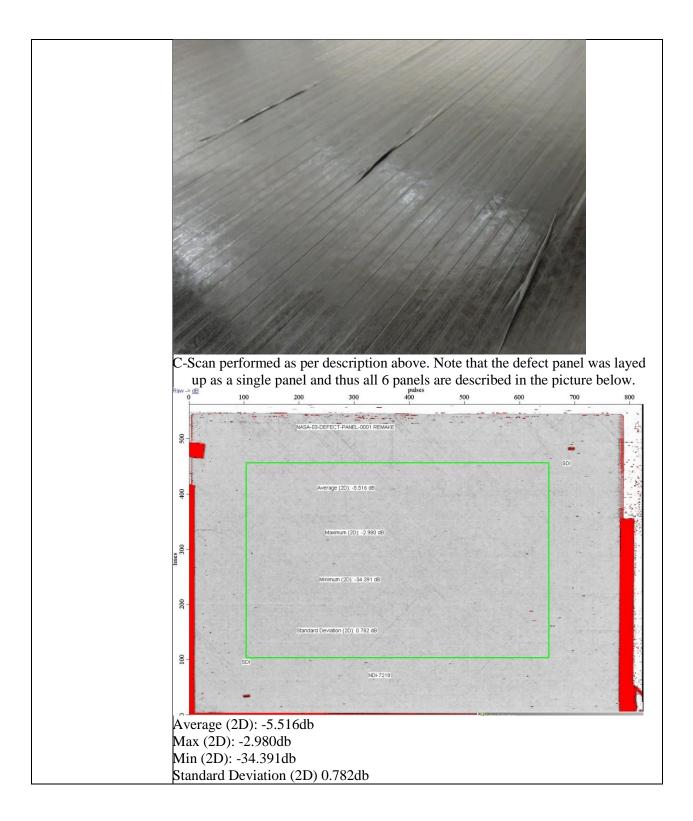

⁴ No manufacturing documentation received from OEM.

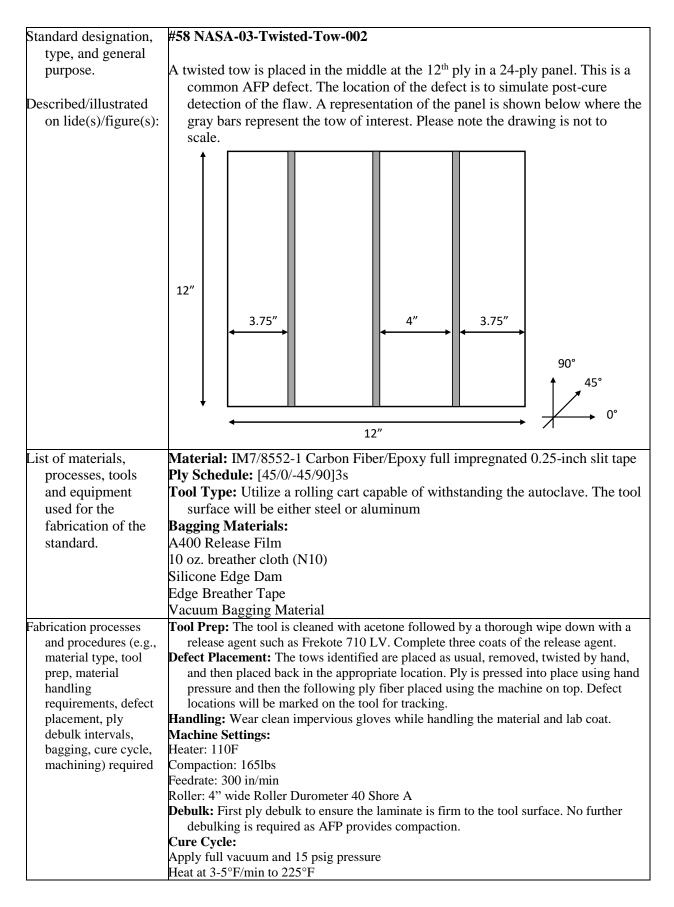
Bagging:

The bagging scheme used for all panels is shown in the following profile.

*The breather string must be in contact with the edge of the part and extend beyond the seal to touch the breather pad material as shown in the overhead view below.


The variable details for each specific panel are described in the individual manufacturing descriptions below.


Inspection


All panels were scanned using an Explorer 5 Mhz TTUT system with water couplant. All initial scanning took place at the Lockheed Martin Aeronautics facility in Palmdale, CA and performed by level three inspectors. These scans are provided in image form in this document.

Standard designation,	#57 NASA-03-Twisted-Tow-001
type, and general purpose. Described/illustrated	A twisted tow is placed at the 23 rd ply in a 24-ply panel. This is a common AFP defect. The location of the defect is to simulate in-situ detection of the flaw. A representation of the panel is shown below where the grey bars represent the
on slide(s)/	tow of interest. Please note the drawing is not to scale. All twisted, Missing,
figure(s):	and Folded tow panels were built on a single panel and then machined into the
	six individual panels. A second defect panel containing all six defects was
	made after the first one was run with very low pressure in the autoclave in an
	effort to minimize compacting the defects. That original panel had a large
	delamination that completely hid any sign of the embedded defects. The second panel was run with 15 psi and was found to have acceptable porosity in
	general, but more difficult to discern defects.
	3.75″
	12"
	4"
	90°
	3.75″ ↑ 45°
	$\downarrow \qquad \qquad$
	12"
List of materials,	Material: IM7/8552-1 Carbon Fiber/Epoxy full impregnated 0.25-inch slit tape
processes, tools	Ply Schedule: [45/0/-45/90]3s
and equipment	Tool Type: Utilize a rolling cart capable of withstanding the autoclave. The tool
used for the	surface will be either steel or aluminum
fabrication of the	Bagging Materials:
standard.	A400 Release Film
	10 oz breather cloth (N10)
	Silicone Edge Dam
	Edge Breather Tape Vacuum Bagging Material
Fabrication processes	Tool Prep: The tool is cleaned with acetone followed by a thorough wipe down
and procedures	with a release agent such as Frekote 710 LV. Complete 3 coats of the release
(e.g., material type,	
tool prep, material	Defect Placement: The tows identified are placed as usual, removed, twisted by
handling	hand, and then placed back in the appropriate location. Ply is pressed into
requirements,	place using hand pressure and then the following ply fiber placed using the
defect placement,	machine on top. Defect locations will be marked on the tool for tracking.
ply debulk	Handling: Wear clean impervious gloves while handling the material and lab
intervals, bagging,	coat.
cure cycle,	

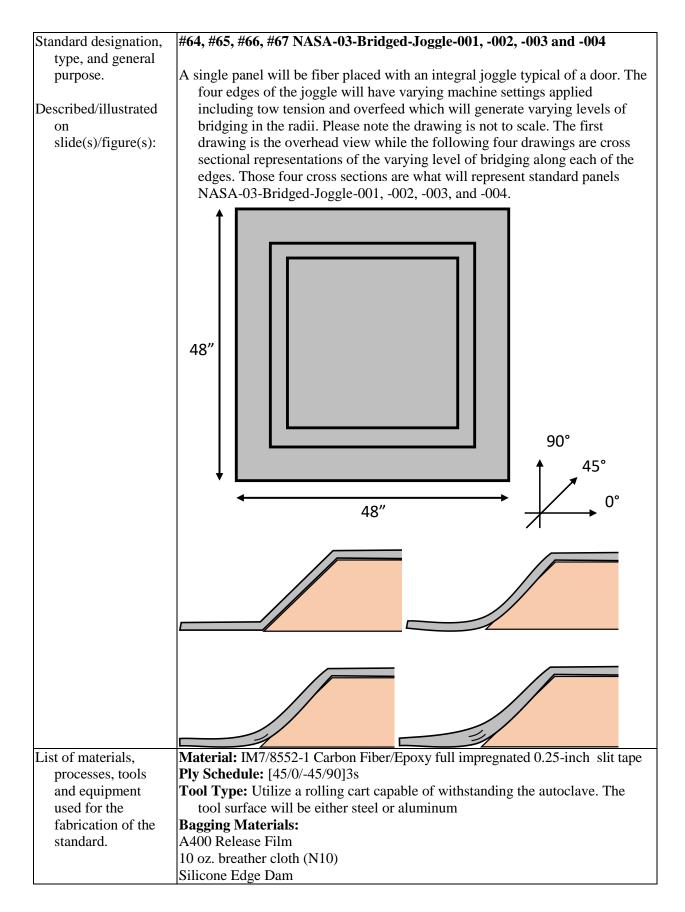
machining)	Debulk: First ply debulk to ensure the laminate is firm to the tool surface. No
required	further debulking is required as AFP provides compaction.
	Cure Cycle:
	Apply full vacuum and 15 psig pressure
	Heat at 3-5°F/min to 225°F
	Hold at 225°F for 30-60 minutes
	Raise pressure to 15 psig (reduced pressure from pristine to reduce compaction on
	the placed defects)
	Vent Vacuum when pressure reaches 30 psig
	Heat at 3-5°F/min to 350°F
	Hold at 350°F for 120 +/-10 minutes
	Cool at 2-5°F
	Machining: Panels NASA-03-Twisted-Tow-01, NASA-03-Twisted-Tow-02,
	NASA-03-Missing-Tow-01, and NASA-03-Missing-Tow-02 are fabricated in
	a single panel and machined to net shape as shown above. Rough machining
	will be done using a table saw with a grinding wheel or band saw with a
	diamond blade.
Standard	Visual Inspection Prior to cure is shown below. Note the circled defects (twists
characterization	and folds) and the dashed lines (missing tows). Additional images of the
and verification	defects in question will be included in the relevant sections. Twisted tows are
method(s)	shown in this section.

	Hold at 225°F for 30-60 minutes
	Raise pressure to 15 psig (reduced pressure from pristine to reduce compaction on the
	placed defects)
	Vent Vacuum when pressure reaches 30 psig
	Heat at 3-5°F/min to 350°F
	Hold at 350°F for 120 +/-10 minutes
	Cool at 2-5°F
	Machining: Panels NASA-03-Twisted-Tow-01, NASA-03-Twisted-Tow-02, NASA-
	03-Missing-Tow-01, and NASA-03-Missing-Tow-02 are fabricated in a single panel and machined to net shape as shown above. Rough machining is done using a table saw with a grinding wheel or band saw with a diamond blade. Panel is milled to final configuration.
Standard	Description and image provided under NASA-03-Twisted-Tow-001.
characterization and	
verification	
method(s)	

Standard designation, type, and general	#60 NASA-03-Folded-Tow-001
purpose. Described/illustrated on	A folded tow will be placed at the 23 rd ply in a 24-ply panel. This is a common AFP defect. The location of the defect is to simulate in-situ detection of the flaw. A
slide(s)/figure(s):	representation of the panel is shown below where the gray bars represent the tow of interest. Please note the drawing is not to scale. All Twisted, Missing, and Folded tow panels are built on a single panel and then machined into the 6 individual panels.
	3.75"
	$4''$ 90° 45° 45° 47° $12''$
List of materials,	Material: IM7/8552-1 Carbon Fiber/Epoxy full impregnated ¹ /4" slit tape
processes, tools and equipment used for the fabrication of the	Ply Schedule: [45/0/-45/90]3sTool Type: Utilize a rolling cart capable of withstanding the autoclave. The tool surface will be either steel or aluminium
standard.	Bagging Materials: A400 Release Film 10 oz. breather cloth (N10) Silicone Edge Dam Edge Breather Tape
Dahai asti an ana asaa	Vacuum Bagging Material
Fabrication processes and procedures (e.g., material type, tool prep, material handling requirements, defect placement, ply debulk intervals, bagging, cure cycle, machining) required	 Tool Prep: The tool is cleaned with acetone followed by a thorough wipe down with a release agent such as Frekote 710 LV. Complete 3 coats of the release agent. Defect Placement: The tows identified is placed as usual, removed, folded by hand, and then placed back in the appropriate location. Ply is pressed into place using hand pressure and then the following ply fiber placed using the machine on top. Defect locations will be marked on the tool for tracking. Handling: Wear clean impervious gloves while handling the material and lab coat. Debulk: First ply debulk to ensure the laminate is firm to the tool surface. No further debulking is required as AFP provides compaction.
	Cure Cycle: Apply full vacuum and 15 psig pressure Heat at 3-5°F/min to 225°F Hold at 225°F for 30-60 minutes Raise pressure to 15 psig (reduced pressure from pristine to reduce compaction on the
	placed defects) Vent Vacuum when pressure reaches 30 psig

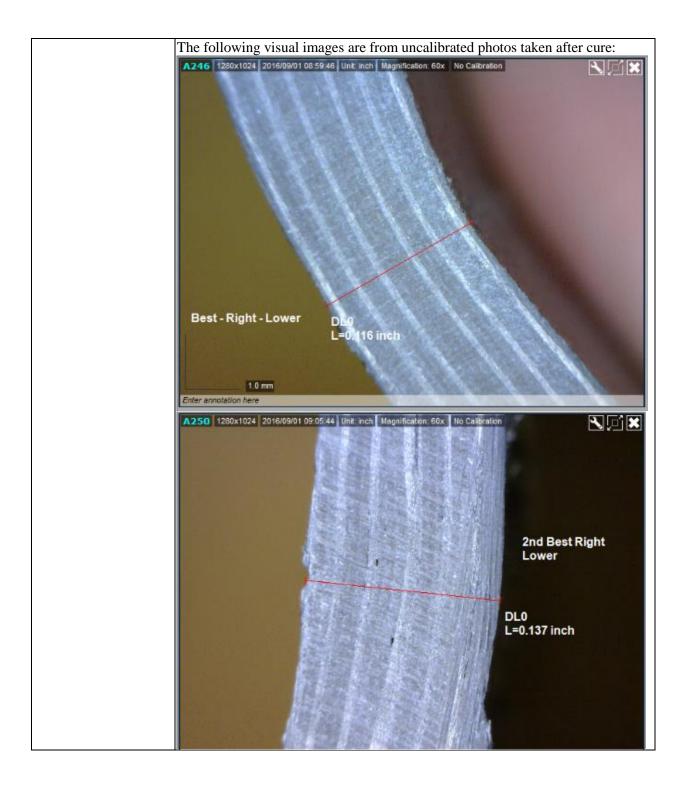
	Heat at 3-5°F/min to 350°F
	Hold at 350°F for 120 +/-10 minutes
	Cool at 2-5°F
	Machining: Panels NASA-03-Twisted-Tow-01, NASA-03-Twisted-Tow-02, NASA-03- Missing-Tow-01, NASA-03-Missing-Tow-02, NASA-03-Folded-Tow-01, and
	NASA-03-Folded-Tow-02 are fabricated in a single panel and machined to net shape
	as shown above. Rough machining is done using a table saw with a grinding wheel or
	band saw with a diamond blade.
Standard characterization	Description and image provided under NASA-03-Twisted-Tow-001. Folded tows are
and verification	shown below.
method(s)	

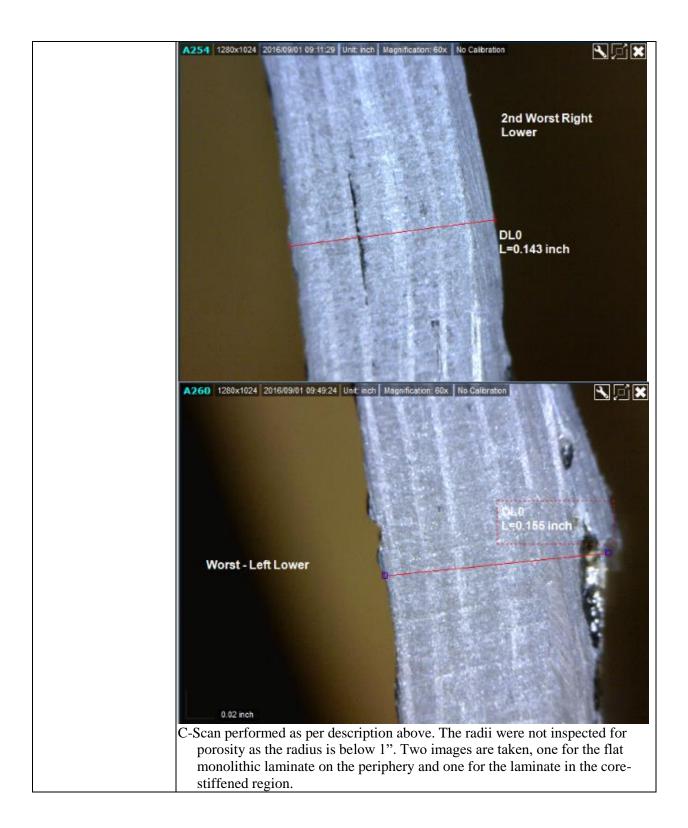
Standard designation,	#61 NASA-03-Folded-Tow-002
type, and general purpose. Described/illustrated on	A folded tow will be placed in the middle at the 12 th ply in a 24-ply panel. This is a common AFP defect. The location of the defect is to simulate post-cure detection of the flaw. A representation of the panel is shown below where the gray bars represent
slide(s)/figure(s):	the tow of interest. Please note the drawing is not to scale.
	$12'' \qquad $
List of materials,	Material: IM7/8552-1 Carbon Fiber/Epoxy full impregnated 0.25-inch slit tape
processes, tools and equipment used for the fabrication of the standard.	 Ply Schedule: [45/0/-45/90]3s Tool Type: Utilize a rolling cart capable of withstanding the autoclave. The tool surface will be either steel or aluminum Bagging Materials:
	A400 Release Film
	10 oz. breather cloth (N10)
	Silicone Edge Dam Edge Breather Tape
	Vacuum Bagging Material
Fabrication processes	Tool Prep: The tool is cleaned with acetone followed by a thorough wipe down with a
and procedures (e.g.,	release agent such as Frekote 710 LV. Complete 3 coats of the release agent.
material type, tool prep, material handling	Defect Placement: The tows identified is placed as usual, removed, folded by hand, and then placed back in the appropriate location. Ply is pressed into place using hand pressure and then the following ply fiber placed using the machine on top. Defect
requirements, defect placement, ply	locations will be marked on the tool for tracking. Handling: Wear clean impervious gloves while handling the material and lab coat.
debulk intervals,	Machine Settings:
bagging, cure cycle,	Heater: 110F
machining) required	Compaction: 165lbs
	Feedrate: 300 in/min
	Roller: 4" wide Roller Durometer 40 Shore A
	Debulk: First ply debulk to ensure the laminate is firm to the tool surface. No further debulking is required as AFP provides compaction.
	Cure Cycle:
	Apply full vacuum and 15 psig pressure
	Heat at 3-5°F/min to 225°F
	Hold at 225°F for 30-60 minutes
	Raise pressure to 15 psig (reduced pressure from pristine to reduce compaction on the
	placed defects)

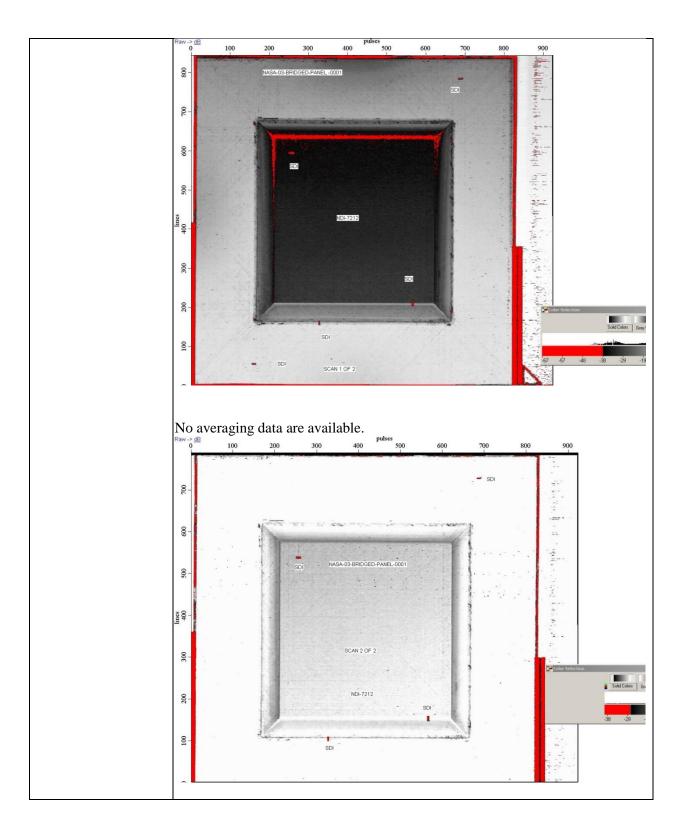

	Vent Vacuum when pressure reaches 30 psig Heat at 3-5°F/min to 350°F Hold at 350°F for 120 +/-10 minutes Cool at 2-5°F
	Machining: Panels NASA-03-Twisted-Tow-01, NASA-03-Twisted-Tow-02, NASA- 03-Missing-Tow-01, and NASA-03-Missing-Tow-02 are fabricated in a single panel and machined to net shape as shown above. Rough machining is done using a table saw with a grinding wheel or band saw with a diamond blade. Panel is milled to final configuration.
Standard characterization and verification method(s)	Description and image provided under NASA-03-Twisted-Tow-001.

Standard designation, type, and general	t62 NASA-03-Missing-Tow-001	
purpose.	A missing tow defect is placed at the 23 rd ply in a 24-ply panel. This is a common AF defect. The location of the defect is to simulate in-situ detection of the flaw.	
Described/illustrated on slide(s)/figure(s):	representation of the panel is shown below where the gray bars represent the tow interest. Please note the drawing is not to scale.	of
	3.75″	
	12" 4"	
	↓ 	
	3.75″ 45°	
	← 12″ → ¹	
List of materials, processes, tools and equipment used for the fabrication of the standard.	 Material: IM7/8552-1 Carbon Fiber/Epoxy full impregnated 0.25-inch slit tape Ply Schedule: [45/0/-45/90]3s Fool Type: Utilize a rolling cart capable of withstanding the autoclave. The tool surface will be either steel or aluminum Bagging Materials: A400 Release Film .0 oz breather cloth (N10) Silicone Edge Dam Edge Breather Tape Vacuum Bagging Material 	ce
Fabrication processes and procedures (e.g., material type, tool prep, material handling requirements, defect placement, ply debulk intervals, bagging, cure cycle, machining) required	 Fool Prep: The tool is cleaned with acetone followed by a thorough wipe down with a release agent such as Frekote 710 LV. Complete 3 coats of the release agent. Defect Placement: The tows identified are placed as usual and then removed by hand. The following ply will then be fiber placed using the machine on top. Defect locations will be marked on the tool for tracking. Handling: Wear clean impervious gloves while handling the material and lab coat. Machine Settings: Heater: 110F Compaction: 1651bs Greedrate: 300 in/min Roller: 4" wide Roller Durometer 40 Shore A Debulk: First ply debulk to ensure the laminate is firm to the tool surface. No further debulking is required as AFP provides compaction. Cure Cycle: Apply full vacuum and 15 psig pressure Heat at 3-5°F/min to 225°F Hold at 225°F for 30-60 minutes Raise pressure to 15 psig (reduced pressure from pristine to reduce compaction on the placed defects)	

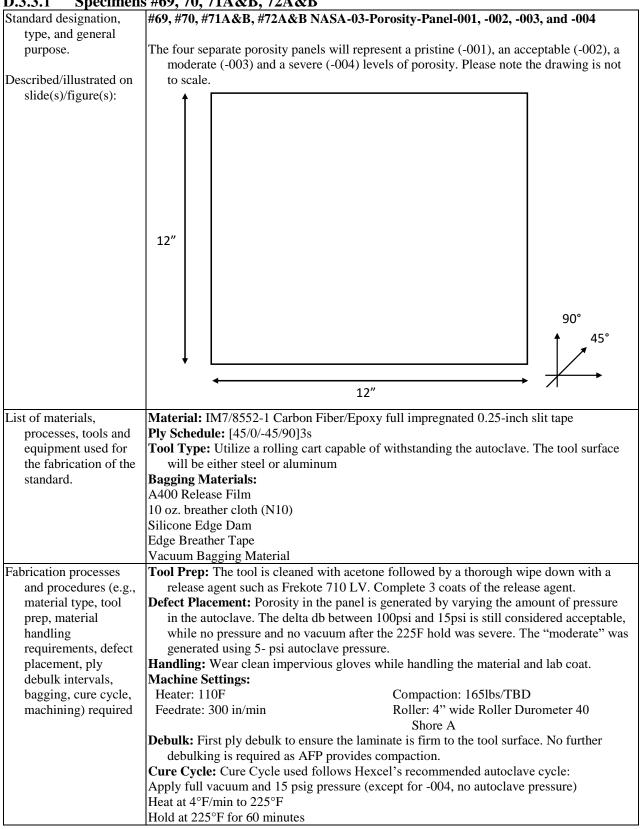

	Vent Vacuum when pressure reaches 30 psig Heat at 3-5°F/min to 350°F Hold at 350°F for 120 +/-10 minutes
	Cool at 2-5°F Machining: Panels NASA-03-Twisted-Tow-01, NASA-03-Twisted-Tow-02, NASA- 03-Missing-Tow-01, NASA-03-Missing-Tow-02, NASA-03-Folded-Tow-01, and NASA-03-Folded-Tow-02 are fabricated in a single panel and machined to net shape as shown above. Rough machining is done using a table saw with a grinding wheel or band saw with a diamond blade.
Standard characterization and verification	Description and image provided under NASA-03-Twisted-Tow-001. Missing tow visual inspection shown below:
method(s)	


Standard designation,	#63 NASA-03-Missing-Tow-002
type, and general purpose. Described/illustrated on slide(s)/figure(s):	A missing tow defect is placed in the middle at the 12 th ply in a 24-ply panel. This is a common AFP defect. The location of the defect is to simulate post-cure detection of the flaw. A representation of the panel is shown below where the gray bars represent the tow of interest. Please note the drawing is not to scale.
on shuc(s)/ rigure(s).	$12'' \qquad $
List of materials,	Material: IM7/8552-1 Carbon Fiber/Epoxy full impregnated 0.25-inch slit tape
processes, tools and equipment used for the fabrication of the standard.	Ply Schedule: [45/0/-45/90]3s Tool Type: Utilize a rolling cart capable of withstanding the autoclave. The tool surface will be either steel or aluminum Bagging Materials: A400 Release Film 10 oz breather cloth (N10) Silicone Edge Dam Edge Breather Tape Vacuum Bagging Material
Fabrication processes and procedures (e.g., material type, tool prep, material handling requirements, defect placement, ply debulk intervals, bagging, cure cycle, machining) required	 Tool Prep: The tool is cleaned with acetone followed by a thorough wipe down with a release agent such as Frekote 710 LV. Complete 3 coats of the release agent. Defect Placement: The tows identified is placed as usual and then removed by hand. The following ply will then be fiber placed using the machine on top. Defect locations will be marked on the tool for tracking. Handling: Wear clean impervious gloves while handling the material and lab coat. Machine Settings: Heater: 110F Compaction: 165lbs Feedrate: 300 in/min Roller: 4" wide Roller Durometer 40 Shore A Debulk: First ply debulk to ensure the laminate is firm to the tool surface. No further debulking is required as AFP provides compaction. Cure Cycle: Apply full vacuum and 15 psig pressure Heat at 3-5°F/min to 225°F Hold at 225°F for 30-60 minutes Raise pressure to 15 psig (reduced pressure from pristine to reduce compaction on the placed defects)

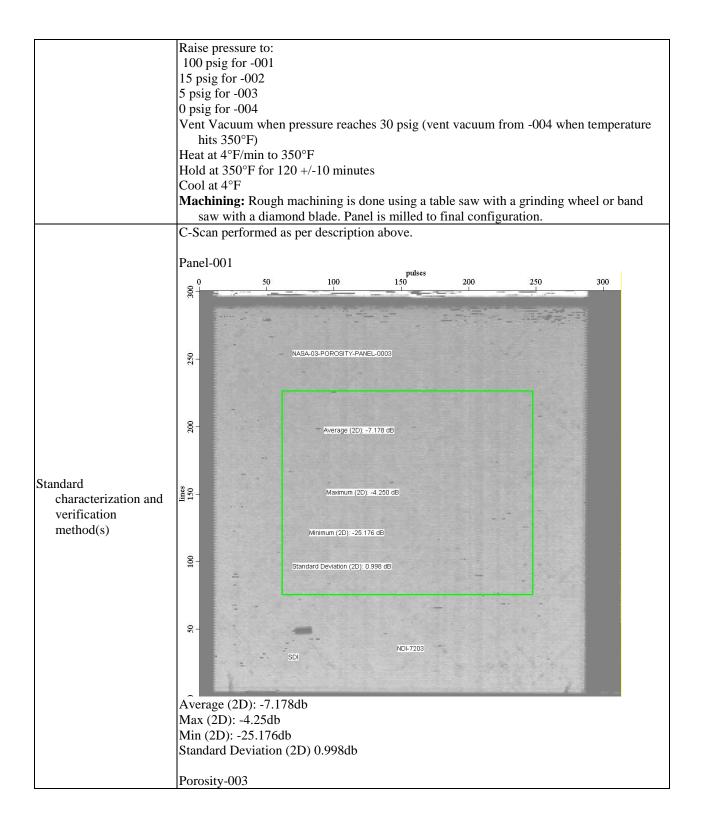

Standard	Vent Vacuum when pressure reaches 30 psig Heat at 3-5°F/min to 350°F Hold at 350°F for 120 +/-10 minutes Cool at 2-5°F Machining: Panels NASA-03-Twisted-Tow-01, NASA-03-Twisted-Tow-02, NASA- 03-Missing-Tow-01, NASA-03-Missing-Tow-02, NASA-03-Folded-Tow-01, and NASA-03-Folded-Tow-02 are fabricated in a single panel and machined to net shape as shown above. Rough machining is done using a table saw with a grinding wheel or band saw with a diamond blade. Panel is milled to final configuration. Description and image provided under NASA-03-Twisted-Tow-001.
characterization and	Description and mage provided ander to tor to Twisted Tow 001.
verification method(s)	

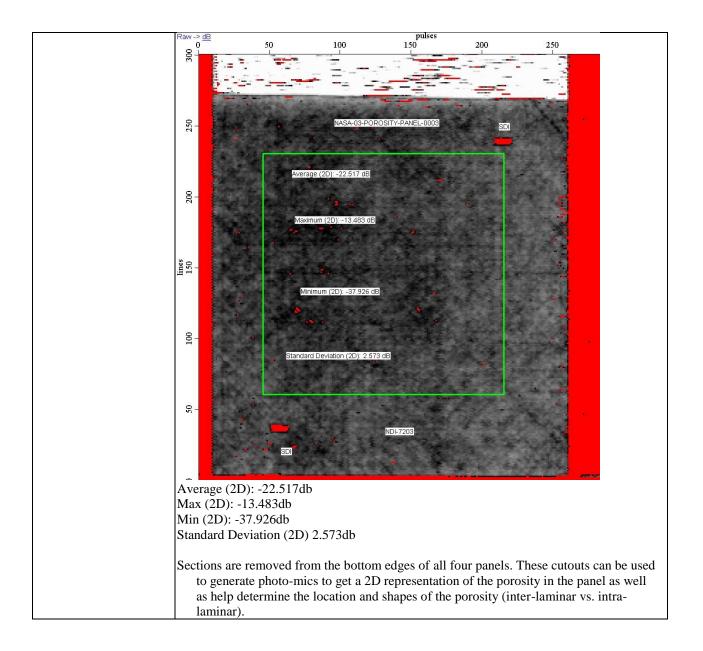


	Edge Breather Tape Vacuum Bagging Material
Fabrication processes and procedures (e.g., material type, tool prep, material handling	Tool Prep: A fiberglass insert is bonded onto the surface of the metal tool. This fiberglass tool will represent the door and create the joggle to be built. After the fiberglass insert is bonded, the tool is cleaned with acetone followed by a thorough wipe down with a release agent such as Frekote 710 LV. Complete 3 coats of the release agent.
requirements, defect placement, ply debulk intervals, bagging, cure cycle, machining)	Defect Placement: The defects are developed using a combination of tow tension settings and pinch overfeed. The exact values are not known at this time, but will be provided upon completion of the panels. These values will affect varying plies as the impact the edge under consideration. The effects of the autoclave pressure on the radii will also need to be examined and experimented with.
required	Handling: Wear clean impervious gloves while handling the material and lab coat.
	Machine Settings: Heater: 110F Compaction: 165lbs Feedrate: TBD Roller: 4" wide Roller Durometer 40 Shore A Debulk: First ply debulk to ensure the laminate is firm to the tool surface. No
	further debulking is required as AFP provides compaction.
	Cure Cycle: Cure Cycle used follows Hexcel's recommended autoclave cycle: Apply full vacuum and 15 psig pressure Heat at 4°F/min to 225°F Hold at 225°F for 60 minutes
	Raise pressure to 15 psig (minimize pressure to reduce compaction on the radii) Vent Vacuum when pressure reaches 30 psig Heat at 4°F/min to 350°F Hold at 350°F for 120 +/-10 minutes Cool at 4°F
	Machining: Rough machining is done using a table saw with a grinding wheel or band saw with a diamond blade.
Standard characterization and verification method(s)	Visual inspection is done at two times. The first images taken while laying up the first ply (a 45°) shown below. Best:


D.3.2 FOD Panel

D.3.2.1 Specimen	s #68
Standard designation, type, and general purpose.	 #68 NASA-03-FOD-Panel-001 The FOD panel will include varying sizes of Graphoil inserts placed at the Mid-ply for varying thicknesses. Please note the drawing is not to scale.
Described/illustrated on slide(s)/figure(s):	\leftarrow 6" standard distance
sinde(s)/ingure(s):	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ 2^{n} \\ 12^{n} \\ 2^{n} \\ 12^{n} \\ 2^{n} \\ 12^{n} \\ 12^{n$
	.25" Diameter Graphoil inserts at n/2
	.50" Diameter Graphoil inserts at n/2 1" square 0.005" shim stock at n/2
	.25" Diameter Graphoil inserts at n-1
	.50" Diameter Graphoil inserts at n-1
	Please Note: NOT TO SCALE
List of materials, processes, tools and equipment used for the fabrication of the standard.	 Material: IM7/8552-1 Carbon Fiber/Epoxy full impregnated 0.25-inch slit tape Ply Schedule: Varying from 8 to 48 plies. Full schedule to be included after fabrication. Tool Type: Utilize a rolling cart capable of withstanding the autoclave. The tool surface will be either steel or aluminum Bagging Materials: A400 Release Film 10 oz. breather cloth (N10) Silicone Edge Dam Edge Breather Tape Vacuum Bagging Material Graphoil Inserts


Fabrication processes	Tool Prep: The tool is cleaned with acetone followed by a thorough wipe down with a					
and procedures (e.g.,	release agent such as Frekote 710 LV. Complete 3 coats of the release agent.					
material type, tool	Defect Placement: Graphoil inserts is placed at the mid ply of the stackup. Ply will vary					
prep, material	from 8 plies to 48 plies in 8 ply increments.					
handling	Handling: Wear clean impervious gloves while handling the material and lab coat.					
requirements, defect	Machine Settings:					
placement, ply	Heater: 110F					
debulk intervals,	Compaction: 165lbs/TBD					
bagging, cure cycle,	Feedrate: 300 in/min					
machining) required	Roller: 4" wide Roller Durometer 40 Shore A					
	Debulk: First ply debulk to ensure the laminate is firm to the tool surface. No further debulking is required as AFP provides compaction.					
	Cure Cycle: Cure Cycle used follows Hexcel's recommended autoclave cycle:					
	Apply full vacuum and 15 psig pressure Heat at 4°F/min to 225°F					
	Hold at 225°F for 60 minutes					
	Raise pressure to 100 psig					
	Vent Vacuum when pressure reaches 30 psig					
	Heat at 4°F/min to 350°F					
	Hold at 350°F for 120 +/-10 minutes					
	Cool at 4°F					
	Machining: Rough machining is done using a table saw with a grinding wheel or band					
	saw with a diamond blade.					
Standard	Panel C-scanned per description above.					
characterization and	Raw> <u>dB</u> pulses 0 100 200 300 400 500 600 700					
verification						
method(s)	8					
	NASA-03-FOD 1					
	92 - Average (2D) =6.481 dB					
	8 Maximum (20): 1 968 (B					
	indianan (20) - root ab					
	Norman 7(1), 20 200 all					
	Minimum (2D): -29 980 dB					
	Standard Deviation (2D): 2.278 dB					
	н н н н н н н н н н н н н н н н н н н					
	• SDI					
	NDI-7210					
	• Note that the shim stock (center square) is barely visible on the thinnest section of the					
	FOD panel. The graphene inserts though show up vividly all thicknesses and depths.					



D.3.3 Porosity Panels

D.3.3.1 Specimens #69, 70, 71A&B, 72A&B

Consortium Member Number	Specimen Number/Name	Description
4	81	6 × 6-inch 8-ply IM7/8552 [(45/90/-45/0)]S 1 impact
4	82	3 × 5-inch 8-ply IM7/8552 [(45/90/-45/0)]S 1 impact
4	83	3 × 5-inch 8-ply IM7/8552 [(45/90/-45/0)]S 1 impact
4	84	11 × 11-inch 8-ply IM7/8552 [(45/90/-45/0)]S Spare. No impact
4	85	22 × 22-inch 8-ply IM7/8552 [(45/90/-45/0)]S 4 impacts in center 8 × 8-inch square
4	86	6 × 6-inch 16-ply IM7/8552 [(45/90/-45/0)2]S 1 impact
4	87	3 × 5-inch 16-ply IM7/8552 [(45/90/-45/0)2]S 1 impact
4	88	3 × 5-inch 16-ply IM7/8552 [(45/90/-45/0)2]S 1 impact
4	89	22 × 22-inch 16-ply IM7/8552 [(45/90/-45/0)2]S 4 impacts in center 8 × 8-inch square
4	90	6 × 6-inch 24-ply IM7/8552 [(45/90/-45/0)3]S 1 impact
4	91	3 × 5-inch 24-ply IM7/8552 [(45/90/-45/0)3]S 1 impact
4	92	3 × 5-inch 24-ply IM7/8552 [(45/90/-45/0)3]S 1 impact
4	93	6 × 6-inch 32-ply IM7/8552 [(45/90/-45/0)4]S 1 impact
4	94	3 × 5-inch 32-ply IM7/8552 [(45/90/-45/0)4]S 1 impact
4	95	3 × 5-inch 32-ply IM7/8552 [(45/90/-45/0)4]S 1 impact

D.4 Manufacturing Information for NDE Standards Provided by Consortium Member #4

4	96	6 × 6-inch 18-ply IM7/8552 [45/90/-45/0/0/45/90/-45/0]S 1 impact
4	97	3 × 5-inch 18-ply IM7/8552 [45/90/-45/0/0/45/90/-45/0]S 1 impact
4	98	3 × 5-inch 18-ply IM7/8552 [45/90/-45/0/0/45/90/-45/0]S 1 impact

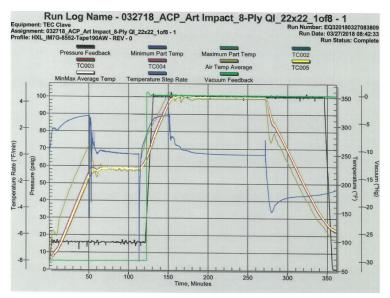
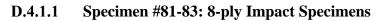
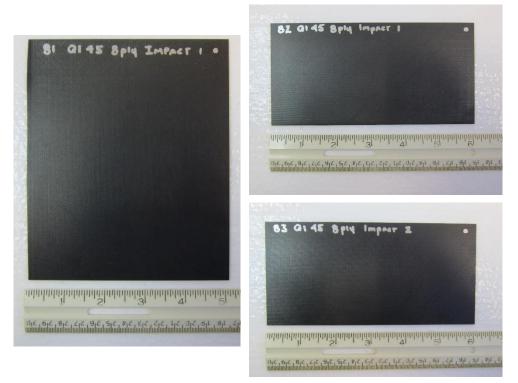
D.4.1 Impact Specimens #81-98

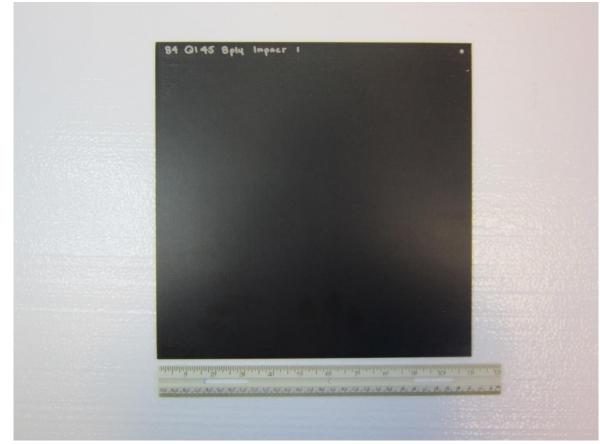
Introduction

Seventeen specimens were manufactured with a range of thicknesses, layups, and sizes of interest and later impacted to create manufacturing-type impact damage standards, as shown below in Table D.4-1. All panels were layed up using a quasi-isotropic stacking sequence, with the exception of a particular layup sequence of interest to ACP Tech Challenge 1 containing 18 plies. Two large specimens, measuring 22×22 inches with thicknesses of 8 and 16 plies were manufactured with the particular intent to provide impact standards for Shearography measurements. Five 6×6 -inch panels and $10 \ 3 \times 3$ -inch panels were made for XCT, thermography, and ultrasonic standards. The panels were cured using as shown in Figure D.4.1. Impacts were performed to represent tool drops and other manufacturing-type impact damage scenarios, with an impactor mass of 3.817 lbs and an impactor tip of 1.0 inches in diameter. Ultrasonic validation was performed after impact, and if no damage was found the location was impacted again at a higher energy (subsequent impacts denoted by 'b,' 'c,' 'd' events as appropriate). Unless otherwise noted, impacts were targeted to the center of the specimen.

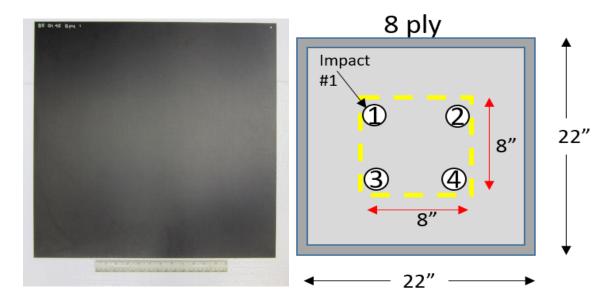
				Thickness			
Configuration	Q-I	Layup	# Plies	(in)	(panel size (in))*	*# panels Specim	en #
TC1	No	[45/90/- 45/0/0/45/90/- 45/0]S	18	0.3		(6x6)*1 #96	(3x5)*2 #97 & #98
QI-45 24ply	Yes	[(45/90/-45/0)3]S	24	0.173		(6x6)*1 #90	(3x5)*2 #91 & #92
QI-45 32ply	Yes	[(45/90/-45/0)4]S	32	0.231		(6x6)*1 #93	(3x5)*2 #94 & #95
QI-45 16ply	Yes	[(45/90/-45/0)2]S	16	0.116	(22x22)*1 #89	(6x6)*1 #86	(3x5)*2 #87 & #88
QI-45 8ply	Yes	[(45/90/-45/0)]S	8	0.058	(22x22)*1 #85	(6x6)*1 #81	(3x5)*2 #82 & #83

Table D.4-1. Configurations of impact specimen standards.


Figure D.4-1. TEC cure graphs.

Impact energies to create damage


Specimen/	Specimen	Nominal Impact	Damage
Impact #	Size, in	Energy, ft-lbs	Diameter, in
82	3x5	1.8	0.82
83	3x5	1.5	0.37
81	5x6	1.5	0.34

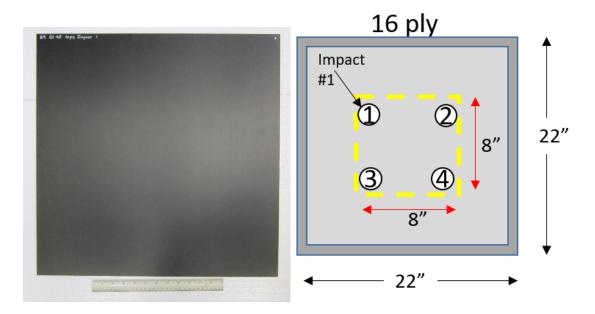
D.4.1.2 Specimen #84: Spare 8-ply Impact Specimen

Figure D.4-2. An 11 × 11-inch spare impact panel created but not impacted.


D.4.1.3 Specimen #85

Impact energies to create damage

Specimen/ Impact #	Specimen Size, in	Nominal Impact Energy, ft-lbs	Damage Diameter, in
85-1a	22x22	4	0
85-2	22x22	5	0.22
85-3	22x22	6	0.33
85-4	22x22	7	0.38
85-1b	22x22	8	0.54


D.4.1.4 Specimen #86-88: 16-ply Impact Specimens

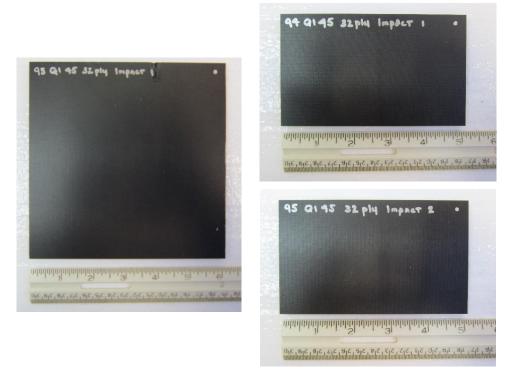
Specimen/ Impact Info*	Specimen Size, in	Nominal Impact Energy, ft-lbs	Damage Diameter, in
86a	6x6	2.5	0
86b	6x6	3.2	0
86c	6x6	3.75	0.2
87	3x5	4	1.28
88	3x5	3.5	0.88

^{*} a,b,c,d letters indicate repeat tests at the same location (i.e., no damage occurred on previous impact. 1,2,3 numbers indicate impacts at location 1, location2, etc. on the same sample.

D.4.1.5 Specimen #89

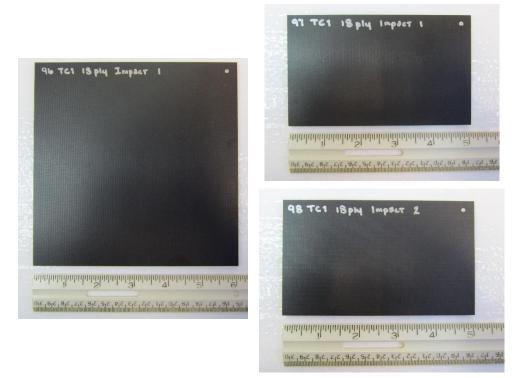
Specimen/ Impact #	Specimen Size, in	Nominal Impact Energy, ft-lbs	Damage Diameter, in
89-1a	22x22	8	0
89-2a	22x22	10	0
89-1b	22x22	12	0
89-2b	22x22	14	0
89-2c	22x22	16	0
89-1c	22x22	18	0.22
89-2d	22x22	20	0.46
89-3a	22x22	22	0.6
89-4a	22x22	23	0.75

Impact energies to create damage


D.4.1.6 Specimen #90-#92: 24-ply Impact Specimens

Impact energies to create damage

Specimen/ Impact #	Specimen Size, in	Nominal Impact Energy, ft-lbs	Damage Diameter, in
90a	6x6	6	0
90b	6x6	7	0
90c	6x6	8	1
92	3x5	6	1
91	3x5	5	1.11


D.4.1.7 Specimen #93-#95: 32-ply Impact Specimens

Specimen/ Impact #	Specimen Size, in	Nominal Impact Energy, ft-lbs	Damage Diameter, in
95	3x5	5	0.25
94	3x5	5.5	1.12
93	6x6	8	0.23

Impact energies to create damage

D.4.1.8 Specimen #96-#98: 18-ply Non-Isotropic Impact Specimens

Impact energies to create damage

Specimen/ Impact #	Specimen Size, in	Nominal Impact Energy, ft-lbs	Damage Diameter, in
98	3x5	3.5	0.96
97	3x5	3	0.92
96a	6x6	3	0
96b	6x6	3.5	0
96c	6x6	4	0
96d	6x6	4.25	0.3

Consortium Member Number	Specimen Number/Name	Description
5	45 UTC 1 FBH	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flat panel Delamination/disbond (FBH)
5	46 UTC 2 Mold Release	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flat panel Disbond
5	47 UTC 3 Pillow	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flat panel Delamination (Air Pillow)
5	48 UTC 6 Porosity 2	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flat panel Porosity
5	49 UTC 8 Porosity 1	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flat panel Porosity
5	50 UTC 11 Baseline 2	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flat panel Baseline
5	51 UTC 13 Snag	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flat panel Fabric Snag
5	52 UTC Flange Baseline 1	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flange Baseline
5	53 UTC Flange Baseline 2	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flange Baseline
5	54 UTC 1/2-inch Pillow Defect Flange 1	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flange Delamination (Air Pillow)
5	55 UTC 1/2-inch Pillow Defect Flange 2	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flange Delamination (Air Pillow)
5	56 UTC Snag 1	Triaxial Braid, 0/+60/-60 T-800SC Triaxial Braid 0/+60/-60 with 3M AMD-825 Flange Fabric Snag

D.5Manufacturing Information for NDE Standards Provided by Consortium Member #5ConsortiumSpecimen Number/NameDescription

Panel Orientation	# of Panels	Panel Name	Defect Type	Date Delivered	
	1	Baseline	No Defects	9/21/16	
	1	Pillow Defects	Delaminations	9/8/2016	
Elat Danal 12 y 12 inch	1	FBH	Calibration	9/8/2016	
Flat Panel, 13×13 -inch	1	Mold Release	Weak Bond	9/8/2016	
	1	Snag Defects	Tow Displacement	9/21/2016	
	2	Porosity	Porosity	9/21/2016	
	2	Baseline	No Defects	10/10/2016	
Flange	2	Pillow Defects	Delaminations	10/10/2016	
	1	Snag Defects	Tow Displacement	10/10/2016	

D.5.1 Panel Deliverables

D.5.2 Reinforcement/Resin System

	T800 Carbon Fiber
Reinforcement	 Triaxial Braid 0°,+/- 60° Areal Weight ~800 g/m² Cured ply thickness ~.027 in.
Resin	AMD 825 Toughened Epoxy 3M Developmental Resin

D.5.3 Vacuum Bag Lay-up (Figure D.5-1)

- 1. Kapton® and solid Armalon® used to prevent resin from contaminating plate.
- 2. Flow media used to enhance resin flow from flow channel to braid.
 - a. Two layers under outlet end of braid.
 - b. Four layers to enhance flow over the braid.
- 3. Porous Armalon® used as a release ply.
- 4. For all panels, plies are laid in the same direction, nesting the 0° tow.

*Flanges are made with the same vacuum bag lay up on a 90° tool. See Figure D.5-2.

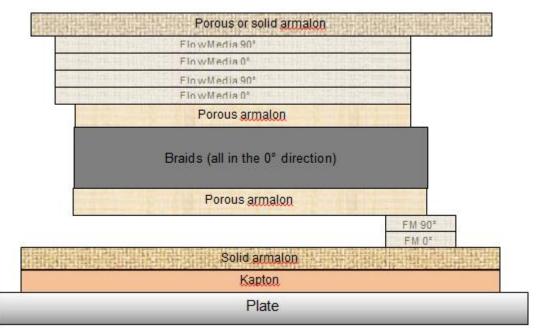


Figure D.5-1. Vacuum bag lay-up for a flat panel and flange.

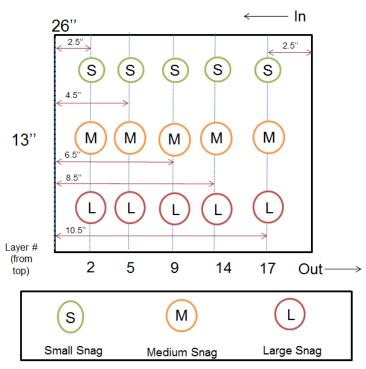


Figure D.5-2. Snag panel lay-up.

D.5.4 Fabrication Method – VaRTM

- Panels fabricated by vacuum assisted resin transfer molding (VaRTM)
 - Composite is molded in a rigid, heated vacuum bag
 - Cured under low pressure in an autoclave (see V. Cure Cycle)
 - Equipment: Baron autoclave

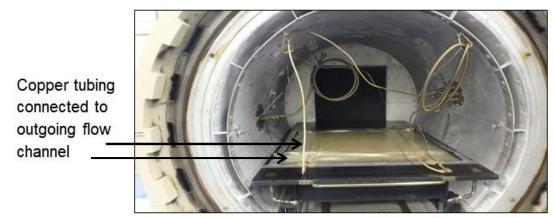
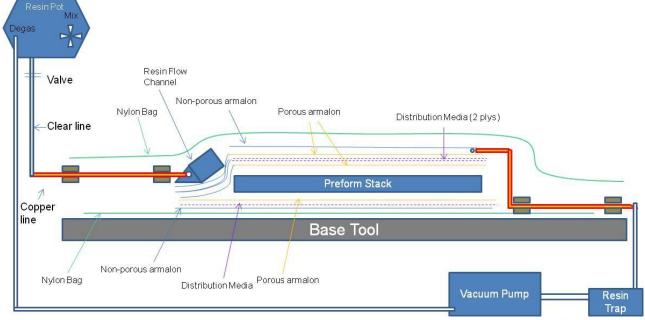
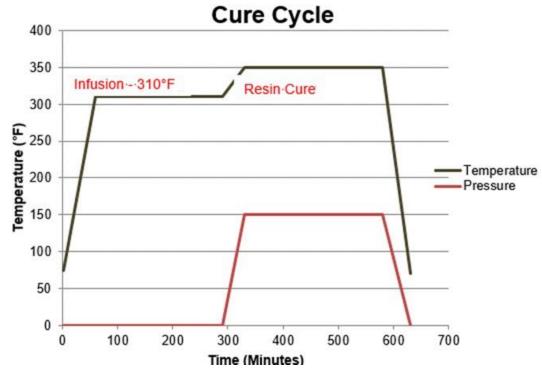
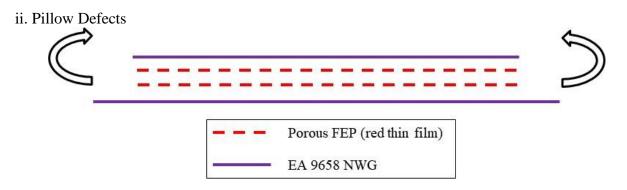




Figure D.5-3. Baron autoclave.

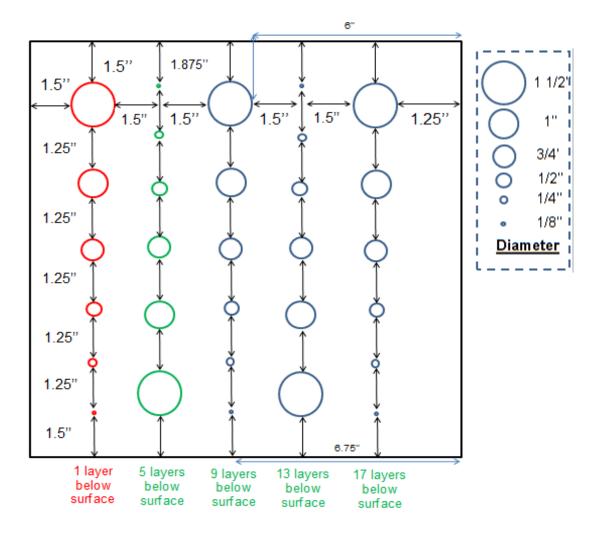


Figure D.5-4. VaRTM process.

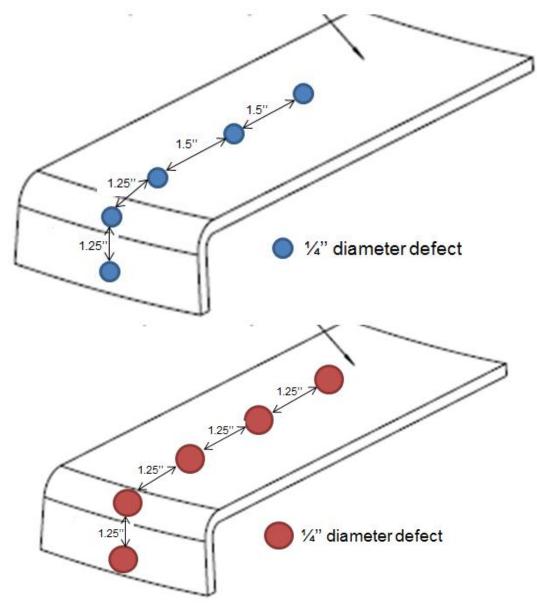
- Vacuum pump degasses resin and pulls vacuum through the resin trap, the preform stack, and to the resin pot
 - Valve at the resin pot is opened, resin flows through preform and eventually into resin trap.



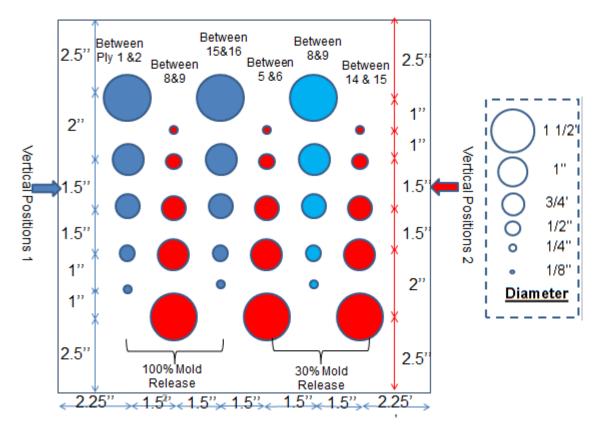
D.5.6 Resin Viscosity Profile - 310 °F



D.5.7 Defect Manufacturing

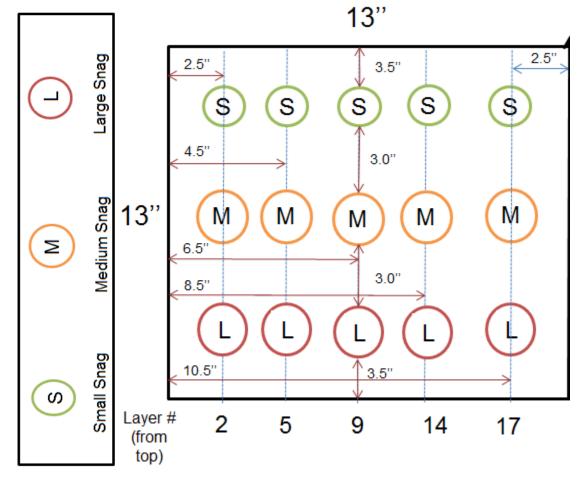

i. Baseline - panel/flange manufactured by normal procedures, no defects intentionally added

- 1. Use stamps to cut 1.5-, 1-, 0.75-, 0.5-, 0.25-, and 0.125-inch circles from the adhesive. The top layer should be the target size of the defect. The bottom layer should be one size larger.
- 2. Use a knife or stamps to cut 2 layers of Fluorinated Ethylene Propylene (FEP) film (same size as target defect and top layer of adhesive).
- 3. Create the stack and fold the larger bottom layer of adhesive around the stack, creating a pillow.



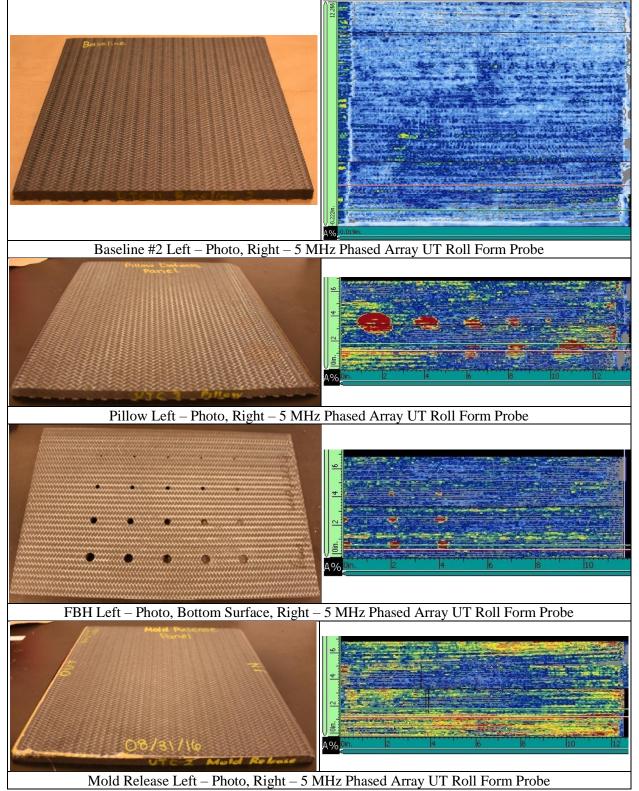
Pillow Defects for the flange are made the same way however only 0.25- and 0.5-inch sizes were used. The defects are put in the center of the panel – between plies 6 and 7.

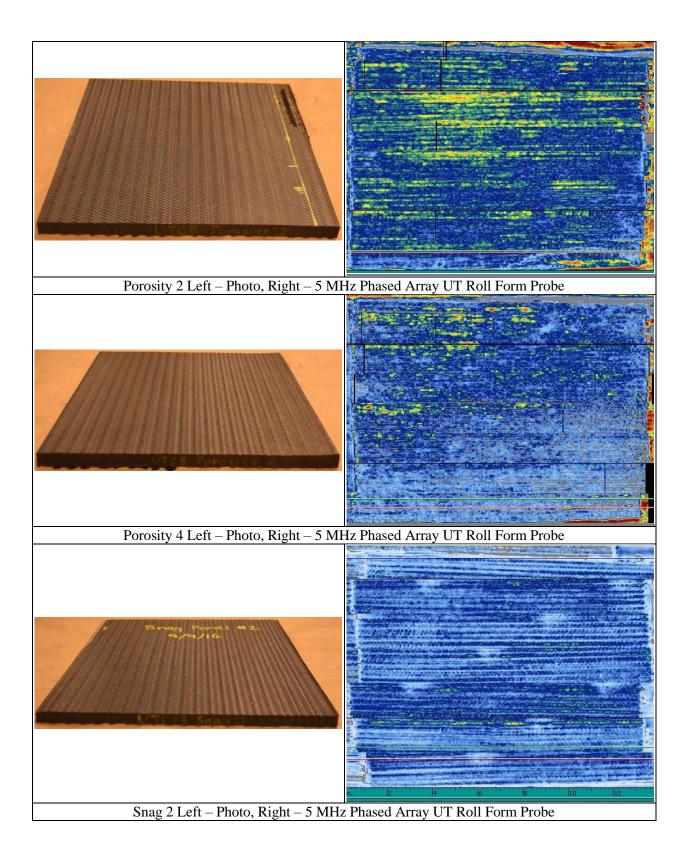
iii. Mold Release Defects


Mold release is meant to create a "kissing bond" between the fabric plies – representing weak bond integrity but no gap. Mold release is only used as an intentional defect in the flat panel.

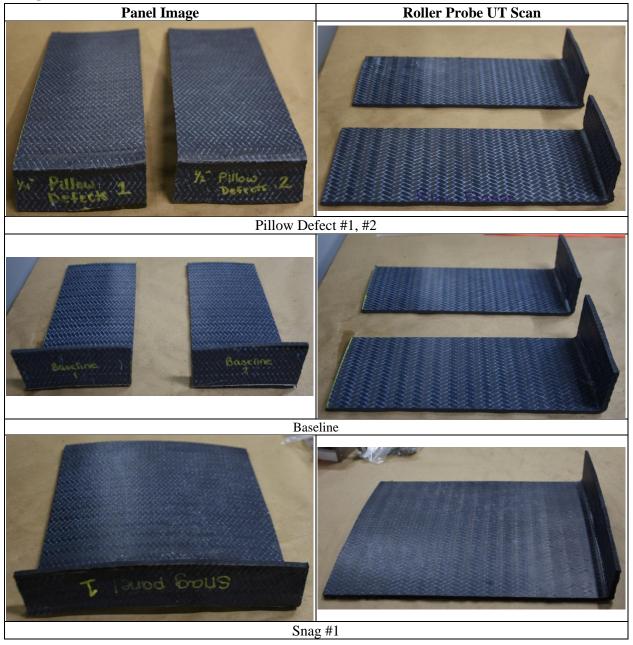
iv. Snag Defects

In the flat panel, snags were made by pulling up one tow from the plane. A large snag indicated that the tow was pulled about an inch off the surface. A medium snag indicated a 0.5-inch and the small snag was about a 0.25-inch off the plane.





v. Porosity Defects

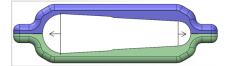

The porosity panels are made without standard procedures. The root cause of the porosity is the vacuum bag leaking while pressurizing post-infusion.

Flange Panel Pictures

#6		
Consortium Member Number	Specimen Number/Name	Description
6	73 NASA-005-STANDARD-001	Quasi-isotropic IM7/8552 satin weave fabric and unidirectional Rotorcraft blade spar tube Pristine
6	74 NASA-005-STANDARD-002	Quasi-isotropic IM7/8552 satin weave fabric and unidirectional Rotorcraft blade spar tube Pristine
6	75 NASA-005-Wrinkle-001	Quasi-isotropic IM7/8552 satin weave fabric and unidirectional Rotorcraft blade spar tube Out of plane wrinkle
6	76 NASA-005-Wrinkle-002	Quasi-isotropic IM7/8552 satin weave fabric and unidirectional Rotorcraft blade spar tube Out of plane wrinkle
6	77 NASA-005-Porosity-001	Quasi-isotropic IM7/8552 satin weave fabric and unidirectional Rotorcraft blade spar tube Porosity
6	78 NASA-005-Porosity-002	Quasi-isotropic IM7/8552 satin weave fabric and unidirectional Rotorcraft blade spar tube Porosity
6	79 NASA-005-Porosity-003	Quasi-isotropic IM7/8552 satin weave fabric and unidirectional Rotorcraft blade spar tube Porosity
6	80 NASA-005-Porosity-004	Quasi-isotropic IM7/8552 satin weave fabric and unidirectional Rotorcraft blade spar tube Porosity

D.6 Manufacturing Information for NDE Standards Provided by Consortium Member #6

Non-Destructive Test (NDT) reference standards provided by Consortium member #6 are generic elliptical airfoil shaped tubes that are representative of main and tail-rotor blade spar structures. The closed shape geometry presents significant challenges for manufacturing and inspection due to changing thickness, variable radii, internal ply drop-offs, and bulk factors that can lead to porosity, bridging, delamination, wrinkles, and marcelling. The closed shape, which in practical application can be over 20 feet in length, also presents a challenge for common NDT processes due to limited internal surface access and the conic radii. Inspection in radii presents particular difficulty because ultrasonic signals may not be reflected back normal to the transducer with conventional ultrasonic inspection techniques. In addition, specific details such as distinguishing disbonds/delaminations from porosity and determining precise ply depth location is sometimes elusive, particularly if defects are stacked throughout a thickness.


Wrinkles and marcels are even more pervasive, in that most current techniques cannot accurately characterize the internal dimensions of a wrinkle or marcel, except by destructive means. This generally results in zero acceptances for wrinkle defects or surface distortions in most structural applications. Development of new automated Nondestructive Inspection (NDI) methods that can speed inspection and distinguish precise through-thickness features for porosity and wrinkles; would help the analyst better determine the acceptability of a part; speed analysis of production quality; and potentially save parts that are presently scrapped due to assuming the worst-case defect size, while also preventing the escape of a critical defect.

The objective of this task was to create tubular shaped NDT reference standards that can be used to develop improved NDT techniques for better definition of wrinkles, marcels, porosity, and disbonds in tubular structures that represent rotorcraft blade spars, and by extension, potentially other tubular composite structure such as drive shafts.

NDT reference standards are defined based on the most prevalent and difficult to assess defects seen in production applications for closed shape tubular designs such as rotor blade spars. The material selected was Hexcel IM7/8552, using a construction of both 8 Harness Satin weave Fabric at 370 gsm areal weight (SGP370-8H, Batch 19026, Roll 014) and unidirectional 12 K tow material at 320 gsm areal weight (IM7/8552, Batch 17078, roll 006). The layup is shown in Tables D.6-1 and D.6-2, and Figure D.6-1. The same layup was used for all standards, both good and those with defects.

Layer	Туре	Location	Orientation	Thickness (in)
1	Woven 8HS	Full Wrap	+/-45	0.015
2	Woven 8HS	Full Wrap	+/-45	0.015
3	Uni	Full Wrap	+45	0.012
4	Uni	Full Wrap	-45	0.012
5	Uni	Flat Dropoff	0	0.012
6	Uni	Flat Dropoff	0	0.012
7	Uni	Full Wrap	+45	0.012
8	Uni	Full Wrap	-45	0.012
9	Uni	Flat Dropoff	0	0.012
10	Uni	Flat Dropoff	0	0.012
11	Uni	Full Wrap	+45	0.012
12	Uni	Full Wrap	-45	0.012
13	Uni	Flat Dropoff	0	0.012
14	Uni	Flat Dropoff	0	0.012
15	Uni	Full Wrap	+45	0.012
16	Uni	Full Wrap	-45	0.012
17	Woven 8HS	Full Wrap	+/-45	0.015
18	Woven 8HS	Full Wrap	+/-45	0.015

Table D.6-1. Layup sequence for tubular shaped standards.

	Leading Conic	Trailing Conic	Length
Layer	Inches	Inches	Ratio
5	0.677	0.383	0.403
6	0.980	0.554	0.583
9	0.840	0.475	0.500
10	1.120	0.633	0.667
13	0.187	0.106	0.111
14	0.513	0.290	0.306

Table D.6-2. Ply drop-off definition unidirectional plies (flats).

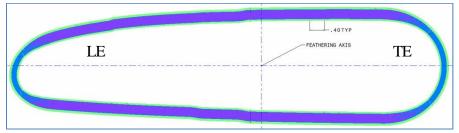


Figure D.6-1. Graphic representation of typical layup.

Table D.6-3. Full wrap plies were two pieces with butt trim locations from the conic apex.

	Lover	UAF	LAF	SPAN	Butt TRIN	l location	Trim L	ocation
	Layer	UAF	LAF	SPAN	LE	TE	LE	TE
last ply down	1	14"	20"	24"	0.75"	1.25"		
٨	2	20"	14"	24"	0.75"	1.25"		
	3	14"	20"	24"	0.5"	1.0"		
	4	20"	14"	24"	0.5"	1.0"		
	5	10.5"	10.5"	24"			0.677"	0.383"
	st ply down 1 14" 20" 24" 0.75" 2 20" 14" 24" 0.75" 3 14" 20" 24" 0.5" 4 20" 14" 24" 0.5"			0.98"	0.554"			
	7	14"	20"	24"	0.75"	1.25"		
	8	20"	14"	24"	0.75"	1.25"		
	9	10.9"	10.9"	24"			0.84"	0.475"
	10	9.9"	9.9"	24"			1.12"	0.63"
	11	14"	20"	24"	0.5"	1.0"		
	12	20"	14"	24"	0.5"	1.0"		
	13	9.7"	9.7"	24"			0.187"	0.106"
	14	10.2"	10.2"	24"			0.513"	0.29"
	15	14"	20"	24"	0.75"	1.25"		
	16	20"	14"	24"	0.75"	1.25"		
	17	14"	20"	24"	0.5"	1.0"		
First ply down	18	20"	14"	24"	0.5"	1.0"		
	MANDRE	EL						

The generic specimen geometry was identified as a tubular section of airfoil shape as shown in Figures D.6-2 through D.6-4.

COMPOSITE Tubular section NDI standards

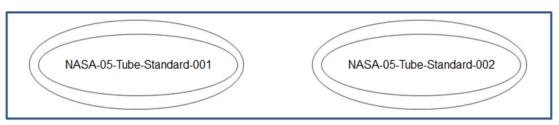


Figure D.6-2. Defect-free standards.

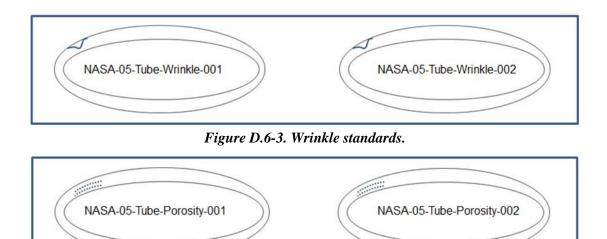


Figure D.6-4. Porosity standards.

The Manufacturing Process used is basically the same for all standards with specific process variables and conditions adjusted to achieve the desired defects. The general process flow is shown in Figure D.6-5. To expedite the making of standards, specimens are cured at 270 °F to shorten the cure process. This allowed us to ascertain more quickly if the process conditions selected would yield the defects desired. As defects will form in the region between minimum viscosity (180 °F to 220 °F) and 250 °F when the material gels, but it is not fully cross-linked, it was possible to obtain desired defects using a lower temperature shorter cure cycle. IM7/8552 successfully cures at 250 °F, though obviously has a lower Glass Transition temperature (Tg) and 10% to 20% lower mechanical properties when cured at that temperature. Mechanical properties and Tg were not pertinent to this study, and the specimens can be post-cured in an oven at 350 °F for complete crosslinking if required for future investigation of structural implications of the defects created.

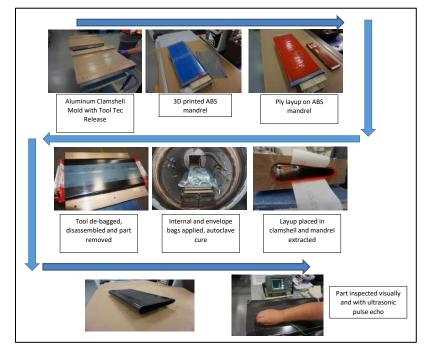


Figure D.6-5. Basic manufacturing flow for NDT Standards.

Two baseline standards, NASA-05-STANDARD-001 and -002 representing a defect free configuration is provided to help calibrate any NDT method selected for evaluation. The good samples were produced using best practices for selecting the starting layup mandrel size, maximizing debulking of the preform (15 minute vacuum at room temperature per debulk cycle), best practice pleating of the vacuum bag and a high-pressure (100 psi) cure. Details of the process variables to produce good standards is shown in Figure D.6-6.

		_							Butt TRIM	I location	Trim L	ocation
	Layer	Туре	Location	Orientation	Thickness (in)	UAF	LAF	SPAN	LE	TE	LE	TE
last ply down	1	Woven 8HS	Full Wrap	+/-45	0.015	14"	20"	24"	0.75"	1.25"		15
	2	Woven 8HS	Full Wrap	+/-45	0.015	20"	14"	24"	0.75"	1.25"		
$-\uparrow$	3	Uni	Full Wrap	+45	0.012	14"	20"	24"	0.5"	1.0"		
	4	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.5"	1.0"		
	5	Uni	Flat Dropoff	0	0.012	10.5"	10.5"	24"			0.677"	0.383"
	6	Uni	Flat Dropoff	0	0.012	11.3"	11.3"	24"			0.98"	0.554"
	7	Uni	Full Wrap	+45	0.012	14"	20"	24"	0.75"	1.25"		
	8	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.75"	1.25"	0.04	0.475
	9 10	Uni	Flat Dropoff	0	0.012 0.012	10.9" 9.9"	10.9" 9.9"	24" 24"		_	0.84"	0.475"
	10	Uni Uni	Flat Dropoff Full Wrap	+45	0.012	9.9 14"	9.9 20"	24	0.5"	1.0"	1.12"	0.63"
	11	Uni	Full Wrap	-45	0.012	20"	20 14"	24"	0.5	1.0"		
	13	Uni	Flat Dropoff	0	0.012	9.7"	9.7"	24"	0.5	1.0	0.187"	0.106"
	14	Uni	Flat Dropoff	0	0.012	10.2"	10.2"	24"			0.513"	0.29"
	15	Uni	Full Wrap	+45	0.012	14"	20"	24"	0.75"	1.25"		
	16	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.75"	1.25"		
'		Woven 8HS		+/-45	0.015	14"	20"	24"	0.5"	1.0"		
irst ply down		Noven 8HS	Full Wrap	+/-45	0.015	20"	14"	24"	0.5"	1.0"		
	MANDREL	-										
							inches					
				mandrel before fir	stply		24.725					
			ce of layup after				25.612					
				andrel before first	ріу		11.18 11.44					
			imension of la wise dimensio				11.44					
5	Clamsnell		wise dimensio	и.			11.71					
	Part #2 "G	ood Part"										
			/I of Mandrel	as a snacer - 2 ni	eces or more to confor	m to man	drel - tane tr	naether				
			t perf FEP tigh			in to man		gouloi				
	Debulk firs											
	Debult sec											
	Debulk eve	ery two plies	thereafter									
				art to prevent wrir								
				overwrap of N10	or equiv. collar)							
			rge radius con									
	One bag p	leat in smal	I radius conic									
					-							
					-							
	2	70F	1.5F/n	ain	5-8F/min							
	2		1.5F/11	/ 120								
		1.5F/m	nin /	minutes								
	Ë 22	OF	90									
			minutes									
	-											
		0F										
	비 100 F	ISIG										
	PRESSURE	1										
	₩ 0 Р	sig 🖌 🗕 🗕			<u>\</u>							
		Vent	Vacuum at 30 P	SIG								
	-25 P	316										
					-							

Figure D.6-6. Process variables for NASA-005-Tube-STANDARD-001 and -002.

Two standards are produced that represent internal wrinkles, NASA-005-Tube-Wrinkles-001 and -002, evidenced by ply distortion on the surface and loss of back wall upon ultrasonic inspection. However, the magnitude of the wrinkle is not readily evident unless destructively sectioned and a visual examination performed. Wrinkles were produced by over sizing the layup mandrel, minimizing debulking of the preform (15 minute vacuum at room temperature per debulk cycle), using best practice for pleating the internal vacuum bag, and using a high-pressure cure cycle

(100 psi). Process Variable details to produce wrinkles are shown in Figure D.6-7. There was one unintended consequence: some of the inner mold line (IML) wrinkles entrapped the red FEP release film, so there are some wrinkles with FOD present.

	Layer	Туре	Location	Orientation	Thickness (in)	UAF	LAF	SPAN		I location		ocation
	Layor					-		-	LE	TE	LE	TE
ply down	1	Woven 8HS	Full Wrap	+/-45	0.015	14"	20"	24"	0.75"	1.25"		
∧	2	Woven 8HS	Full Wrap	+/-45	0.015	20"	14"	24"	0.75"	1.25"		
	3	Uni	Full Wrap	+45	0.012	14"	20"	24"	0.5"	1.0"		
	4	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.5"	1.0"	0.077	0.000
	5	Uni	Flat Dropoff	0	0.012	10.5"	10.5"	24" 24"			0.677"	0.383"
	6	Uni Uni	Flat Dropoff Full Wrap	0 +45	0.012	11.3" 14"	11.3" 20"	24	0.75"	1.25"	0.98"	0.554"
	8	Uni	Full Wrap	-45	0.012	20"	14"	24	0.75	1.25		
	9	Uni	Flat Dropoff	-45	0.012	10.9"	14	24	0.75	1.25	0.84"	0.475"
	10	Uni	Flat Dropoff	0	0.012	9.9"	9.9"	24		-	1.12"	0.63"
	11	Uni	Full Wrap	+45	0.012	14"	20"	24"	0.5"	1.0"	1.12	0.00
	12	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.5"	1.0"		
	13	Uni	Flat Dropoff	0	0.012	9.7"	9.7"	24"			0.187"	0.106"
	14	Uni	Flat Dropoff	0	0.012	10.2"	10.2"	24"			0.513"	0.29"
	15	Uni	Full Wrap	+45	0.012	14"	20"	24"	0.75"	1.25"		
	16	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.75"	1.25"		
1	17	Woven 8HS	Full Wrap	+/-45	0.015	14"	20"	24"	0.5"	1.0"		
ply down		Woven 8HS	Full Wrap	+/-45	0.015	20"	14"	24"	0.5"	1.0"		
	MANDRE	-										
							inches					
				andrel before first	ply		25.345					
			of layup after				26.375					
			ension of layu				11.180"					
			ension of layu				11.75					
4	Clamshell	Mold chordwi	se dimension				11.71					
	Dort #2 "M	/rinkled Partt										
				a spacer 2 pice	es or more to conform	to mondro	topo tog	othor				
			erf FEP tight a			to manure	- tape toge					
	Debulk firs											
	Debult sec											
	Debulk las											
			for IML of par	t to prevent wrink	es							
				verwrap of N10 or								
			e radius conic									
	One bag p	eat in small r	adius conic									
					5-8F/min							
	2	70F	1.5F/m	in	5-8F/min							
			/	120 minutes	$\langle \rangle$							
	법 22	1.5F/mi 20F	n /									
	F 24		90									
			minutes							-		-
	-	OF										
	1008											
	8 .001											
	nss	/*									-	
	DE SSURE	SIG										
	-25 F		/acuum at 30 PS	SIG							-	
	201											

Figure D.6-7. Process variables for NASA-005-Tube-Wrinkle-001 and -002.

The third set of two standards, NASA-005-TUBE-Porosity-001 and -002, represent porosity and disbond defects. Seeded defects using 0.250-inch diameter, 0.375-inch diameter and 0.500-inch diameter PTFE tape buttons were planted in the laminate. In addition, natural porosity and disbonds were produced by moisture conditioning a single ply mid laminate, minimizing debulking of the preform (15 minute vacuum room temperature per debulk cycle), minimizing pleats in the internal bag, and using a low-pressure (45 psi) cure cycle. Details are shown in Figure D.6-8. The initial attempt to produce porosity defects resulted in a collapse of the internal rubber caul sheet during cure and gross depressions of the small radius conic. The remaining sections of the airfoil were usable so they are provided as standards for the flat areas and large conic. However, we decided to make a second set of porosity standards to obtain porosity representative of the small

radius conic. NASA-005-Tube-porosity-003 and -004 were manufactured in identical fashion to NASA-005-Tube-porosity-001 and -002, except the moisture conditioning of ply 7 was limited to the center 8 inches of the ply by segmenting it into three 8-inch segments. This is based on feedback from the NDT inspector on porosity specimens -001 and -002 on the difficulty in trying to distinguish good and bad within a single layer of the laminate when the entire ply may be porous. The segmented approach also disrupted possible air paths for the moisture to escape by having the center section isolated from the ends through severing of the fibers. The use of seeded defects in porosity -003 and -004 was identical to that of porosity -001 and -002. The internal rubber caul remained in place for the second attempt and a usable small radius conic is obtained. The small radius conic of -003 and -004 exhibited significant porosity. Process details for porosity -003 and -004 are shown in Figure D.6-9.

									D.14 TOIN		Trim Location	
	Layer	Туре	Location	Orientation	Thickness (in)	UAF	LAF	SPAN	Butt TRIM location			
		••							LE	TE	LE	TE
ast ply down	1	Woven 8HS	Full Wrap	+/-45	0.015	14"	20"	24"	0.75"	1.25"		
	2	Woven 8HS Uni	Full Wrap Full Wrap	+/-45	0.015 0.012	20" 14"	14" 20"	24" 24"	0.75" 0.5"	1.25" 1.0"		
	4	Uni	Full Wrap	+45 -45	0.012	20"	20 14"	24	0.5	1.0"		-
	5	Uni	Flat Dropoff	0	0.012	10.5"	10.5"	24	0.5	1.0	0.677"	0.383"
	6	Uni	Flat Dropoff	0	0.012	11.3"	11.3"	24"			0.98"	0.554"
	7	Uni	Full Wrap	+45	0.012	14"	20"	24"	0.75"	1.25"	0.00	0.001
	8	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.75"	1.25"		
	9	Uni	Flat Dropoff	0	0.012	10.9"	10.9"	24"			0.84"	0.475"
	10	Uni	Flat Dropoff	0	0.012	9.9"	9.9"	24"			1.12"	0.63"
	11	Uni	Full Wrap	+45	0.012	14"	20"	24"	0.5"	1.0"		
	12	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.5"	1.0"		
	13	Uni	Flat Dropoff	0	0.012	9.7"	9.7"	24"			0.187"	0.106"
	14	Uni	Flat Dropoff	0	0.012	10.2"	10.2"	24"			0.513"	0.29"
	15	Uni	Full Wrap	+45	0.012	14"	20"	24"	0.75"	1.25"		
	16	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.75"	1.25"		
1	17	Woven 8HS	Full Wrap	+/-45	0.015	14"	20"	24"	0.5"	1.0"		
irst ply down		Woven 8HS	Full Wrap	+/-45	0.015	20"	14"	24"	0.5"	1.0"		
	MANDRE	-										
							inches					
				andrel before first	ply		24.72	-				
			of layup after				25.77					
				ndrel before first p	ly		11.202					
			ension of layu				11.5					
5	Clamsnell	iviola chorawi	se dimension				11.71					
	Part #4 "P	it .!!										
			l of Mounducia									
			erf FEP tight a		eces or more to confor	m to mand	rei - tape to	gemer				
	Debulk firs					11111	TIT					TALT
	Debult sec					·		SPAR	SAMPL	EA	ALL	Detects
			er teflon tane	defects on top of r	bly 17 per diagram	·		(PC	ROS ITY)			on UAF
					bly 13 per diagram							
				defects on top of p		· ·	31	TI E.	4			
				98% RH chambe		0.4"		119			Por	Puy * 17:
				t to prevent wrink				11.			2) .250'1	A DEFECTS
				verwrap of N10 or		3" 4	+++++++			- \$°	3' 10	n Edges, 3" Run 1
	One bag p	eat in large ra	adius conic			1 -	- 3" +	1 6).250°D	IA DEFECTS
	One bag p	eat in small r	adius conic								3"-fm	Edges, 0.4" fm '
							++++	T.E.				
								+ 2			OP OF	PLY # 13
								170				
						5				5" (3	2) 375 DIA	
					5-8F/min		X4"K		-> 4	K I	4" Fr	um Edges
		270F	1.5F/n	nin				L.E.	7			
				120 minutes				- t		7	op of	PLY #9
	dw 12 2	20F 1.5F/m	in /			7	4	P #9	+	A C	2).500 "	DIA, 8"For
	. Ĕ ²	201	90			8				8	11	from edges
			minutes			++++				1×	G	
		70F					6	416	· F G".	2		
	1											
	L 45	PSIG /										
	BLACK	/										
	- ¥ •	PSIG										
	1 6	Vent	Vacuum at 30 P	SIG								
	_25											
	-25	513										
	-25											
	-25											

Figure D.6-8. Process variables for NASA-005-Tube-Porosity-001 and -002.

	1						1.45	0.0.4.1	Butt TRIM	I location	Trim L	ocation	
	Layer	Туре	Location	Orientation	Thickness (in)	UAF	LAF	SPAN	LE	TE	LE	TE	
ast ply dov	v 1	Woven 8HS	Full Wrap	+/-45	0.015	14"	20"	24"	0.75"	1.25"			
	2	Woven 8HS	Full Wrap	+/-45	0.015	20"	14"	24"	0.75"	1.25"			
	3	Uni	Full Wrap	+45	0.012	14"	20"	24"	0.5"	1.0"			
	4	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.5"	1.0"			
	5	Uni	Flat Dropoff	0	0.012	10.5"	10.5"	24"			0.677"	0.383"	
	6	Uni	Flat Dropoff	0	0.012	11.3"	11.3"	24"			0.98"	0.554"	
	7	Uni	Full Wrap	+45	0.012	14"	20" 14"	24" 24"	0.75"	1.25"			
	8	Uni Uni	Full Wrap Flat Dropoff	-45 0	0.012	20" 10.9"	14"	24"	0.75"	1.25"	0.84"	0.475"	
	9 10	Uni	Flat Dropoff	0	0.012	9.9"	9.9"	24"			1.12"	0.475	
	10	Uni	Full Wrap	+45	0.012	9.9 14"	20"	24	0.5"	1.0"	1.12	0.03	
	12	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.5"	1.0"			
	13	Uni	Flat Dropoff	0	0.012	9.7"	9.7"	24"	0.0	1.0	0.187"	0.106"	
	14	Uni	Flat Dropoff	0	0.012	10.2"	10.2"	24"			0.513"	0.29"	
	15	Uni	Full Wrap	+45	0.012	14"	20"	24"	0.75"	1.25"			
	16	Uni	Full Wrap	-45	0.012	20"	14"	24"	0.75"	1.25"			
	17	Woven 8HS		+/-45	0.015	14"	20"	24"	0.5"	1.0"			
First ply do	18	Woven 8HS	Full Wrap	+/-45	0.015	20"	14"	24"	0.5"	1.0"			
	MANDRE	Ĺ											
							inches						
				mandrel before fi	st ply		24.73						
			ce of layup aft				25.79						
				andrel before first	ply		11.194						
			mension of la				11.51						
5	Clamshell	Mold chord	wise dimensio	on.			11.71						
										Edad col		ALC Defeats	18
	Part #4 "F							4 4		POROSIT	The q	on UAF	T 6-4
			porf FEP tight		pieces or more to conf	orm to ma	ndrei - tape	togetner		Т. В.			
	Debulk firs		i peri FEP ligi	it as possible					er - 00		Dig C	TOP of Puy " 17:	3
	Debult sec									\$ 19			
			eter teflon tan	e defects on ton c	f ply 17 per diagram				3-1			(2) .250" Dia DEFECTS 3 4mm Edge, 3" He L	Æ
					f ply 13 per diagram				1 - 3		33 -	37400, 5014, 3746, 6 (2) · 250014 DEFECTS 37400, 8845, 0.4754 7	te
					f ply 9 per diagram					T.E .			
	Condition	center 8 " s	egment of ply	7 for 3 hours in a	120°F 98% RH chamb	per prior to	layup (photo	c)		#13		TOP OF PLY # 13	
				art to prevent wrin				ĺ.			y ° V	(2) \$75 Din , 5 fm LE	1
	Protect co	llar of lamin	ate (FEP tape	overwrap of N10	or equiv. collar)				the second secon	<u></u> μ.ε>	y 12-	4"han Edges	1 IVUD
			radius conic									Ter of My og	MUN
	One bag p	leat in sma	l radius conic							\$ \$9 \$		(2) . 500 " Dia, 8" from	LCA
	-								8		8	6" from objes	MINO
					_					K L.E. F	Gu ->		- H
	-				-								-
	-				-								
	-				5-8F/min		Cash a				No.		
		270F	1.5F/i	min	¬			-	Str.		1000		
	۵.		-1-	minutes			-						
	dw 2	20F					1100		and the second		the last		
			90				1		Cut and	1-00	1 100		
	-		minutes						Conditioned				
		70F					B Contraction		center 8"	A CALLAR			
	1				-				segment only				
	¥ 45	PSIG 🦵					A second		of ply 7	1 111/1			
	SSI						6 Sauce			- Kallanson	the first of the second		
	BAUSSBAR	PSIG Ven	t Vacuum at 30 F	2816							Contract of		
	-25	PSIG					1						
									and the second second		1000		

Figure D.6-9. Process variables for NASA-005-Tube-Porosity-003 and -004.

In general, the fabrication proceeded well, but we did have a few challenges to address. The original plan was to make a basic ellipse but an Office of Naval Research (ONR) project "The Reduction of Thick-Walled Composite Manufacturing Variability Through Process Modeling and Optimization," Contract Number N00014-14-C-0026, by the United Technologies Research Center has been underway to develop process simulation models for predicting/eliminating defects for a generic airfoil shape. Rather than create a unique geometry for the SMAAART IDIQ effort, we decided to replicate the geometry of that program to create potential future synergy between the NASA ACC work and the ONR Project. It would be beneficial to eventually connect process modeling for defect prediction, with defect detection and NDT standards, and ultimately with structural analysis of those defects. The metal clamshell mold defining the OML geometry of the tubular shape is based on the dimensions from the ONR Project. We also changed our plan to use a foam mandrel to layup the elliptical tubular airfoil shape. The lead-time for obtaining foam to

match the custom geometry of the clamshell tool was too long. Therefore, an acrylonitrile butadiene styrene (ABS) mandrel was 3D printed in lieu of foam, to accomplish a more precise geometry much faster than was possible with the foam. Our first attempt to cure an airfoil resulted in a blown bag during the critical 220 °F to 250 °F-cycle segment and it caused significant internal diameter surface wrinkles and air shot defects. Corrective actions from that attempt resulted in an improved bagging technique to protect the ends of the clamshell where it intersected with the internal bag and we introduced rubber caul plates on the inner diameter (ID) of the part to minimize ID wrinkles. The second run produced a good spar to serve as the baseline standard. Our third run produced a wrinkled spar. The OML internal wrinkles achieved the desired result but some of the IML entrapped the FEP release film creating an additional defect of FOD. While not our original intent, the FOD defect creates another defect category worthy of NDT development for distinguishing it from other defect types. Our fourth run produced a spar with porosity and seeded defects, but it also experienced an unintended issue, where a rubber caul collapsed in the smaller radius conic of the part, leading to significant wrinkle/depressions in that conic. These wrinkles were not interfering with the flats and large radius section so we decided to continue with them as porosity/disbond specimens due to schedule limitations. A fifth tubular set of specimens was fabricated replicating the fourth (porosity) run, but without experiencing a caul collapse. Those specimens will also be provided as standards (NASA-005-Tube-Porosity-003 and -004) since both conics are intact and represent varying degrees of porosity. One area for future improvement for all specimens is the IML definition. Due to time constraints, a 4-piece rubber caul is used for IML definition, which created mark off lines. Improved IML definition may be possible with continuous custom internal rubber bags for future studies.

Standards were inspected visually to identify internal and external defects, ultrasonically using a Masterscan 340 Flaw Detector, performing a Pulse Echo Inspection with a 5-MHZ. 0.250-inch-diameter Delay Tip Transducer on the flats, and a 5-MHZ., 0.250-inch-diameter Flat Tip Transducer for the Leading and Trailing edge conics at 5 MHZ. frequency on the instrument. Gain is adjusted to 80% back wall to establish a criterion, and anything greater than 10% is marked. Areas were marked on the standards where back wall signal attenuation occurred, intermediate reflection is detected, or complete loss of back wall signal was detected. Back wall loss due to call plate impressions on the IML are not marked, these occur at the transition of the flats to conic sections and are readily visible and are not intended to be part of the standard. Representative ultrasonic indications are shown in Figures D.6-10 through D.6-13. Mylar maps are provided with each standard showing the location of the defects, to allow for obliteration of each standard's defect markings and to allow for the ability to perform "blind" inspections if desired. In addition, the edges of the standards were lightly polished to allow for microscopic examination of laminate quality and defect characterization. This is particularly helpful in distinguishing wrinkle characteristics, which can be quite complex, as well as, varying degrees of porosity observed.

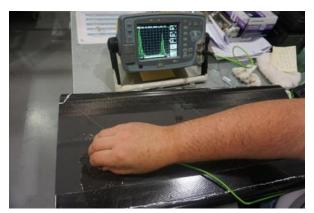


Figure D.6-10. Standard showing good front and back wall signal definition.

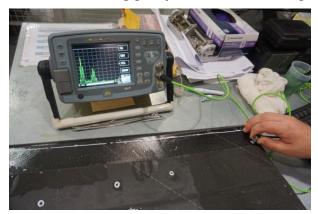


Figure D.6-11. Standard showing strong intermediate reflection with significant back-wall signal attenuation.

Figure D.6-12. Standard showing smaller intermediate reflection with back-wall signal attenuation.

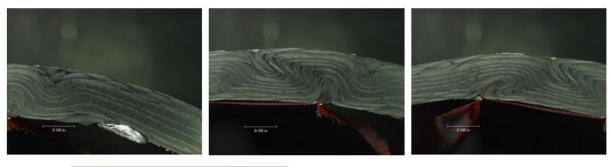


Figure D.6-13. Standard showing complete back-wall signal loss.

The range of defects addressed included Porosity, disbonds, wrinkles, and Marcels, and FOD. Wrinkles are particularly difficult to define in that they are visually evident on the surface but are usually not able to be characterized for depth or severity without destructive dissection. The wrinkle specimens showed loss of back wall signal but their severity is only evident by viewing the specimen cross section that bisected a representative wrinkle. Likewise distinguishing porosity clusters from disbonds or delaminations can be challenging and determining their precise depth locations and footprint is often limited by the inspection equipment and part geometry with conics presenting unique conditions that reflect signals away from their source. Figures D.6-14, D.6-15, D.6-17, and D.6-18 show visual microscopic definition of various defects taken from the polished edges of the standards. Figure D.6-16 shows a macro close-up of an external wrinkle. These can be correlated with the NDT techniques employed for the inspection of the Standards.

Figure D.6-14. NASA-005-Tube-Standard 001 and 002 defect free.

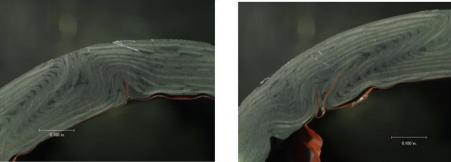


Figure D.6-15. NASA-005-Tube-Wrinkle 001 and 002.

Figure D.6-16. Close-up of wrinkle surface on OML of NASA-005-Tube-Wrinkle-001.

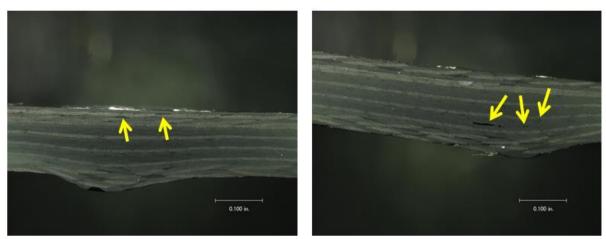


Figure D.6-17. NASA-005-Tube-Porosity 001 and 002.

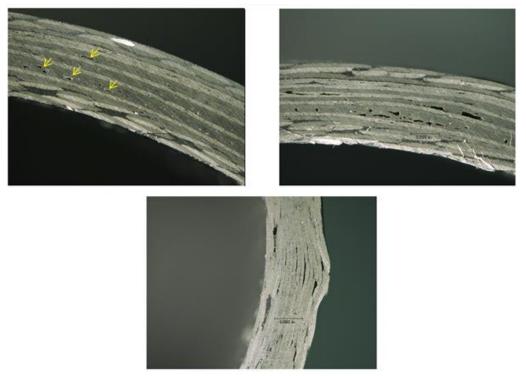


Figure D.6-18. NASA-005-Tube-Porosity 003 and 004 show porosity of varying degrees.

Characterization methods used in this IDIQ task were conventional hand scan ultrasonic inspection, supplemented by visual examination and dissection. The standards are available for ACC tasks to explore more comprehensive inspection techniques that can add to the fidelity of understanding the depth and severity of each kind of defect. One such candidate NDT technology is micro CT scan, but current technology would have to be demonstrated on the NDT standards, then modified to apply to long (>20 feet) closed tubular shapes. The standards delivered under this contract for future study by the NASA ACC Program or for round-robin testing is shown in Figures D.6-19 through D.6-22, with top and bottom views shown in each figure. The reference standards are marked with a paint pen, showing areas on the specimens where loss of back wall or intermediate defects were detected. A Mylar template map of defects documented by Sikorsky is

provided for each defect specimen to facilitate any blind round-robin studies that may choose to remove actual markings on the parts.

Figure D.6-19. NASA-005-STANDARD-001 and -002.

Figure D.6-20. NASA-005-Wrinkle-001 and -002.

Figure D.6-21. NASA-005-Porosity-001 and -002.

Figure D.6-22. NASA-005-Porosity-003 and -004.

	REPC	Form Approved OMB No. 0704-0188								
sources, gathering aspect of this collec Operations and Re provision of law, no	and maintaining the tion of information, in ports (0704-0188), 1	data needed, and o icluding suggestion 215 Jefferson Dav act to any penalty fo	completing and reviewing the s for reducing the burden, t is Highway, Suite 1204, A for failing to comply with a co	he collection of info o Department of D rlington, VA 22202	ormation. Send befense, Washing 2-4302. Respond	time for reviewing instructions, searching existing data comments regarding this burden estimate or any other gton Headquarters Services, Directorate for Information dents should be aware that notwithstanding any other display a currently valid OMB control number.				
1. REPORT DA	TE (DD-MM-YYY)	() 2. REPOR	ГТҮРЕ			3. DATES COVERED (From - To)				
03/01/2020		Technica	Memorandum							
4. TITLE AND S	UBTITLE				5a. CC					
Nondestructiv	ve Evaluation (I	NDE) Method	s and Capabilities H	Handbook						
Volume II Ap	pendices - App	endix A - App	5b. GR	5b. GRANT NUMBER						
					5c. PR	OGRAM ELEMENT NUMBER				
6. AUTHOR(S)					5d. PR	OJECT NUMBER				
Howell, Patric	cia A. (Editor)	our rit								
	()	50 TA	ASK NUMBER							
		Je. TA	ASK NUMBER							
					8266	611.04.07.02.02				
	G ORGANIZATIO by Research Ce		DADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER				
Hampton, VA	•	enter		L-21113						
· · · · · · · · · · · · · · · · · · ·										
			(S) AND ADDRESS(ES))		10. SPONSOR/MONITOR'S ACRONYM(S)				
	nautics and Sp		tration			NASA				
wasnington,	DC 20546-000	1			-	11. SPONSOR/MONITOR'S REPORT				
						NUMBER(S)				
						NASA/TM-2020-220568/Vol II/Pt 1				
12. DISTRIBUT	ION/AVAILABILIT	Y STATEMENT								
Unclassified -										
	gory 37 Mecha	•	0							
,	IASA STI Progi	ram (757) 864	1-9658							
13. SUPPLEME	NTARY NOTES									
14. ABSTRACT										
		e document tl	hat facilitates the se	election of ap	oropriate No	ondestructive Evaluation (NDE)				
This Handbook is a guidance document that facilitates the selection of appropriate Nondestructive Evaluation (NDE) techniques and provides recommended protocols for detecting and characterizing common flaw types in complex										
composite structures. It seeks to reduce the time required to develop qualified inspection processes for composite aircraft										
structures during the development, certification, and manufacturing phases by providing a reference that helps minimize										
trial and error	and provides	guidance on b	best practices, techi	niques, and s	ettings, for	specific flaw types and geometries.				
15. SUBJECT T	_									
Nondestructive Evaluation; Inspection; Handbook; Composites; Carbon Fiber Reinforced Polymer; Ultrasound,;										
Thermograph	iy; X-ray CT									
16. SECURITY	CLASSIFICATION	I OF:	17. LIMITATION OF	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON					
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES	STI Help D	0esk (email: help@sti.nasa.gov)				
					19b. TELEP	HONE NUMBER (Include area code)				
U	U	U	UU	210	(443) 757-	(443) 757-5802				
		1	1		1					