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Appendix E Individual Test Reports by Specimen (Sections 6198) 

★☆☆ Not Suitable for this Specimen 

★★☆ Marginally suitable for this Specimen, or only provides qualitative information 

★★★ Highly successful for this Specimen, including quantifiable information 

E.61 Specimen #61: NASA-03-Folded-Tow-002 

Structure Material Details Dimensions (inches) Partner Methods 

Fiber placed 

panel 
IM7/8552-1 Slit Tape 

Flat panel Folded 

Tow - mid 
16 × 16 × 0.15 

NASA 
E.61.1 PEUT 

E.61.2 SSIR 

E.61.3 TTIR 

TWI E.61.4 SSFT 

   

Figure E.61-1. Photographs of Specimen #61: NASA 03 Folded Tow 002. 

E.61.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability: ★★★ 

PEUT is able to detect the folded tows in this specimen. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA Langley Research Center (LaRC) uses a custom-designed 

single-probe ultrasonic scanning system. The system has an 8-axis motion controller, a multi-axis 

gantry robot mounted above a medium-size water tank, a dual-channel, 16-bit, high-speed 

digitizer, and an off-the-shelf ultrasonic pulser receiver. The system can perform Through-

Transmission (TT) Ultrasound (TTUT) and Pulse-echo Ultrasound (PEUT) inspections. TT 

inspection employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on 

either side of a test specimen. Pulse-echo inspection is a single-sided method where a single 

ultrasonic probe is both transmitter and receiver. In each method, data are acquired while raster 

scanning the ultrasonic probe(s) in relation to a part. Figure E.61-2 shows a simplified block 

diagram of a scanning Pulse-echo inspection. 
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Figure E.61-2. Ultrasonic system components. 

 

Figure E.61-3. Specimen orientation within testing apparatus. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.61-1. Data collection settings. 

Resolution horizontal [in/pixel] 0.02 

Resolution vertical [in/pixel] 0.02 

Probe frequency [MHz] 5 

Focal Length [in] 1.9 

Array Dimensions [pixels] 751 × 736 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.61-2. At each point, ultrasonic data are collected from individual pulses. 
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Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #61, is a fiber placed flat panel fabricated from IM7/8552-1 Slit Tape with the objective 

of achieving folded tows within the bulk of the sample. PEUT was performed on this specimen in 

NASA’s immersion tank specified above. 

 

Figure E.61-4. UT image showing folded tows in the bulk of the specimen. 

In Figures E.61-4 and E.61-5 evidence of three folded tows in the material appear in the middle of 

the specimen. The fiber folds reflect and cause peterbations in the acoustic waves that differ from 

the pattern representing the bulk of the material. This difference, while small, makes visual 

detection of the folded tows possible. These defects were detected at a depth of 0.064 inch roughly 

halfway through the composite part. The edge of sample is wrapped in tape due to the sharp edges. 

Additionally, Figure E.61-5 shows three fiber splices. 
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Figure E.61-5. UT image showing a second view of folded tows in the bulk of the specimen. 

E.61.2 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: NASA 

 Technique Applicability: ★★☆ 

SSIR Thermography was capable of detecting the folded tows. 

 Equipment List and Specifications:  

 Thermal Wave Imaging (TWI) System 

 TWI System flash heat source using Speedotron power supplies. 

 SC6000 Forward Looking Infrared (FLIR) camera, 640 × 512 Indium Antimonide (InSb) 

array, Noise Equivalent Differential Temperature (NEDT) < 20 mK 

 25 mm Germanium Optics 

 Settings: 

 60 Hz Frame Rate  

 Flash on frame #10 

 Total number of Frames 1499 

 Total data acquisition time of 24.98 sec 

 The camera/hood was positioned to view the entire sample 
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 Laboratory Setup  

A commercially available flash thermography system was used for the inspection. The flash 

thermography system consisted of two linear flash tubes mounted within a hood. An infrared (IR) 

camera was mounted at the back of the hood viewing through a circular hole between the flash 

tubes and were positioned to view the hood opening. In this configuration, the flash lamps heated 

an area equal to the hood opening and the IR camera captured the thermal response. The IR camera 

operates in the mid-wave IR band (35 m) and is configured with a 25-mm germanium lens. The 

focal plane array size for the camera is 640 × 512 with a detector pitch size of 14 × 14 m.  

 

Figure E.61-6. SSIR setup. 

 Principal Component Analysis 

Principal component analysis (PCA) is common for processing of thermal data [13]. This 

algorithm is based on decomposition of the thermal data into its principal components or 

eigenvectors. Singular value decomposition is a routine used to find the singular values and 

corresponding eigenvectors of a matrix. Since thermal Nondestructive Evaluation (NDE) signals 

are slowly decaying waveforms, the predominant variations of the entire data set are usually 

contained in the first or second eigenvectors, and thus account for most of the data variance of 

interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 

The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 1499 frames of data (24.98 sec) were processed using iterations of different time windows. 

The processing of frames 50 to 1249 corresponding to a time window of 0.8320.82 sec yielded 

the best results. The three folded tows named A, B, and C were detected and are shown in Figure 
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E.61-8. A time delay of 0.83 sec allowed enough time after the flash for the heat to flow into the 

sample and 20.82 sec was sufficient to provide good contrast of the defects. The second 

eigenvector was used to produce the final inspection images shown in Figure E.61-8. Without prior 

knowledge of the existence of defect A, it is unclear that it would have been categorized as a flaw 

as its signal is very faint. 

  

Figure E.61-7. NASA-03-Folded-Tow-002 sample. 

 

Figure E.61-8. SSIR inspection of NASA-03-Folded-Tow-002 sample processed with PCA from frame 

50 (0.83s) to 1249 (20.82s). 
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E.61.3 Method: Through-Transmission Infrared Thermography (TTIR) 

 Technique Applicability: ★★☆ 

TTIR Thermography was capable of detecting the folded tows. 

 Equipment List and Specifications:  

 TWI System 

 TWI System flash heat source using Balcar power supply externally triggered by TWI 

system. 

 SC6000 FLIR camera, 640 × 512 InSb array, NEDT < 20 mK 

 25 mm Germanium Optics 

 Settings: 

 60 Hz Frame Rate 

 Flash on frame #10  

 Total number of Frames 2000 

 Total data acquisition time of 33.33 sec 

 IR camera was positioned to view the entire sample 

 Laboratory Setup  

The TT thermal inspection system setup is shown in Figure E.61-9. The test specimen is placed 

between the heat source and the IR camera. The lamp used to induce the heat was a commercially 

available photographic flash lamp powered by a 6,400-Joule power supply (manufactured by 

Balcar). The camera used was a FLIR SC6000 with a 640 × 512 InSb array operating in the  

3- to 5-m IR band. The image data frame rate was 60 image frames per second. The computer 

records the IR image of the specimen immediately prior to the firing of the flash lamp (for 

emissivity correction), then the thermal response of the specimen at a user defined sampling rate 

and for a user defined duration is acquired.  
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Figure E.61-9. TTIR setup. 

 Principal Component Analysis 

PCA is common for processing of thermal data [13]. This algorithm is based on decomposition 

of the thermal data into its principal components or eigenvectors. Singular value decomposition is 

a routine used to find the singular values and corresponding eigenvectors of a matrix. Since thermal 

NDE signals are slowly decaying waveforms, the predominant variations of the entire data set are 

usually contained in the first or second eigenvectors, and thus account for most of the data variance 

of interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 

The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

Where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 2000 frames of data (33.33 sec) were processed using iterations of different time windows. 

The processing of frames 50 to 250 corresponding to a time window of 0.834.17 sec yielded the 

best result, and is shown in Figure E.61-11. Possible defects, labeled A through D were detected.  
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Figure E.61-10. NASA-03-Folded-Tow-002 sample. 

 

Figure E.61-11. TTIR inspection of NASA-03-Folded-Tow-002 sample processed with PCA from 

frame 100 (1.67s) to 1249 (20.82s). 
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E.61.4 Method: Single-Side Flash Thermography (SSFT-TSR) 

 Partner: Thermal Wave Imaging, Inc.* 

*TWI was not part of the Advanced Composites Consortium (ACC) but reviewed specimens. 

 Technique Applicability: ★★★ 

SSFT-TSR is capable of detecting subsurface anomalies in this specimen that could be the result 

of delamination, voids or porosity. All indications appear in the head-on image, but more accurate 

sizing is achieved by inspecting the flat surfaces separately.  

 Laboratory Setup:  

The sample was inspected with a commercially available flash thermography system 

(EchoTherm®, Thermal Wave Imaging, Inc.), equipped with 2 linear xenon flash/reflector 

assemblies mounted in a reflective hood optimized to provide uniform output at the  

10-inch × 14-inch exit aperture. Each lamp is powered by a 6 kJ power supply that allows 

truncation of the flash to a rectangular pulse with duration <1 msec d. A cryogenically cooled IR 

camera is mounted to view the plane of the hood exit aperture, with the camera lens positioned at 

the plane of the flashlamps. Excitation, data capture and processing and analysis using TSR are 

controlled at the system console using Virtuoso software.  

 Equipment List and Specifications:  

 EchoTherm® Flash Thermography System 

 2 linear xenon flash lamps and power supplies (6 kJ each) 

 TWI Precision Flash Control (truncation to 4 msec rectangular pulse) 

 A6100sc FLIR camera, 640 × 512 InSb array, NEDT < 20 mK 

 13 mm Germanium Lens 

 TWI Virtuoso® software 

 Settings: 

 30 Hz Frame Rate 

 10 Preflash Frames 

 1800 total frames 

 7 Polynomial order 

 60-sec data acquisition time 

 Field of View (FOV): 10-inch × 14-inch 

Settings were determined following the recommendations in ASTM E2582-14. Acquisition 

duration was set according to the time of the break from linearity (t* ~8 sec) due to the back wall 

(BW) for typical points in the log time history. The acquisition period was then set to 30 sec  

(3 × t*), per ASTM E2582-14. 
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Figure E.61-12. SSFT system with TSR. 

 Thermographic Signal Reconstruction (TSR) 

After acquisition, captured data are processed using TSR to reduce temporal noise, enhance 

deviation from normal cooling behavior and allow segmentation of the data based on signal 

attributes. For each pixel, the average of 10 frames immediately preceding the flash pulse is 

subtracted from the pixel time history, and a 7th order polynomial is fit to the logarithmically scaled 

result using least squares. First and 2nd derivatives of the result are calculated and the derivative 

images are displayed in the Virtuoso software. Derivative signals associated normal areas of the 

sample exhibit minimal activity over the duration of the acquisition. Signals associated with 

subsurface anomalies typically behave identically to the normal signals until a particular time 

(dependent on host material characteristics and the depth of the feature) after which their behavior 

deviates from normal (the degree of the deviation depends on the relative difference in the thermal 

properties of the anomaly and the surrounding normal matrix).  

 Inspection Results 

Three subsurface indications were observed and confirmed to be subsurface by their late 

divergence in the logarithmic temperature time plot. The 1st derivative at 24.41 sec was used to 

produce the final inspection images shown in Figure E.61-13. 

 

Figure E.61-13. TSR 1st derivative at 24.41 sec of #61- Fold Ply #12. 
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E.62 Specimen #62: NASA-03-Missing-Tow-001 

Structure Material Details Dimensions (inches) Partner Methods 

Fiber placed 

panel 

IM7/8552-1 Slit 

Tape 

Flat panel Missing Tow 

– 1ply 
16 × 16 × 0.15 

NASA 

E.62.1 PEUT 

E.62.2 SSIR 

E.62.3 TTIR 

TWI E.62.4 SSFT 

   

Figure E.62-1. Photographs of Specimen #61: NASA 03 Missing Tow 001. 

E.62.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability: ★★★ 

PEUT is able to detect the missing tows in this specimen. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.62-2 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 
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Figure E.62-2. Ultrasonic system components. 

 

Figure E.62-3. Specimen orientation within testing apparatus. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16-bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.62-1. Data collection settings. 

Resolution horizontal [in/pixel] 0.02 

Resolution vertical [in/pixel] 0.02 

Probe frequency [MHz] 5 

Focal Length [in] 1.9 

Array Dimensions [pixels] 751 × 716 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 
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indicated in Figure E.62-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #62, is a fiber placed flat panel fabricated from IM7/8552-1 Slit Tape with the objective 

of achieving missing tows beneath the first ply of the sample. PEUT was performed on this 

specimen in NASA’s immersion tank specified above. 

In Figure E.62-4, evidence of three missing tows in the material appear equidistant throughout the 

specimen. The changing fiber geometry reflects and cause peterbations in the acoustic waves that 

differ from the pattern representing the bulk of the material. This difference, while small, makes 

visual detection of the folded tows possible. These defects were detected just below the first ply 

of the composite nearly indistinguishable from the surface reflection. Figure E.62-5 is located 

farther into the specimen and shows the residual acoustic pattern caused from the missing tows. 

 

Figure E.62-4. UT image showing missing tows near the surface of the specimen. 
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Figure E.62-5. UT image showing evidence of missing tows. 

E.62.2 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: NASA 

 Technique Applicability: ☆☆☆ 

SSIR Thermography show signs of missing tows. The signal is very faint. 

 Equipment List and Specifications:  

 TWI System 

 TWI System flash heat source using Speedotron power supplies. 

 SC6000 FLIR camera, 640 × 512 InSb array, NEDT < 20 mK 

 25 mm Germanium Optics 

 Settings: 

 60 Hz Frame Rate  

 Flash on frame #10 

 Total number of Frames 1499 

 Total data acquisition time of 24.98 sec 

 The camera/hood was positioned to view the entire sample 
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 Laboratory Setup  

A commercially available flash thermography system was used for the inspection. The flash 

thermography system consisted of two linear flash tubes mounted within a hood. An IR camera 

was mounted at the back of the hood viewing through a circular hole between the flash tubes and 

were positioned to view the hood opening. In this configuration, the flash lamps heated an area 

equal to the hood opening and the IR camera captured the thermal response. The IR camera 

operates in the mid-wave IR band (35 m) and is configured with a 25-mm germanium lens. The 

focal plane array size for the camera is 640 × 512 with a detector pitch size of 14 × 14 m.  

 

Figure E.62-6. SSIR setup. 

 Principal Component Analysis 

PCA is common for processing of thermal data [13]. This algorithm is based on decomposition 

of the thermal data into its principal components or eigenvectors. Singular value decomposition is 

a routine used to find the singular values and corresponding eigenvectors of a matrix. Since thermal 

NDE signals are slowly decaying waveforms, the predominant variations of the entire data set are 

usually contained in the first or second eigenvectors, and thus account for most of the data variance 

of interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 

The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 1499 frames of data (24.98 sec) were processed using iterations of different time windows. 

The processing of frames 100 to 999 corresponding to a time window of 1.6716.65 sec yielded 

the best results. The three possible missing tows named A, B, and C are shown in Figure E.62-8. 

However, without prior knowledge of their presence, they could have easily gone undetected due 
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to their faint signal. The second eigenvector was used to produce the final inspection images shown 

in Figure E.62-8.  

  

Figure E.62-7. NASA-03-Mssing-Tow-001 sample. 

 

Figure E.62-8. SSIR inspection of NASA-03-Missing-Tow-001 sample processed with PCA from frame 

100 (1.67s) to 999 (16.65s). 
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E.62.3 Method: Through-Transmission Infrared Thermography (TTIR) 

 Partner: NASA 

 Technique Applicability: ★★☆ 

TTIR thermography was capable of detecting the missing tows. 

 Equipment List and Specifications:  

 TWI System 

 TWI System flash heat source using Balcar power supply externally triggered by TWI 

system. 

 SC6000 FLIR camera, 640 × 512 InSb array, NEDT < 20 mK 

 25 mm Germanium Optics 

 Settings: 

 60Hz Frame Rate 

 Flash on frame #10  

 Total number of Frames 2000 

 Total data acquisition time of 33.33 sec 

 IR camera was positioned to view the entire sample 

 Laboratory Setup  

The TT thermal inspection system setup is shown in Figure E.62-9. The test specimen is placed 

between the heat source and the IR camera. The lamp used to induce the heat was a commercially 

available photographic flash lamp powered by a 6,400-Joule power supply (manufactured by 

Balcar). The camera used was a FLIR SC6000 with a 640 × 512 InSb array operating in the  

3- to 5-m IR band. The image data frame rate was 60 image frames per second. The computer 

records the IR image of the specimen immediately prior to the firing of the flash lamp (for 

emissivity correction), and then the thermal response of the specimen at a user defined sampling 

rate and for a user defined duration is acquired.  



19 

 

Figure E.62-9. TTIR setup. 

 Principal Component Analysis 

PCA is common for processing of thermal data [13]. This algorithm is based on decomposition 

of the thermal data into its principal components or eigenvectors. Singular value decomposition is 

a routine used to find the singular values and corresponding eigenvectors of a matrix. Since thermal 

NDE signals are slowly decaying waveforms, the predominant variations of the entire data set are 

usually contained in the first or second eigenvectors, and thus account for most of the data variance 

of interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 

The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 2000 frames of data (33.33 sec) were processed using iterations of different time windows. 

The processing of frames 50 to 250 corresponding to a time window of 0.834.17 sec yielded the 

best result, and is shown in Figure E.62.11. Possible defects, labeled A through G were detected. 

A, B, and C are linear and run across the entire width of the test sample. D, E, and F are also linear, 

but centered in the middle of the test sample. These three defects are possibly due to the writing 

seen on the panel in Figure E.62-10. The different shape of area G could indicate there is a separate 

type of defect found in this region. 
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Figure E.62-10. NASA-03-Mssing-Tow-001 sample. 

 

Figure E.62-11. TTIR inspection of NASA-03-Missing-Tow-001 sample processed with PCA from 

frame 50 (0.83s) to 250 (4.17s). 
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E.62.4 Method: Single-Side Flash Thermography (SSFT-TSR) 

 Partner: Thermal Wave Imaging, Inc.* 

*TWI was not part of the ACC but reviewed specimens.  

 Technique Applicability: ★★★ 

SSFT-TSR is capable of detecting subsurface anomalies in this specimen that could be the result 

of delamination, voids or porosity. All indications appear in the head-on image, but more accurate 

sizing is achieved by inspecting the flat surfaces separately.  

 Laboratory Setup:  

The sample was inspected with a commercially available flash thermography system 

(EchoTherm®, Thermal Wave Imaging, Inc.), equipped with 2 linear xenon flash/reflector 

assemblies mounted in a reflective hood optimized to provide uniform output at the  

10-inch × 14-inch exit aperture. Each lamp is powered by a 6 kJ power supply that allows 

truncation of the flash to a rectangular pulse with duration <1 msec d. A cryogenically cooled IR 

camera is mounted to view the plane of the hood exit aperture, with the camera lens positioned at 

the plane of the flashlamps. Excitation, data capture and processing and analysis using TSR are 

controlled at the system console using Virtuoso software.  

 Equipment List and Specifications:  

 EchoTherm® Flash Thermography System 

 2 linear xenon flash lamps and power supplies (6 kJ each) 

 TWI Precision Flash Control (truncation to 4 msec rectangular pulse) 

 A6100sc FLIR camera, 640 × 512 InSb array, NEDT < 20 mK 

 13 mm Germanium Lens 

 TWI Virtuoso® software 

 Settings: 

 30 Hz Frame Rate 

 10 Preflash Frames 

 1800 total frames 

 7 Polynomial order 

 60-sec data acquisition time 

 FOV: 10-inch × 14-inch 

Settings were determined following the recommendations in ASTM E2582-14. Acquisition 

duration was set according to the time of the break from linearity (t* ~8 sec) due to the BW for 

typical points in the log time history. The acquisition period was then set to 30 sec (3 × t*), per 

ASTM E2582-14. 
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Figure E.62-12. SSFT System with TSR 

 Thermographic Signal Reconstruction (TSR) 

After acquisition, captured data are processed using TSR to reduce temporal noise, enhance 

deviation from normal cooling behavior and allow segmentation of the data based on signal 

attributes. For each pixel, the average of 10 frames immediately preceding the flash pulse is 

subtracted from the pixel time history, and a 7th order polynomial is fit to the logarithmically scaled 

result using least squares. First and 2nd derivatives of the result are calculated and the derivative 

images are displayed in the Virtuoso software. Derivative signals associated normal areas of the 

sample exhibit minimal activity over the duration of the acquisition. Signals associated with 

subsurface anomalies typically behave identically to the normal signals until a particular time 

(dependent on host material characteristics and the depth of the feature) after which their behavior 

deviates from normal (the degree of the deviation depends on the relative difference in the thermal 

properties of the anomaly and the surrounding normal matrix).  

 Inspection Results 

Three subsurface indications were observed and confirmed to be subsurface by their late 

divergence in the logarithmic temperature time plot. The 1st derivative at 20.18 sec was used to 

produce the final inspection images shown in Figure E.62-13. 

 

Figure E.62-13. TSR 1st derivative at 20.18 sec of #62-Missing Toe Ply #23. 
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E.63 Specimen #63: NASA-03-Missing-Tow-002 

Structure Material Details Dimensions (inches) Partner Methods 

Fiber placed 

panel 

IM7/8552-1 

Slit Tape 

Flat panel Missing Tow – 

Mid 
16 × 16 × 0.15 

NASA 

E.63.1 PEUT 

E.63.2 SSIR 

E.63.3 TTIR 

TWI E.63.4 SSFT 

   

Figure E.63-1. Photographs of Specimen #63: NASA 03 Missing Tow 002. 

E.63.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability: ★★★ 

PEUT is capable of detecting the missing tows in this specimen. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.63-2 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 
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Figure E.63-2. Ultrasonic system components. 

 
Figure E.63-3. Specimen orientation within testing apparatus. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.63-1. Data collection settings. 

Resolution (horizontal) [in/pixel] 0.02 

Resolution (vertical) [in/pixel] 0.02 

Probe frequency [MHz] 5 

Focal Length [in] 1.9 

Array Dimensions [pixels] 751 × 711 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point one mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.63-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 
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reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #63 is a fiber placed flat panel fabricated from IM7/8552-1 Slit Tape with the objective 

of achieving missing tows in the middle of the sample. PEUT was performed on this specimen in 

NASA’s immersion tank specified above. 

In Figure E.63-4 evidence of three missing tows in the material appear equidistant throughout the 

specimen. The changing fiber geometry reflects and cause peterbations in the acoustic waves that 

differ from the pattern representing the bulk of the material. This difference, while small, makes 

visual detection of the folded tows possible. These defects were detected roughly halfway 

throughout the sample at 0.06 inch. Figure E.63-5 is located farther into the specimen and shows 

the residual acoustic pattern caused from the missing tows. 

 

Figure E.63-4. UT image showing missing tows in the bulk of the specimen. 
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Figure E.63-5. UT image showing missing tows in the bulk of the specimen. 

E.63.2 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: NASA 

 Technique Applicability: ★☆☆ 

SSIR thermography was capable of detecting the missing tows. The signal is very faint. 

 Equipment List and Specifications:  

 TWI System 

 TWI System flash heat source using Speedotron power supplies. 

 SC6000 FLIR camera, 640 × 512 InSb array, NEDT < 20 mK 

 25 mm Germanium Optics 

 Settings: 

 60 Hz Frame Rate  

 Flash on frame #10 

 Total number of Frames 1499 

 Total data acquisition time of 24.98 sec 

 The camera/hood was positioned to view the entire sample 
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 Laboratory Setup:  

A commercially available flash thermography system was used for the inspection. The flash 

thermography system consisted of two linear flash tubes mounted within a hood. An IR camera 

was mounted at the back of the hood viewing through a circular hole between the flash tubes and 

were positioned to view the hood opening. In this configuration, the flash lamps heated an area 

equal to the hood opening and the IR camera captured the thermal response. The IR camera 

operates in the mid-wave IR band (35 m) and is configured with a 25-mm germanium lens. The 

focal plane array size for the camera is 640 × 512 with a detector pitch size of 14 × 14 m.  

 

Figure E.63-6. SSIR setup. 

 Principal Component Analysis 

PCA is common for processing of thermal data [13]. This algorithm is based on decomposition 

of the thermal data into its principal components or eigenvectors. Singular value decomposition is 

a routine used to find the singular values and corresponding eigenvectors of a matrix. Since thermal 

NDE signals are slowly decaying waveforms, the predominant variations of the entire data set are 

usually contained in the first or second eigenvectors, and thus account for most of the data variance 

of interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 

The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 1499 frames of data (24.98 sec) were processed using iterations of different time windows. 

The processing of frames 100 to 999 corresponding to a time window of 1.6716.65 sec yielded 

the best results. The three missing tows named A, B, and C were detected and are shown in Figure 

E.63-8. However, without prior knowledge of their presence, they could have easily gone 
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undetected due to their faint signal. The second eigenvector was used to produce the final 

inspection images shown in Figure E.63-7.  

  

Figure E.63-7. NASA-03-Mssing-Tow-002 sample. 

 

Figure E.63-8. SSIR inspection of NASA-03-Missing-Tow-002 sample processed with PCA from frame 

100 (1.67s) to 999 (16.65s). 

 References 

[1] Rajic, N.: “Principal Component Thermography for Flaw Contrast Enhancement and Flaw 

Depth Characterization in Composite Structures,” Composite Structures, Vol. 58, pp. 521-

528, 2002. 

[2] Zalameda, J. N.; Bolduc S.; and Harman R.: “Thermal Inspection of a Composite Fuselage 

Section using a Fixed Eigenvector Principal Component Analysis Method,” Proc. SPIE 

10214, Thermosense: Thermal Infrared Applications XXXIX, 102140H, 5 May 2017. 



29 

[3] Cramer, K. E.; and Winfree, W. P.: “Fixed Eigenvector Analysis of Thermographic NDE 

Data”, Proceedings of SPIE, Thermosense XXXIII, edited by Morteza Safai and Jeff 

Brown, Vol. 8013, 2011. 

E.63.3 Method: Through-Transmission Infrared Thermography (TTIR) 

 Partner: NASA 

 Technique Applicability: ★★☆ 

TTIR Thermography was capable of detecting the missing tows. 

 Equipment List and Specifications:  

 TWI System 

 TWI System flash heat source using Balcar power supply externally triggered by TWI 

system. 

 SC6000 FLIR camera, 640 × 512 InSb array, NEDT < 20 mK 

 25 mm Germanium Optics 

 Settings: 

 60 Hz Frame Rate 

 Flash on frame #10  

 Total number of Frames 2000 

 Total data acquisition time of 33.33 sec 

 IR camera was positioned to view the entire sample 

 Laboratory Setup  

The TT thermal inspection system setup is shown in Figure E.63-9. The test specimen is placed 

between the heat source and the IR camera. The lamp used to induce the heat was a commercially 

available photographic flash lamp powered by a 6,400-Joule power supply (manufactured by 

Balcar). The camera used was a FLIR SC6000 with a 640 × 512 InSb array operating in the  

3- to 5-m IR band. The image data frame rate was 60 image frames per second. The computer 

records the IR image of the specimen immediately prior to the firing of the flash lamp (for 

emissivity correction), and then the thermal response of the specimen at a user defined sampling 

rate and for a user defined duration is acquired.  
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Figure E.63-9. TTIR setup. 

 Principal Component Analysis 

PCA is common for processing of thermal data [13]. This algorithm is based on decomposition 

of the thermal data into its principal components or eigenvectors. Singular value decomposition is 

a routine used to find the singular values and corresponding eigenvectors of a matrix. Since thermal 

NDE signals are slowly decaying waveforms, the predominant variations of the entire data set are 

usually contained in the first or second eigenvectors, and thus account for most of the data variance 

of interest. The principle components are computed by defining a data matrix A, for each data set, 

where the time variations are along the columns and the spatial image pixel points are row-wise. 

The matrix A is adjusted by dividing the maximum value (normalization) and subtracting the mean 

along the time dimension. The covariance matrix is defined as the AT*A. The covariance matrix is 

now a square matrix of number of images used for processing. The covariance matrix can then be 

decomposed using singular value decomposition as: 

 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 =  𝐴 𝑇𝐴 = 𝑉 ∗ 𝑆 ∗  𝑉  𝑇 

where S is a diagonal matrix containing the square of the singular values and V is an orthogonal 

matrix, which contains the basis functions or eigenvectors describing the time variations. The 

eigenvectors can be obtained from the columns of V. The PCA inspection image is calculated by 

dot product multiplication of the selected eigenvector times the temperature response (data matrix 

A), pixel by pixel.  

 Inspection Results 

The 2000 frames of data (33.33 sec) were processed using iterations of different time windows. 

The processing of frames 50 to 250 corresponding to a time window of 0.834.17 sec yielded the 

best result, and is shown in Figure E.63-11. Possible defects, labeled A through G were detected. 

A, B, and C are linear and run across the entire length of the test sample. D, E, and F are also 

linear, but centered in the middle of the test sample. These three defects are possibly due to the 

writing seen on the panel in Figure E.63-10. The different shape of area G could indicate there is 

a separate type of defect found in this region. 
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Figure E.63-10. NASA-03-Mssing-Tow-002 sample. 

 

Figure E.63-11. TTIR inspection of NASA-03-Missing-Tow-002 sample processed with PCA from 

frame 50 (0.83s) to 250 (4.17s). 
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E.63.4 Method: Single-Side Flash Thermography (SSFT-TSR) 

 Partner: Thermal Wave Imaging, Inc.* 

*TWI was not part of the ACC but reviewed specimens.  

 Technique Applicability: ★★★ 

SSFT-TSR is capable of detecting subsurface anomalies in this specimen that could be the result 

of delamination, voids or porosity. All indications appear in the head-on image, but more accurate 

sizing is achieved by inspecting the flat surfaces separately.  

 Laboratory Setup:  

The sample was inspected with a commercially available flash thermography system 

(EchoTherm®, Thermal Wave Imaging, Inc.), equipped with two linear xenon flash/reflector 

assemblies mounted in a reflective hood optimized to provide uniform output at the  

10-inch × 14-inch exit aperture. Each lamp is powered by a 6 kJ power supply that allows 

truncation of the flash to a rectangular pulse with duration <1 msec d. A cryogenically cooled IR 

camera is mounted to view the plane of the hood exit aperture, with the camera lens positioned at 

the plane of the flashlamps. Excitation, data capture and processing and analysis using TSR are 

controlled at the system console using Virtuoso software.  

 Equipment List and Specifications:  

 EchoTherm® Flash Thermography System 

 2 linear xenon flash lamps and power supplies (6 kJ each) 

 TWI Precision Flash Control (truncation to 4 msec rectangular pulse) 

 A6100sc FLIR camera, 640 × 512 InSb array, NEDT < 20 mK 

 13 mm Germanium Lens 

 TWI Virtuoso® software 

 Settings: 

 30 Hz Frame Rate 

 10 Preflash Frames 

 1800 total frames 

 7 Polynomial order 

 60-sec data acquisition time 

 FOV: 10-inch × 14-inch 

Settings were determined following the recommendations in ASTM E2582-14. Acquisition 

duration was set according to the time of the break from linearity (t* ~8 sec) due to the BW for 

typical points in the log time history. The acquisition period was then set to 30 sec (3 × t*), per 

ASTM E2582-14. 
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Figure E.63-12. SSFT system with TSR 

 Thermographic Signal Reconstruction (TSR) 

After acquisition, captured data are processed using TSR to reduce temporal noise, enhance 

deviation from normal cooling behavior and allow segmentation of the data based on signal 

attributes. For each pixel, the average of 10 frames immediately preceding the flash pulse is 

subtracted from the pixel time history, and a 7th order polynomial is fit to the logarithmically scaled 

result using least squares. First and 2nd derivatives of the result are calculated and the derivative 

images are displayed in the Virtuoso software. Derivative signals associated normal areas of the 

sample exhibit minimal activity over the duration of the acquisition. Signals associated with 

subsurface anomalies typically behave identically to the normal signals until a particular time 

(dependent on host material characteristics and the depth of the feature) after which their behavior 

deviates from normal (the degree of the deviation depends on the relative difference in the thermal 

properties of the anomaly and the surrounding normal matrix).  

 Inspection Results 

Three subsurface indications were observed and confirmed to be subsurface by their late 

divergence in the logarithmic temperature time plot. The 1st derivative at 6.54 sec was used to 

produce the final inspection images shown in Figure E.63-13. 

 

Figure E.63-13. TSR 1st derivative at 6.54 sec of #63- Missing Toe Ply #12. 
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E.64 Specimen #64 – NASA-03-Bridged Joggle-001 – Not Tested 
Structure Material Details Dimensions (inches) Partner Methods 

AFP Fiber 

Placed 

panel 

IM7/8552-1 

Slit Tape 
Flange with bridging in joggle 12 × 9 × 1.3 Not Tested 

E.65 Specimen #65 – NASA-03-Bridged-Joggle-002 – Not Tested 
Structure Material Details Dimensions (inches) Partner Methods 

AFP Fiber 

Placed 

panel 

IM7/8552-1 

Slit Tape 
Flange with bridging in joggle 12 × 9 × 1.3 Not Tested 

E.66 Specimen #66 – NASA-03-Bridged-Joggle-003 – Not Tested 
Structure Material Details Dimensions (inches) Partner Methods 

AFP Fiber 

Placed 

panel 

IM7/8552-1 

Slit Tape 
Flange with bridging in joggle 12 × 9 × 1.3 Not Tested 

E.67 Specimen #67 – NASA-03-Bridged-Joggle-004 – Not Tested 
Structure Material Details Dimensions (inches) Partner Methods 

AFP Fiber 

Placed 

panel 

IM7/8552-1 

Slit Tape 
Flange with bridging in joggle 12 × 9 × 1.3 Not Tested 

E.68 Specimen #68: NAA-03-FOD-Panel-001: 
Structure Material Details Dimensions (inches) Partners Methods 

Fiber Placed 

Panel 

IM7/8552-1 Slit Tape w/ 

IM7/8552 Fabric Outer Mold 

Line (OML) 

FOD Panel 19 × 43 × 0.3 

NGIS E.68.1 PEUT 

GE 
E.68.2 TTUT 

E.68.3 PEUT 
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Figure E.68-1. Photographs of Specimen #68: NASA-03-FOD-Panel-001. 

E.68.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NGIS 

 Technique Applicability: ★★★ 

Water-coupled PEUT scans were performed to demonstrate the feasibility of detecting defects in 

thick carbon-composite laminates on a stepped-thickness panel with foreign object debris (FOD) 

placed throughout and laminate thickness ranging from 0.1 to 1.0 inch. Scans were performed from 

the flat tool-side to determine detection dependency on both defect depth and diameter. Different 

frequencies including 2.25 MHz and 5.0 MHz were sampled to observe frequency dependence. 

 Laboratory Setup 

PEUT scans were performed in the Test-Tech 3-axis scanning tank using a water-squirter method. 

For each panel, water nozzle and column diameter was optimized to achieve optimal signal-to-

noise ratio (SNR) and defect detection (if defects existed). 

 

Figure E.68-2. PEUT setup in Test-Tech scanning tank. 
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 Equipment List and Specifications:  

 Test-Tech 3-axis scanning tank 

 Olympus 5077PR Square Wave Pulser/Receiver 

 Transducer frequencies: 2.25, 5.0 MHz  

 Settings 

Table E.68-1. Equipment settings for 2.25 MHz scan. 

 

Table E.68-2. Equipment settings for 5.0 MHz scan. 

 

 Inspection Results 

Not all defects or BWs were detected for all measured frequencies as shown below. For example, 

for higher frequency PEUT, thicker step panels were too thick and attenuating. For lower 

frequency PEUT on thinner panels, internal and BW signals could not be individually resolved 

due to the relatively large wavelength. Scans were performed and data quality was verified by 

producing C-scans for the different panels. 

 

Figure E.68-3. PEUT C-scans at 2.25 MHz for steps 1-6 (Internal Gate). 

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter KB-Aerotech Alpha 2.25 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF (MHz) LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 2-2.25 1 10 N/A N/A N/A N/A

Gain (dB)

0.25 0.5

11 for Steps 1-6

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter Krautkramer Benchmark 5 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 5-6 Out 10 N/A N/A N/A N/A

Gain (dB)

0.25 0.5

"-3 for Steps 1-6
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Figure E.68-4. PEUT C-scans at 2.25 MHz for steps 1-6 (BW Gate). 

E.68.2 Method: Through-Transmission Ultrasound Testing (TTUT) 

 Partner: GE Aviation 

 Technique Applicability: ★★★ 

Immersion TTUT scan was performed at 5 MHz on the stepped panel to demonstrate detection of 

thin Grafoil targets which were not detectable at lower frequencies. Shim-type foreign material are 

not detectable if thickness is less than 1/10th the transducer wavelength.  

 Laboratory Setup 

TTUT scans were performed in the OKOS 6-axis scanning tank using the immersion method. 

Transmission was performed on the flat tool side of the panel and received from the bagged stepped 

side. Gain was adjusted to receive a 50% amplitude signal from the thinnest step. A snapshot of 

the C-scan is provided below to show detection of square-shaped Grafoil targets.  

 Equipment List and Specifications:  

 OKOS 6-axis scanning tank 

 JSR DPR35G Spike Pulser/Receiver 

 Transducer Frequencies: 5 MHz 
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 Settings 

Table E.68-3. Equipment settings for 5 MHz scan. 

 

 Inspection Results 

 

Figure E.68-5. TTUT C-scans at 5.0 MHz showing square-shaped Grafoil targets. 

E.68.3 Method: Pulse Echo Ultrasound Testing (PEUT) 

 Partner: GE Aviation 

 Technique Applicability: ★★★ 

Additional immersion PEUT scans were performed to demonstrate the feasibility of detecting 

defects by using time-of-flight data. Scans were performed from the flat tool-side,using data gates 

to select various depths of interest.  

 Laboratory Setup 

PEUT scans were performed in the OKOS 6-axis scanning tank using the immersion method. For 

each panel, the gain setting was selected to set the peak signal from targets or BW to 80%. 

 Equipment List and Specifications:  

 OKOS 6-axis scanning tank 

 JSR DPR35G Spike Pulser/Receiver 

 Transducer Frequencies: 5 MHz 

Transducer Brand Model

Freq. 

(MHz)

Element 

Dia. (in.)

Water path 

(in.)

Focal 

Length 

(in)

Transmitter Olympus V320 5 0.5 2 2

Receiver Olympus V320 5 0.5 2 2

Pulser/Receiver PRF Voltage Damping Energy LPF (MHz) HPF (MHz)

JSR DPR35G Ext. 100 1000 0 1 10
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 Settings 

Table E.68-4. Equipment settings for 5.0 MHz scan. 

 

 Inspection Results 

 

Figure E.68-6. PEUT amplitude C-scans at 5.0 MHz for shallow steps.  

BW amplitude is observed in steps 14. 

 

Figure E.68-7. PEUT Time-of-Flight C-scans at 5.0 MHz for shallow steps.  

Uniform target depth is seen in steps 2-6, uniform BW depth is observed in steps 14. Disruption of 

BW depth in steps 14 indicate presence of target. 

E.69 Specimen #69: NASA-03-Porosity-Panel-001 

Structure Material Details Dimensions (inches) Partner Methods 

Fiber Placed 

Panel 

IM7/8552-1 Slit Tape 

w/ IM7/8552 Fabric 

OML 

Flat Panel with 

porosity 
15 × 17.5 × 0.15 

NASA E.69.1 PEUT 

NGIS 

E.69.2 PEUT 

E.69.3 TTUT 

E.69.4 SSIR 

E.69.5 TTIR 

 

Figure E.69-1. Photographs of Specimen #69: NASA 03 Porosity Panel 001. 

Transducer Brand Model

Freq. 

(MHz)

Element 

Dia. (in.)

Water path 

(in.)

Focal 

Length 

(in)

Transmitter Olympus V307 5 1 2 2

Pulser/Receiver PRF Voltage Damping Energy LPF (MHz) HPF (MHz)

JSR DPR35G Ext. 100 1000 0 1 10
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E.69.1 Method: Pulse-Echo Ultrasound Testing (PEUT)  

 Partner: NASA  

 Technique Applicability: ☆ 

PEUT is able to detect some instances of porosity in this sample.  

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.69-2 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.69-2. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.69-1. Data collection settings. 

Resolution (horizontal) [in/pixel] 0.02 

Resolution (vertical) [in/pixel] 0.02 

Probe frequency [MHz] 5 

Focal Length [in] 1.9 

Array Dimensions [pixels] 851 × 751 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 
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sample. It is also focused to a point one mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.69-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #69 is a fiber placed flat panel fabricated from IM7/8552-1 Slit Tape with the objective 

of achieving porosity throughout the sample. PEUT was performed on this specimen in NASA’s 

immersion tank specified above. 

Figure E.69-3 is at a depth of 0.086 inch and shows a few instances of porosity as indicated. The 

larger porosity appears white initially as the air pocket reflects acoustic waves creating a strong 

early response. The striations seen in Figure E.69-3 and Figure E.69-4 are the fiber directions of 

the individual plies. 

 

Figure E.69-3. UT image of porosity within the sample. 
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Figure E.69-4. UT image of porosity deeper within the sample. 

E.69.2 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NGIS 

 Technique Applicability: ★★★ 

PEUT scans were performed on the flat tool side of the panel in order to detect defects.  

 Laboratory Setup 

PEUT scans performed in the Test-Tech 3-axis scanning tank used the water-squirter method. For 

each panel, use of optimum water nozzle and column diameter achieved optimal SNR and defect 

detection (if defects existed). 



43 

 

Figure E.69-5. PEUT setup in Test-Tech scanning tank. 

 Equipment List and Specifications:  

 Test-Tech 3-axis scanning tank 

 Olympus 5077PR Square Wave Pulser/Receiver 

 Transducers (2.25, 5.0 MHz) 

 Settings 

Table E.69-2. Equipment settings for 2.25 MHz scan. 

 

Table E.69-3. Equipment settings for 5.0 MHz scan. 

 

 Inspection Results 

Scans were performed and data quality was verified by producing C-scans for the different panels. 

Front wall and multiple BW reflections were resolved at both 2.25 MHz and 5 MHz.  

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter KB-Aerotech Alpha 2.25 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF (MHz) LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 2-2.25 Out Full BW N/A N/A N/A N/A

Gain (dB) 14

0.25 0.5

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter Krautkramer Benchmark 5 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 5-6 Out Full BW N/A N/A N/A N/A

Gain (dB)

0.25 0.5

-5
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Figure E.69-6. PEUT C-scans at 2.25 MHz (Internal Gate). 

 

Figure E.69-7. PEUT C-scans at 2.25 MHz (BW Gate). 
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Figure E.69-8. PEUT C-scans at 5.0 MHz (Internal Gate). 

  

Figure E.69-9. PEUT C-scans at 5.0 MHz (BW Gate). 

 References 

[1] Workman, Gary L; and Kishoni, Doron: Nondestructive Testing Handbook, Third. Edited 

by Patrick O Moore. Vol. 7. American Society for Nondestructive Testing (ANST), 2007. 

E.69.3 Method: Through-Transmission Ultrasound Testing (TTUT) 

 Partner: NGIS 

 Technique Applicability: ★★★ 

TTUT scans were performed on the stepped panel in order to detect defects. Depth of defect cannot 

be determined with this method. 
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 Laboratory Setup 

TTUT scans were performed in the Test-Tech 3-axis scanning tank using a water-squirter method. 

Transmission was performed on the flat tool side of the panel and received from the bagged stepped 

side of the panel. For each panel, water nozzle and column diameter was optimized to achieve 

optimal SNR and defect detection (if defects existed).  

 

Figure E.69-10. TTUT setup in Test-Tech scanning tank. 

 Equipment List and Specifications:  

 Test-Tech 3-axis scanning tank 

 Olympus 5077PR Square Wave Pulser/Receiver 

 Transducer Pairs (1.0, 2.25 MHz) 

 Settings 

Table E.69-4. Equipment settings for 1.0 MHz scan. 

 

Table E.69-5. Equipment settings for 2.25 MHz scan. 

 

 Inspection Results 

TTUT C-scans and signals exhibited very low attenuation at both 1 MHz and 2.25 MHz.  

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter Sonic IBK I-2 1 0.5

Receiver Sonic IBK I-2 1 0.5

Pulser/Receiver PRF Voltage Freq. (MHz) HPF LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 1.0 Out Full BW N/A N/A N/A N/A

Gain (dB) 28

0.25 0.5

0.25 0.5

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter KB-Aerotech Alpha 2.25 0.25

Receiver KB-Aerotech Alpha 2.25 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF (MHz) LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 2-2.25 Out Full BW N/A N/A N/A N/A

Gain (dB) 13

0.25 0.5

0.25 0.5



47 

 

Figure E.69-11. TTUT C-scans at 1 MHz. 

 

Figure E.69-12. TTUT C-scans at 2.25 MHz. 

 References 

[1] Workman, Gary L; and Kishoni, Doron: Nondestructive Testing Handbook, Third. Edited 

by Patrick O Moore. Vol. 7. American Society for Nondestructive Testing (ANST), 2007. 
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E.69.4 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: NGIS 

 Technique Applicability: ★☆☆ 

The thermal response produced by single-sided thermographic inspection has been determined to 

be dominated by factors other than porosity. It was found that slight variations in thickness and 

localized thermal property variation dominated the surface temperature compared to material’s 

porosity. For this reason, single-sided inspection is not recommend as a technique for 

discriminating porosity.  

 Laboratory Setup 

Single-sided thermography images were acquired using a FLIR SC6000 IR camera setup. The 

thermal camera is mounted to the back of the flash hood and mounted in a fixed location on an 

optical table. The panel is held vertically within a fixture that slides across a linear track between 

captures in order to ensure total coverage. Paper light shields were constructed for the fixture to 

block flash spillover around the edges of the panel.  

 

Figure E.69-13. SSIR schematic. 
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Figure E.69-14. Photo of SSIR setup. 

 Equipment List and Specifications:  

 FLIR SC6000 IR camera, mid wavelength IR sensor (3.0- to 5.0-µm) 

 Flash power supplies, hood, and lamps 

 EchoTherm® V8 Software 

 Settings 

Table E.69-6. Equipment settings for SSIR scan. 

Flash Duration (ms) 30 

Capture Elapsed Time (s) 55.8 

Camera Frequency (Hz) 13.28 

Integration Time (s) 2 
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 Inspection Results 

 

Figure E.69-15. SSIR image of Specimen #69. 

 

Figure E.69-16. Intensity curve showing heat dispersion over time for Specimen #69. 
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[1] Parker, W. J.; Jenkins, R. J.; Butler, C. P.; and Abbott, G. L.: “Method of Determining 

Thermal Diffusivity, Heat Capacity and Thermal Conductivity,” Journal of Applied 

Physics, 32 (9): 1679, Bibcode:1961JAP....32.1679P. doi:10.1063/1.1728417, 1961. 

E.69.5 Method: Through-Transmission Infrared Thermography (TTIR) 

 Partner: NGIS 

 Technique Applicability: ★★☆ 

TTIR Thermography is used to create thermal diffusivity maps of the material. This is similar to 

flash thermal diffusivity measurement (ASTM E1461-13). Thermal diffusivity is directly 

proportional to specific volume, which is highly effected by porosity level. Therefore, TT thermal 

diffusivity maps provide a method for evaluating porosity, assuming a calibration is acquired. 

However, care should be taken in the applicability of thermal diffusivity measurements for 

porosity estimation as geometric effects for complex geometries can effect results. Thermal 

diffusivity of samples with variable thicknesses can be difficult as the lateral conduction effects 

the 1D assumption used by the technique. 

 Laboratory Setup 

TT thermography images were acquired using a FLIR SC6000 IR camera setup. The flash hood is 

mounted in a fixed location on an optical table. The thermal camera is mounted on a tripod with 

the panel between it and the flash hood. The panel is held vertically within a fixture that slides 

across a linear track between captures in order to ensure total coverage. Paper light shields were 

constructed for the fixture to block flash spillover around the edges of the panel.  

 

Figure E.69-17. TTIR schematic. 

https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/1961JAP....32.1679P
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1063%2F1.1728417
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Figure E.69-18. Photo of TTIR setup. 

 Equipment List and Specifications:  

 FLIR SC6000 IR camera, mid wavelength IR sensor (3.0- to 5.0-µm) 

 Flash power supplies, hood, and lamps 

 EchoTherm® V8 Software 

 Settings 

Table E.69-7. Equipment settings for TTIR scan. 

 Inspection Results 

Images were captured and the thermal diffusivity data were processed. Lower thermal diffusivity 

correlates to higher levels of porosity. Less variation in the histogram of thermal diffusivity shows 

consistent porosity across the total area.  

Panel Thickness (mm) 3.63 

Flash Duration (ms) 30 

Capture Elapsed Time (s) 33.49 

Camera Frequency (Hz) 5.51 

Integration Time (s) 2 
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Figure E.69-19. Temperature curve showing the dispersion of heat over time during image capture. 

 

Figure E.69-20. Histogram showing frequency of thermal diffusivity values.  

Tighter point spread shows consistent porosity throughout panel and a low standard deviation shows 

low porosity levels. 
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Figure E.69-21. Image of thermal diffusivity post processing. 

 References 

[2] Parker, W. J.; Jenkins, R. J.; Butler, C. P.; and Abbott, G. L.: “Method of Determining 

Thermal Diffusivity, Heat Capacity and Thermal Conductivity,” Journal of Applied 

Physics, 32 (9): 1679, Bibcode:1961JAP....32.1679P. doi:10.1063/1.1728417, 1961. 

E.70 Specimen #70: NASA-03-Porosity-Panel-002 

Structure Material Details Dimensions (inches) Partner Methods 

Fiber 

Placed 

Panel 

IM7/8552-1 Slit 

Tape w/ IM7/8552 

Fabric OML 

Flat Panel with 

porosity 
15 × 17.5 × 0.15 

NASA E.70.1 PEUT 

NGIS 

E.70.2 PEUT 

E.70.3 TTUT 

E.70.4 SSIR 

E.70.5 TTIR 

https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/1961JAP....32.1679P
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1063%2F1.1728417
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Figure E.70-1. Photographs of Specimen #70: NASA 03 Porosity Panel 002. 

E.70.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA  

 Technique Applicability:  

PEUT detected the porosity in this specimen. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.70-2 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.70-2. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 
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 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.70-1. Data collection settings. 

Resolution (horizontal) [in/pixel] 0.02 

Resolution (vertical) [in/pixel] 0.02 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 851 × 751 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point one mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.70-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #70, is a fiber placed flat panel fabricated from IM7/8552-1 Slit Tape with the objective 

of achieving porosity throughout the sample. PEUT was performed on this specimen in NASA’s 

immersion tank specified above. 

Figure E.70-3 is at a depth of 0.045 inch and shows a multiple instances of porosity as indicated. 

The larger porosity appears white initially as the air pocket reflects acoustic waves creating a 

strong early response. Visually this is demonstrated by the nebulous dark regions in Figure  

E.70-5. The striations seen in Figures E.70-3 and E.70-5 are the fiber directions of the individual 

plies. The B-scan is a crosssection of the material, all of the variations in the horizontal represent 

defects within the specimen. The majority of the porosity is located at throughout the middle of 

the sample.  
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Figure E.70-3. UT image of porosity within the sample. 

 

Figure E.70-4. B-scan of specimen showing location and prevalence of defects. 
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Figure E.70-5. UT image of porosity within the sample. 

E.70.2 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NGIS 

 Technique Applicability: ★★★ 

PEUT scans were performed on the flat tool side of the panel in order to detect defects. 

 Laboratory Setup 

PEUT scans performed in the Test-Tech 3-axis scanning tank used the water-squirter method. For 

each panel, use of optimum water nozzle and column diameter achieved optimal SNR and defect 

detection (if defects existed). 
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Figure E.70-6. PEUT setup in Test-Tech scanning tank. 

 Equipment List and Specifications:  

 Test-Tech 3-axis scanning tank 

 Olympus 5077PR Square Wave Pulser/Receiver 

 Transducers (2.25, 5.0 MHz) 

 Settings 

Table E.70-2. Equipment settings for 2.25 MHz scan. 

 

Table E.70-3. Equipment settings for 5.0 MHz scan. 

 

 Inspection Results 

Scans were performed and data quality was verified by producing C-scans for the different panels. 

Front wall and BW reflections were resolved at both 2.25 MHz and 5 MHz. 

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter KB-Aerotech Alpha 2.25 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF (MHz) LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 2-2.25 Out Full BW N/A N/A N/A N/A

Gain (dB)

0.25 0.5

14

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter Krautkramer Benchmark 5 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 5-6 Out Full BW N/A N/A N/A N/A

Gain (dB)

0.25 0.5

-3
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Figure E.70-7. PEUT C-scans at 2.25 MHz (Internal Gate). 

 

Figure E.70-8. PEUT C-scans at 2.25 MHz (BW Gate). 
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Figure E.70-9. PEUT C-scans at 5.0 MHz (Internal Gate). 

  

Figure E.70-10. PEUT C-scans at 5.0 MHz (BW Gate). 

 References 

[1] Workman, Gary L; and Kishoni, Doron: Nondestructive Testing Handbook, Third. Edited 

by Patrick O Moore. Vol. 7. American Society for Nondestructive Testing (ANST), 2007. 

E.70.3 Method: Through-Transmission Ultrasound Testing (TTUT) 

 Partner: NGIS 

 Technique Applicability: ★★★ 

TTUT scans were performed on the stepped panel in order to detect defects. Depth of defect cannot 

be determined with this method. 
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 Laboratory Setup 

TTUT scans were performed in the Test-Tech 3-axis scanning tank using a water-squirter method. 

Transmission was performed on the flat tool side of the panel and received from the bagged stepped 

side of the panel. For each panel, water nozzle and column diameter was optimized to achieve 

optimal SNR and defect detection (if defects existed).  

 

Figure E.70-11. TTUT setup in Test-Tech scanning tank. 

 Equipment List and Specifications:  

 Test-Tech 3-axis scanning tank 

 Olympus 5077PR Square Wave Pulser/Receiver 

 Transducer Pairs (1.0, 2.25 MHz) 

 Settings 

Table E.70-4. Equipment settings for 1.0 MHz scan. 

 

Table E.70-5. Equipment settings for 2.25 MHz scan. 

 

 Inspection Results 

TTUT C-scans and signals exhibited moderate attenuation at both 1 MHz and 2.25 MHz. 

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter Sonic IBK I-2 1 0.5

Receiver Sonic IBK I-2 1 0.5

Pulser/Receiver PRF Voltage Freq. (MHz) HPF LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 1.0 Out 10 N/A N/A N/A N/A

Gain (dB)

0.25 0.5

28

0.25 0.5

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter KB-Aerotech Alpha 2.25 0.25

Receiver KB-Aerotech Alpha 2.25 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF (MHz) LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 2-2.25 Out Full BW N/A N/A N/A N/A

Gain (dB)

0.25 0.5

13

0.25 0.5
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Figure E.70-12. TTUT C-scans at 1 MHz. 

 

Figure E.70-13. TTUT C-scans at 2.25 MHz. 

 References 

[1] Workman, Gary L; and Kishoni, Doron: Nondestructive Testing Handbook, Third. Edited 

by Patrick O Moore. Vol. 7. American Society for Nondestructive Testing (ANST), 2007. 

E.70.4 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: NGIS 

 Technique Applicability: ★☆☆ 

The thermal response produced by single-sided thermographic inspection has been determined to 

be dominated by factors other than porosity. It was found that slight variations in thickness and 

localized thermal property variation dominated the surface temperature compared to material’s 
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porosity. For this reason, single-sided inspection is not recommend as a technique for 

discriminating porosity.  

 Laboratory Setup 

Single-sided thermography images were acquired using a FLIR SC6000 IR camera setup. The 

thermal camera is mounted to the back of the flash hood and mounted in a fixed location on an 

optical table. The panel is held vertically within a fixture that slides across a linear track between 

captures in order to ensure total coverage. Paper light shields were constructed for the fixture to 

block flash spillover around the edges of the panel.  

 

Figure E.70-14. SSIR schematic. 
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Figure E.70-15. Photo of SSIR setup. 

 Equipment List and Specifications:  

 FLIR SC6000 IR camera, mid wavelength IR sensor (3.0- to 5.0-µm) 

 Flash power supplies, hood, and lamps 

 EchoTherm® V8 Software 

 Settings 

Table E.70-6. Equipment settings for SSIR scan. 

Flash Duration (ms) 30 

Capture Elapsed Time (s) 60.1 

Camera Frequency (Hz) 12.33 

Integration Time (s) 1 
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 Inspection Results 

 

Figure E.70-16. SSIR image of Specimen #70. 

 

Figure E.70-17. Intensity curve showing heat dispersion over time for Specimen #70. 
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[1] Parker, W. J.; Jenkins, R. J.; Butler, C. P.; and Abbott, G. L.: “Method of Determining 
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E.70.5 Method: Through-Transmission Infrared Thermography (TTIR) 

 Partner: NGIS 

 Technique Applicability: ★★☆ 

 Laboratory Setup 

TT thermography images were acquired using a FLIR SC6000 IR camera setup. The flash hood is 

mounted in a fixed location on an optical table. The thermal camera is mounted on a tripod with 

the panel between it and the flash hood. The panel is held vertically within a fixture that slides 

across a linear track between captures in order to ensure total coverage. Paper light shields were 

constructed for the fixture to block flash spillover around the edges of the panel.  

 

Figure E.70-18. TTIR schematic. 

https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/1961JAP....32.1679P
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1063%2F1.1728417
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Figure E.70-19. Photo of TTIR setup. 

 Equipment List and Specifications:  

 FLIR SC6000 IR camera, mid wavelength IR sensor (3.0- to 5.0-µm) 

 Flash power supplies, hood, and lamps 

 EchoTherm® V8 Software 

 Settings 

Table E.70-7. Equipment settings for TTIR scan. 

 Inspection Results 

Images were captured and the thermal diffusivity data were processed. Lower thermal diffusivity 

correlates to higher levels of porosity. Less variation in the histogram of thermal diffusivity shows 

consistent porosity across the total area.  

Panel Thickness (mm) 3.63 

Flash Duration (ms) 30 

Capture Elapsed Time (s) 33.49 

Camera Frequency (Hz) 5.51 

Integration Time (s) 2 
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Figure E.70-20. Temperature curve showing the dispersion of heat over time during image capture. 

 

Figure E.70-21. Histogram showing frequency of thermal diffusivity values. 

Tighter point spread shows consistent porosity throughout panel and a low standard deviation shows 

low porosity levels. 
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Figure E.70-22. Image of thermal diffusivity post processing. 

 References 

[1] Parker, W. J.; Jenkins, R. J.; Butler, C. P.; and Abbott, G. L.: “Method of Determining 

Thermal Diffusivity, Heat Capacity and Thermal Conductivity,” Journal of Applied 

Physics, 32 (9): 1679, Bibcode:1961JAP....32.1679P. doi:10.1063/1.1728417, 1961. 

E.71 Specimen #71A&B: NASA-03-Porosity-Panel-003 

Structure Material Details Dimensions (inches) Partner Methods 

Fiber 

Placed 

Panel 

M7/8552-1 Slit 

Tape w/ IM7/8552 

Fabric OML 

Flat Panel with 

high porosity 
14 × 16 × 0.15 

NASA 
E.71.1 PEUT  

E.71.2 XCT 

NGIS 

E.71.3 PEUT 

E.71.4 TTUT 

E.71.5 SSIR 

E.71.6 TTIR 

https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/1961JAP....32.1679P
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1063%2F1.1728417
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Figure E.71-1. Photographs of Specimen #71: NASA-03-Porosity-Panel-003. 

E.71.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA  

 Technique Applicability:   

PEUT detected the porosity in this specimen. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.71-2 shows a simplified block diagram of a 

scanning Pulse-echo inspection 

 

Figure E.71-2. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 
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 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.71-1. Data collection settings. 

Resolution (horizontal) [in/pixel] 0.01 

Resolution (vertical) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 676 × 581 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.71-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #71, is a fiber placed flat panel fabricated from IM7/8552-1 Slit Tape with the objective 

of achieving porosity throughout the sample. PEUT was performed on this specimen in NASA’s 

immersion tank specified above. 

Figure E.71-3 is at a depth of 0.038 inch and shows multiple instances of porosity as indicated. 

The larger porosity appears white initially as the air pocket reflects acoustic waves creating a 

strong early response. Visually this is demonstrated by the nebulous dark regions in Figure  

E.71-4. The striations seen in Figures E.71-3 and E.71-4 are the fiber directions of the individual 

plies. 
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Figure E.71-3.UT image of porosity within the sample. 

 

Figure E.71-4. UT image of porosity within the sample. 
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E.71.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:  

X-ray CT (XCT) is capable of imaging the high porosity in this specimen. 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. Supplied as complete, the system is a large-dimension radiation enclosure with X-ray 

source, specimen manipulator, and an amorphous silica detector, as shown in Figure E.71-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer, 16-bit, 

amorphous-silicon digital detector with a 2000 × 2000-pixel array. 

 

Figure E.71-51. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.71-6. Slices normal to the X-, Y-, and Z-directions are shown in Figure E.71-6a, b, and c, 

respectively. 
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a) b) c) 

Figure E.71-6. Slice direction nomenclature. 

  

Figure E.71-7. Test setup showing specimen orientation. 

 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5-µm focal spot size 

 15 or 30 kg Capacity 5 axis fully programmable manipulator.  

 Detector: Perkin Elmer XRD 1621 – 2000 × 2000 pixels with 200 m pitch 
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 10-m spatial resolution for specimens 1.5 cm wide 

 Thin panels 10 × 10 inch – full volume 200-m spatial resolution 

 Settings 

Table E.71-2. Data collection settings. 

Source Energy 120 kV 

Current 100 µA 

Magnification 1.30 X 

Filter NF 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 22 K 

# Averages 8 

Resolution (µm) 154.162 µm 

Array Dimensions (pixels) Set 1: 1999 × 362 × 1998 

Set 2: 1998 × 686 × 1997 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 

be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained.  

 Inspection Results 

Specimen #71 had two components labeled A and B, A being the large bulk section of the material 

and B a 2 by 16-inch piece cut from the top. These were imaged separately at different distances 

from the source to produce scans of differing resolution. Figure E.71-8 shows scans from the same 

direction of the large specimen A and several scans from B stitched together using image 

registration techniques. Gross porosity and some delaminations are evident in both scans, but some 

of the smaller defects are lost on the large-scale specimen.  

The porosity in Figure E.71-8 and Figure E.71-9 is represented by the small darker areas within 

the sample. This porosity pervades nearly every slice of the specimen and are easily detected. In 

Figure E.71-9 there is also evidence of missing tows in the bottom left of the y-view as well as 

more instances of porosity peppered across the specimen. The cross-stitched pattern on the y-view 

image is a result of the viewing angle not being perfectly normal with the specimen layers. A 

perfectly normal view is near impossible to achieve in this specimen as it is very thin and the 

amount of defects cause bowing. 
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Figure E.71-8. XCT of Specimen #71 A (top) and B (bottom) showing porosity at different resolutions. 

 

Figure E.71-9. XCT of Specimen #71 from the z-view (left) and y-view (right). 

E.71.3 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NGIS 

 Technique Applicability: ★★★ 

PEUT scans were performed on the flat tool side of the panel in order to detect defects.  

 Laboratory Setup 

PEUT scans performed in the Test-Tech 3-axis scanning tank used the water-squirter method. For 

each panel, use of optimum water nozzle and column diameter achieved optimal SNR and defect 

detection (if defects existed). 
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Figure E.71-10. PEUT setup in Test-Tech scanning tank. 

 Equipment List and Specifications:  

 Test-Tech 3-axis scanning tank 

 Olympus 5077PR Square Wave Pulser/Receiver 

 Transducer Frequencies: (1, 2.25, and 5 MHz) 

 Settings 

Table E.71-3. Equipment settings for 1.0 MHz scan. 

 

Table E.71-4. Equipment settings for 2.25 MHz scan. 

 

Table E.71-5. Equipment settings for 5.0 MHz scan. 

 

 Inspection Results 

Scans were performed and data quality was verified by producing C-scans for the different panels. 

Back-wall signals were not resolved or detected at any frequency due to high attenuation. 

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter Krautkramer Benchmark 1 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 1.0 Out Full BW N/A N/A N/A N/A

0.25 0.5

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter KB-Aerotech Alpha 2.25 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF (MHz) LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 2-2.25 Out Full BW N/A N/A N/A N/A

Gain (dB)

0.25 0.5

16

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter Krautkramer Benchmark 5 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 5-6 Out Full BW N/A N/A N/A N/A

Gain (dB) -6

0.25 0.5
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Figure E.71-11. PEUT C-scans at 1.0 MHz. 

 

Figure E.71-12. PEUT C-scans at 2.25 MHz. 



80 

 

Figure E.71-13. PEUT C-scans at 5.0 MHz. 

 References 

[1] Workman, Gary L; and Kishoni, Doron: Nondestructive Testing Handbook, Third. Edited 

by Patrick O Moore. Vol. 7. American Society for Nondestructive Testing (ANST), 2007. 

E.71.4 Method: Through-Transmission Ultrasound Testing (TTUT) 

 Partner: NGIS 

 Technique Applicability: ★★★ 

TTUT scans were performed on the stepped panel in order to detect defects. Depth of defect cannot 

be determined with this method. 

 Laboratory Setup 

TTUT scans were performed in the Test-Tech 3-axis scanning tank using a water-squirter method. 

Transmission was performed on the flat tool side of the panel and received from the bagged stepped 

side of the panel. For each panel, water nozzle and column diameter was optimized to achieve 

optimal SNR and defect detection (if defects existed).  
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Figure E.71-14. TTUT setup in Test-Tech scanning tank. 

 Equipment List and Specifications:  

 Test-Tech 3-axis scanning tank 

 Olympus 5077PR Square Wave Pulser/Receiver 

 Transducer Pairs (1.0, 2.25 MHz) 

 Settings 

Table E.71-6. Equipment settings for 1.0 MHz scan. 

 

Table E.71-7. Equipment settings for 2.25 MHz scan. 

 

 Inspection Results 

Transmitted signals were detected, but panels exhibited relatively high attenuation at 1 MHz and 

2.25 MHz. 

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter Sonic IBK I-2 1 0.5

Receiver Sonic IBK I-2 1 0.5

Pulser/Receiver PRF Voltage Freq. (MHz) HPF LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 1.0 Out Full BW N/A N/A N/A N/A

Gain (dB)

0.25 0.5

0.25 0.5

31

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter KB-Aerotech Alpha 2.25 0.25

Receiver KB-Aerotech Alpha 2.25 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF (MHz) LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 2-2.25 Out Full BW N/A N/A N/A N/A

Gain (dB)

0.25 0.5

0.25 0.5

23
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Figure E.71-15. TTUT C-scans at 1 MHz. 

 

Figure E.71-16. TTUT C-scans at 2.25 MHz. 

 References 

[1] Workman, Gary L; and Kishoni, Doron: Nondestructive Testing Handbook, Third. Edited 

by Patrick O Moore. Vol. 7. American Society for Nondestructive Testing (ANST), 2007. 

E.71.5 Method: Single-Sided Infrared Thermography (SSIR) 

 Partner: NGIS 

 Technique Applicability: ★☆☆ 

The thermal response produced by single-sided thermographic inspection has been determined to 

be dominated by factors other than porosity. It was found that slight variations in thickness and 

localized thermal property variation dominated the surface temperature compared to material’s 
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porosity. For this reason, single-sided inspection is not recommend as a technique for 

discriminating porosity.  

 Laboratory Setup: 

Single-sided thermography images were acquired using a FLIR SC6000 IR camera setup. The 

thermal camera is mounted to the back of the flash hood and mounted in a fixed location on an 

optical table. The panel is held vertically within a fixture that slides across a linear track between 

captures in order to ensure total coverage. Paper light shields were constructed for the fixture to 

block flash spillover around the edges of the panel.  

 

Figure E.71-17. SSIR schematic. 
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Figure E.71-18. Photo of SSIR setup. 

 Equipment List and Specifications:  

 FLIR SC6000 IR camera, mid wavelength IR sensor (3.0- to 5.0-µm) 

 Flash power supplies, hood, and lamps 

 EchoTherm® V8 Software 

 Settings 

Table E.71-8. Equipment settings for SSIR scan. 

Flash Duration (ms) 30 

Capture Elapsed Time (s) 20.08 

Camera Frequency (Hz) 37.86 

Integration Time (s) 2 
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 Inspection Results 

 

Figure E.71-19. SSIR image of Specimen #71. 

 

Figure E.71-20. Intensity curve showing heat dispersion over time for Specimen #71. 

 References 

[1] Parker, W. J.; Jenkins, R. J.; Butler, C. P.; and Abbott, G. L.: “Method of Determining 

Thermal Diffusivity, Heat Capacity and Thermal Conductivity,” Journal of Applied 

Physics, 32 (9): 1679, Bibcode:1961JAP....32.1679P. doi:10.1063/1.1728417, 1961. 

https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/1961JAP....32.1679P
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1063%2F1.1728417
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E.71.6 Method: Through-Transmission Infrared Thermography (TTIR) 

 Partner: NGIS 

 Technique Applicability: ★★☆ 

 Laboratory Setup: 

TT thermography images were acquired using a FLIR SC6000 IR camera setup. The flash hood is 

mounted in a fixed location on an optical table. The thermal camera is mounted on a tripod with 

the panel between it and the flash hood. The panel is held vertically within a fixture that slides 

across a linear track between captures in order to ensure total coverage. Paper light shields were 

constructed for the fixture to block flash spillover around the edges of the panel.  

 

Figure E.71-21. TTIR schematic. 



87 

 

Figure E.71-22. Photo of TTIR setup. 

 Equipment List and Specifications:  

 FLIR SC6000 IR camera, mid wavelength IR sensor (3.0- to 5.0-µm) 

 Flash power supplies, hood, and lamps 

 EchoTherm® V8 Software 

 Settings 

Table E.71-9. Equipment settings for TTIR scan. 

 Inspection Results 

Images were captured and the thermal diffusivity data was processed. Lower thermal diffusivity 

correlates to higher levels of porosity. Less variation in the histogram of thermal diffusivity shows 

consistent porosity across the total area.  

Panel Thickness (mm) 3.63 

Flash Duration (ms) 30 

Capture Elapsed Time (s) 21.19 

Camera Frequency (Hz) 8.79 

Integration Time (s) 2 
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Figure E.71-23. Temperature curve showing the dispersion of heat over time during image capture. 

 

Figure E.71-24. Histogram showing frequency of thermal diffusivity values. 

Tighter point spread shows consistent porosity throughout panel and a larger standard deviation could 

indicate porosity. 



89 

 

Figure E.71-25. Image of thermal diffusivity post processing. 

Low thermal diffusivity shows indications of porosity. 

 References 

[1] Parker, W. J.; Jenkins, R. J.; Butler, C. P.; and Abbott, G. L.: “Method of Determining 

Thermal Diffusivity, Heat Capacity and Thermal Conductivity,” Journal of Applied 

Physics, 32 (9): 1679, Bibcode:1961JAP....32.1679P. doi:10.1063/1.1728417, 1961. 

E.72 Specimen #72A&B: NASA-03-Porosity-Panel-004 

Structure Material Details Dimensions (inches) Partner Methods 

Fiber Placed 

Panel 

IM7/8552-1 Slit 

Tape w/ IM7/8552 

Fabric OML 

Flat Panel with 

high porosity 
15 × 17.5 × 0.15 

NASA 
E.72.1 PEUT  

E.72.2 XCT 

NGIS 

E.72.3 PEUT 

E.72.4 TTUT 

E.72.5 SSIR 

E.72.6 TTIR 

https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/1961JAP....32.1679P
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1063%2F1.1728417
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Figure E.72-1. Photographs of Specimen #72: NASA-03-Porosity-Panel-004. 

E.72.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA  

 Technique Applicability:   

PEUT detected the porosity in this specimen. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.72-2 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.72-2. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 
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 Settings 

Table E.72-1. Data collection settings. 

Resolution (horizontal) [in/pixel] 0.01 

Resolution (vertical) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 676 × 581 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.72-2. At each point, ultrasonic data is collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #72 is a fiber placed flat panel fabricated from IM7/8552-1 Slit Tape with the objective 

of achieving porosity throughout the sample. PEUT was performed on this specimen in NASA’s 

immersion tank specified above. 

Figure E.72-3 is at a depth of .029in and shows multiple instances of porosity as indicated. The 

larger porosity appears white initially as the air pockets reflect acoustic waves creating a strong 

early response. Visually this is demonstrated by the peppered dark regions in Figure E.72-4. 

Porosity is found throughout the bulk of the specimen concentrated at a depth halfway through the 

specimen. The striations seen in Figures E.72-3 and Figure E.72-4 are the fiber directions of the 

individual plies. 
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Figure E.72-3. UT image of porosity within the sample. 

 

Figure E.72-4. UT image of porosity at a greater depth within the sample. 
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E.72.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:   

XCT is capable of imaging the high porosity in this specimen. 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. Supplied as complete, the system is a large-dimension radiation enclosure with X-ray 

source, specimen manipulator, and an amorphous silica detector, as shown in Figure E.72-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer, 16-bit, 

amorphous-silicon digital detector with a 2000 × 2000-pixel array. 

 

Figure E.72-5. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.72-6. Slices normal to the X-, Y-, and Z-directions are shown in Figure E.72-6a, b, and c, 

respectively. 
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a) b) c) 

Figure E.72-6. Slice direction nomenclature. 

  

Figure E.72-7. Test setup showing specimen orientation. 

 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity 5 axis fully programmable manipulator.  

 Detector: Perkin Elmer XRD 1621 – 2000 × 2000 pixels with 200 m pitch 
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 10 m spatial resolution for specimens 1.5 cm wide 

 Thin panels 10-inch × 10-inch – full volume 200 m spatial resolution 

 Settings 

Table E.72-2. Data collection settings. 

Source Energy 120 kV 

Current 100 µA 

Magnification 1.30 X 

Filter NF 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 22 K 

# Averages 8 

Resolution (µm) 154.162 µm 

Array Dimensions (pixels) Set 1: 1999 × 362 × 1998 

Set 2: 1998 × 686 × 1997 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 

be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained.  

 Inspection Results 

Specimen #72 had two components labeled A and B, A being the large bulk section of the material 

and B a 2 by 16-inch piece cut from the top. These were imaged separately at different distances 

from the source to produce scans of differing resolution. Figure E.72-8 shows scans from the same 

direction of the large specimen A and several scans from B stitched together using image 

registration techniques. Gross porosity and some delaminations are evident in both scans, but some 

of the smaller defects are lost on the large-scale specimen.  

The porosity in Figure E.72-8 and Figure E.72-9 is represented by the small darker areas within 

the sample. While the large delaminations seen in Figure E.72-9 draw the most attention, the 

smaller bubbles of porosity peppered throughout the rest of the bulk material is still easily 

identifiable even on the lower resolution image. The cross-stitched pattern on the y-view image is 

a result of the viewing angle not being perfectly normal with the specimen layers. A perfectly 

normal view is near impossible to achieve in this specimen as the amount of defects cause severe 

bowing. 
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Figure E.72-8. XCT of specimen #72 A (top) and B (bottom) showing porosity at different resolutions. 

 

Figure E.72-9. XCT of Specimen #72 from the z-view (left) and y-view (right). 

E.72.3 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NGIS 

 Technique Applicability: ★★★ 

PEUT scans were performed on the flat tool side of the panel in order to detect defects. 

 Laboratory Setup 

PEUT scans performed in the Test-Tech 3-axis scanning tank used the water-squirter method. For 

each panel, use of optimum water nozzle and column diameter achieved optimal SNR and defect 

detection (if defects existed). 
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Figure E.72-10. PEUT setup in Test-Tech scanning tank. 

 Equipment List and Specifications:  

 Test-Tech 3-axis scanning tank 

 Olympus 5077PR Square Wave Pulser/Receiver 

 Transducer Frequencies: (1, 2.25, and 5 MHz) 

 Settings 

Table E.72-3. Equipment settings for 1.0 MHz scan. 

 

Table E.72-4. Equipment settings for 2.25 MHz scan. 

 

Table E.72-5. Equipment settings for 5.0 MHz scan. 

 

 Inspection Results 

Scans were performed and data quality was verified by producing C-scans for the different panels. 

Back-wall signals were not resolved or detected at any frequency due to high attenuation. 

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter Krautkramer Benchmark 1 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 1.0 Out Full BW N/A N/A N/A N/A

Gain (dB)

0.25 0.5

1

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter KB-Aerotech Alpha 2.25 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF (MHz) LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 2-2.25 Out Full BW N/A N/A N/A N/A

0.25 0.5

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter Krautkramer Benchmark 5 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 5-6 Out Full BW N/A N/A N/A N/A

Gain (dB)

0.25 0.5

-6
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Figure E.72-11. PEUT C-scans at 1.0 MHz. 

 

Figure E.72-12. PEUT C-scans at 2.25 MHz. 
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Figure E.72-13. PEUT C-scans at 5.0 MHz. 

 References 

[1] Workman, Gary L; and Kishoni, Doron: Nondestructive Testing Handbook, Third. Edited 

by Patrick O Moore. Vol. 7. American Society for Nondestructive Testing (ANST), 2007. 

E.72.4 Method: Through-Transmission Ultrasound Testing (TTUT) 

 Partner: NGIS 

 Technique Applicability: ★★★ 

TTUT scans were performed on the stepped panel in order to detect defects. Depth of defect cannot 

be determined with this method. 

 Laboratory Setup 

TTUT scans were performed in the Test-Tech 3-axis scanning tank using a water-squirter method. 

Transmission was performed on the flat tool side of the panel and received from the bagged stepped 

side of the panel. For each panel, water nozzle and column diameter was optimized to achieve 

optimal SNR and defect detection (if defects existed).  

 

Figure E.72-14. TTUT setup in Test-Tech scanning tank. 
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 Equipment List and Specifications:  

 Test-Tech 3-axis scanning tank 

 Olympus 5077PR Square Wave Pulser/Receiver 

 Transducer Pairs (1.0, 2.25 MHz) 

 Settings 

Table E.72-6. Equipment settings for 1.0 MHz scan. 

 

Table E.72-7. Equipment settings for 2.25 MHz scan. 

 

 Inspection Results 

Transmitted signals were not reliably detected due to extremely high attenuation at 1 MHz and 

2.25 MHz. 

 

Figure E.72-15. TTUT C-scans at 1 MHz. 

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter Sonic IBK I-2 1 0.5

Receiver Sonic IBK I-2 1 0.5

Pulser/Receiver PRF Voltage Freq. (MHz) HPF LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 1.0 Out Full BW N/A N/A N/A N/A

Gain (dB)

0.25 0.5

0.25 0.5

31

Transducer Brand Model Freq. (MHz) Element Dia. (in.) Water Column Dia (in.) Outer Dia. (in)

Transmitter KB-Aerotech Alpha 2.25 0.25

Receiver KB-Aerotech Alpha 2.25 0.25

Pulser/Receiver PRF Voltage Freq. (MHz) HPF (MHz) LPF (MHz) Rtune Ttune Attn Range

Olympus Ext 100 2-2.25 Out Full BW N/A N/A N/A N/A

Gain (dB)

0.25 0.5

0.25 0.5

23
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Figure E.72-16. TTUT C-scans at 2.25 MHz. 

 References 

[1] Workman, Gary L; and Kishoni, Doron: Nondestructive Testing Handbook, Third. Edited 

by Patrick O Moore. Vol. 7. American Society for Nondestructive Testing (ANST), 2007. 

E.72.5 Method: Single-Side Infrared Thermography (SSIR) 

 Partner: NGIS 

 Technique Applicability: ★☆☆ 

The thermal response produced by single-sided thermographic inspection has been determined to 

be dominated by factors other than porosity. It was found that slight variations in thickness and 

localized thermal property variation dominated the surface temperature compared to material’s 

porosity. For this reason, single-sided inspection is not recommend as a technique for 

discriminating porosity.  

 Laboratory Setup 

Single-sided thermography images were acquired using a FLIR SC6000 IR camera setup. The 

thermal camera is mounted to the back of the flash hood and mounted in a fixed location on an 

optical table. The panel is held vertically within a fixture that slides across a linear track between 

captures in order to ensure total coverage. Paper light shields were constructed for the fixture to 

block flash spillover around the edges of the panel.  
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Figure E.72-17. SSIR schematic. 

 

Figure E.72-18. Photo of SSIR setup. 
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 Equipment List and Specifications:  

 FLIR SC6000 IR camera, mid wavelength IR sensor (3.0- to 5.0-µm) 

 Flash power supplies, hood, and lamps 

 EchoTherm® V8 Software 

 Settings 

Table E.72-8. Equipment settings for SSIR scan. 

Flash Duration (ms) 30 

Capture Elapsed Time (s) 43.34 

Camera Frequency (Hz) 37.94 

Integration Time (s) 2 

 Inspection Results 

 

Figure E.72-19. SSIR image of Specimen #72. 
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Figure E.72-20. Intensity curve showing heat dispersion over time for Specimen #72. 

 References 

[1] Parker, W. J.; Jenkins, R. J.; Butler, C. P.; and Abbott, G. L.: “Method of Determining 

Thermal Diffusivity, Heat Capacity and Thermal Conductivity,” Journal of Applied 

Physics, 32 (9): 1679, Bibcode:1961JAP....32.1679P. doi:10.1063/1.1728417, 1961. 

E.72.6 Method: Through-Transmission Infrared Thermography (TTIR) 

 Partner: NGIS 

 Technique Applicability: ★★☆ 

 Laboratory Setup 

TT thermography images were acquired using a FLIR SC6000 IR camera setup. The flash hood is 

mounted in a fixed location on an optical table. The thermal camera is mounted on a tripod with 

the panel between it and the flash hood. The panel is held vertically within a fixture that slides 

across a linear track between captures in order to ensure total coverage. Paper light shields were 

constructed for the fixture to block flash spillover around the edges of the panel.  

https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/1961JAP....32.1679P
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1063%2F1.1728417
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Figure E.72-21. TTIR schematic. 

 

Figure E.72-22. Photo of TTIR setup. 

 Equipment List and Specifications:  

 FLIR SC6000 IR camera, mid wavelength IR sensor (3.0- to 5.0-µm) 

 Flash power supplies, hood, and lamps 

 EchoTherm® V8 Software 
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 Settings 

Table E.72-9. Equipment settings for TTIR scan. 

 Inspection Results 

 

Figure E.72-23. Temperature curve showing the dispersion of heat over time during image capture. 

 

Figure E.72-24. Histogram showing frequency of thermal diffusivity values.  

Expansive point spread shows inconsistent levels of porosity throughout panel and a high standard 

deviation shows high porosity levels. 

Panel Thickness (mm) 3.66 

Flash Duration (ms) 30 

Capture Elapsed Time (s) 43.34 

Camera Frequency (Hz) 4.18 

Integration Time (s) 2 
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Figure E.72-25. Image of thermal diffusivity post processing.  

Dark patches show areas of high porosity. 

 References 

[2] Parker, W. J.; Jenkins, R. J.; Butler, C. P.; and Abbott, G. L.: “Method of Determining 

Thermal Diffusivity, Heat Capacity and Thermal Conductivity,” Journal of Applied 

Physics, 32 (9): 1679, Bibcode:1961JAP....32.1679P. doi:10.1063/1.1728417, 1961. 

E.73 Specimen #73 – NASA-005-STANDARD-001  Not Tested 
Structure Material Details Dimensions (inches) Partner Methods 

Quasi-

isotropic 

IM7/8552 

satin weave 

fabric 

Rotocraft blade spar tube – 

pristine 
11.5 × 8.5 × 2.8 Not Tested 

E.74 Specimen #74 – NASA-005-STANDARD-002  Not Tested 
Structure Material Details Dimensions (inches) Partner Methods 

Quasi-

isotropic 

IM7/8552 

satin weave 

fabric 

Rotocraft blade spar tube – 

prinstine 
11.5 × 8.5 × 2.8 Not Tested 

https://en.wikipedia.org/wiki/Bibcode
http://adsabs.harvard.edu/abs/1961JAP....32.1679P
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1063%2F1.1728417
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E.75 Specimen #75 – NASA-005-Wrinkle-001  Not Tested 
Structure Material Details Dimensions (inches) Partner Methods 

Quasi-

isotropic 

IM7/8552 

satin weave 

fabric 

Rotocraft blade spar tube – out 

of plane wrinkle 
11.5 × 8.5 × 2.8 Not Tested 

E.76 Specimen #76 – NASA-05-Wrinkle-002  Not Tested 
Structure Material Details Dimensions (inches) Partner Methods 

Quasi-

isotropic 

IM7/8552 

satin weave 

fabric 

Rotocraft blade spar tube – out 

of plane wrinkle 
11.5 × 8.5 × 2.8 Not Tested 

E.77 Specimen #77 – NASA-005-Porosity-001  Not Tested 
Structure Material Details Dimensions (inches) Partner Methods 

Quasi-

isotropic 

IM7/8552 

satin weave 

fabric 

Rotocraft blade spar tube – 

porosity 
11.5 × 8.5 × 2.8 Not Tested 

E.78 Specimen #78 – NASA-005-Porosity-002  Not Tested 

Structure Material Details Dimensions (inches) Partner Methods 

Quasi-

isotropic 

IM7/8552 

satin weave 

fabric 

Rotocraft blade spar tube – 

porosity 
11.5 × 8.5 × 2.8 Not Tested 

E.79 Specimen #79: NASA-005-Porosity-003 

Structure Material Details Dimensions (inches) Partner Methods 

Quasi 

Isotropic 

IM7/8552 satin 

weave fabric and 

unidirectional 

Rotocraft blade spar 

tube with porosity 
11.5 × 8.5 × 2.8 NASA E.79.1 PEUT 

   

Figure E.79-1. Photographs of Specimen #79: NASA 005 Porosity 003. 

E.79.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA  

 Technique Applicability: ★★★ 

PEUT is capable of detecting the porosity within this specimen. 
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 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.79-2 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 
Figure E.79-2. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.79-1. Data collection settings. 

Resolution (horizontal) [in/pixel] 0.05 

Resolution (vertical) [in/pixel] 0.05 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 211 × 181 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point one mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.79-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 
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of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #79 is a rotocraft blade tube spar fabricated from IM7/8552 with the objective of 

achieving porosity in the tube walls. PEUT was performed on this specimen in NASA’s immersion 

tank specified above. 

Figure E.79-3 shows three large instances of large porosity at depths of 0.054, 0.073 and 

0.096 inches. The larger porosity appears white initially as the air pocket reflects acoustic waves 

creating a strong early response. Smaller porisity exists throughout the bulk of the specimen as 

indicated by the scattered white specs. The dark band is a consequence of surface tape on the 

specimen blocking acoustic waves.  

 

Figure E.79-3. PEUT image of large porosity throughout the side wall of the specimen. 

E.80 Specimen #80 – NASA-005-Porosity-004  Not Tested 
Structure Material Details Dimensions (inches) Partner Methods 

Quasi-

isotropic 

IM7/8552 

satin weave 

fabric 

Rotocraft blade spar tube – 

porosity 
11.5 × 8.5 × 2.8 Not Tested 
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E.81 Specimen #81: Boeing Impact QI_45 8ply 6x5 Impact 1 

Structure Material Details Dimensions (inches) Partner Methods 

8 plies IM7/8552 Single Impact Location 
6 × 5 

6 × 3 

Boeing 
E.81.1 XCT 

E.81.2 X-ray CR 

NASA E.81.3 PEUT 

 

Figure E.81-1. Photographs of radii delamination standard. 

E.81.1 Method: X-ray Computed Tomography (XCT) 

 Partner: Boeing  

 Technique Applicability: ★★☆ 

XCT is able to detect impact damage on some of the panels. 

 Equipment List and Specifications:  

 YXLON Modular CT System 

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity 7 axis granite based manipulator 

 XRD 1621 Detector- 2048 × 2048 pixels with 200-µm pitch, 400 × 400-mm active area 

 111-µm spatial resolution for impact panel scan 

 Volume Graphics 3.0 visualizing software 

 Reconstruction Computer 

 Settings  

Table E.81-1. Data collection settings. 

Source Energy 120 kV 

Current 0.60 mA 

Magnification 1.80 X 

Filter Copper 

# Rotational angles 1410 

Exposure time / frame 500 ms 

Frame Binning 2 

Spatial Resolution (µm) 111 µm 

Array Dimensions (pixels) Set 1: 1999 × 362 × 1998 

Set 2: 1998 × 686 × 1997 
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 Laboratory Setup 

The Digital Radiography Center (DRC) utilizes an YXLON Modular CT System. This system has 

the capability to utilize various X-ray sources for varying applications, including a 450-kV source, 

a microfocus source, and a nanofocus source. The microfocus source used has a variable focal spot 

size of less than 4 µm and is suitable for magnifications up to 10X, with the nanofocus ranging up 

to 187X. The detector has 3 degrees of freedom (DOFs), allowing the effective detector area to be 

increased through combined scans. The manipulator controls the position of the detector, object, 

and source. It has 7 DOFs including a rotating stage to rotate the object during the scan. The entire 

system includes the source, detector, manipulator, control and reconstruction computers, and user 

control station. The computers and control station are outside of the radiation enclosure (vault) and 

utilize a safety interlock system to operate. Cameras are located in the vault to allow the operator 

to monitor the part from outside the enclosure. 

 
Figure E.81-2. XCT system components. 
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a) b) c) 

Figure E.81-3. Slice direction nomenclature. 

To reduce overall scan time, the standard panels of the same thickness were stacked together, 

separated by light foam sheets and held together with tape. This allowed three parts to be scanned 

at once and analyzed separately in post-processing. The panel bundle was then secured in a foam 

fixture. The position of the specimen, source, and detector are controlled to produce geometric 

magnification of the image and increase the spatial resolution. The image data are gathered as  

X-rays penetrate the part and expose the detector for a set amount of time. For each scan, these 

image data are collected at 1410 different angles throughout a 360° rotation. These images are then 

reconstructed to create the 3D volume dataset. This dataset is viewed and analyzed in Volume 

Graphics, a volume rendering software, to identify the relevant components. 
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Figure E.81-4. Microfocus XCT setup for impact damage standards. 

 Inspection Results 

Unlike 2D X-ray imaging, CT shows slice views of the object that are not superimposed. This 

allows for improved detection of flaws. In the case of the impact panels, the damage would show 

as a slightly dented region at the near surface. Figure E.81-5 shows a slice view at the near surface 

of each panel. The dark spot in the center of Figure E.81-5b and c indicates less dense or lack of 

material, caused by the indentation of the impact on Panels 82 and 83. The tape used to hold the 

panels together for the scan is visible in Figure E.81-5a, however there is no detected impact 

damage for Panel 81. 

   
a) b) c) 

Figure E.81-5. CT slice view of 8-ply impact damage panels 81 (a), 82 (b), and 83 (c). 
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E.81.2 Method: X-ray Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆☆  

X-ray CR is unable to reliably detect the impact damage. 

 Equipment List and Specifications:  

 Philips 160 kV X-Ray source, 0.4 mm focal spot size 

 IPS Phosphorus Imaging Plate 

 GE CRxFlex Scanner, 50 µm resolution 

 GE Rhythm Review 5.0 visualizing software 

 Settings 

Table E.81-2. Imaging and exposure parameters. 

Source Energy 40 kV 

Current 2 mA 

Source-Detector Distance 60 in 

Magnification 1X 

Exposure time 20 s 

Resolution (m) 50 µm 

Imaging Area (in) 14 × 17 

 Laboratory Setup: 

The DRC has a small X-ray enclosure (vault) for the primary purpose of 2D X-ray imaging. It 

includes a Philips 160-kV X-ray source and the ability to use film, CR, and digital detector arrays. 

The CR imaging plates are placed on a table and the source, suspended from the ceiling by a  

3-axis crane, can be positioned to control the Source to Object Distance. Outside of the enclosure 

are the controls for the source, utilizing a safety interlock system. These controls allow the user to 

set the energy, current, and exposure time for the source. In addition to the vault, the DRC utilizes 

a CRxFlex system to scan and erase the CR imaging plates, storing the images on a computer. The 

phosphorus imaging plates, after exposure to X-rays, will luminesce the images when exposed to 

red light, allowing the 50-µm scanner to create digital versions and “erase” the plates using bright 

white light to be used again. The CR digital images are then reviewed using Rhythm Review. 
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Figure E.81-6. X-ray CR imaging. 

  
a) b) 

Figure E.81-7. Laboratory setup of impact plate standards for CR imaging. 

 Inspection Results 

CR imaging is dependent on the superimposed density of the part being imaged. In the case of the 

impact damage, the damaged portion tends to get indented, slightly compressing the material 

underneath the indent. Therefore, the superimposed density remains approximately the same. This 

makes the detection of impact damage by an operator using 2D radiography such as CR very 

difficult. As seen in Figure E.81-8, the impact damage is not easily visible. Given knowledge of 

the locations, an operator may be able to discern damage but contrast from the damage is not 

enough to be detected in a general case. 
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Figure E.81-8. Flash filtered CR image of 8-ply impact panels. 

E.81.3 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.81-9 shows a simplified block diagram of a 

scanning Pulse-echo inspection 

 

Figure E.81-9. Ultrasonic system components. 
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Figure E.81-10. Specimen baseline inspection orientation. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.81-3. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 501 × 601 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.81-9. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #81 is a 6 by 5-inch, 8-ply flat panel with an 0.34-inch impact. PEUT was performed 

on this specimen in NASA’s immersion tank specified above. 

Figure E.81-11 shows a back side surface amplitude image of the sample in its pre-impacted state. 

No significant internal flaws were noted. The highlighted areas above are high-amplitude 
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reflections from the three spacers used to position the sample above the bottom of the immersion 

tank. 

Figure E.81-12a shows a back side surface amplitude image of the sample in its post-impacted 

state. The impact damage region is identified with measurements. An air buble on the under side 

of the sample in the immersion tank is also noted. Figure E.81-12b is an internal reflection 

amplitude image. The gate region is selected to highlight reflections from the delaminations caused 

by the impact. 

 

Figure E.81-11. 10-MHz baseline image. 
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a) Back side surface amplitude image. 
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b) Internal reflection amplitude image. 

Figure E.81-12. 10-MHz post-impact image.  

E.82 Specimen #82: Boeing Impact QI_45 8ply 3x6 Impact 1 

Structure Material Details Dimensions (inches) Partner Methods 

8 plies IM7/8552 
Single Impact 

Location 

6 × 5 

6 × 3 

Boeing 
E.82.1 XCT 

E.82.2 X-ray CR 

NASA 

E.82.3 PEUT 

E.82.4 SSIR 

E.82.5 XCT 
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E.82.1 Method: X-ray Computed Tomography 

 Partner: Boeing  

 Technique Applicability: ★★☆ 

XCT is able to detect impact damage on some of the panels. 

E.82.2 Method: X-ray Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆☆  

X-ray CR is unable to reliably detect the impact damage. Refer back to Specimen #81. 

E.82.3 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.82-1 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.82-1. Ultrasonic system components. 
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Figure E.82-2. Specimen baseline inspection orientation. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16-bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.82-1. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 601 × 311 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point one mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.82-1. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #82 is a 3 by 6-inch, 8-ply flat panel with a 0.82-inch impact. PEUT was performed on 

this specimen in NASA’s immersion tank specified above. 

Figure E.82-3 shows a back side surface amplitude image of the sample in its pre-impacted state. 

No significant internal flaws were noted. The highlighted areas above are high-amplitude 
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reflections from the three spacers used to position the sample above the bottom of the immersion 

tank. 

 

Figure E.82-3. 10-MHz baseline image. 

Figure E.82-4a shows a back side surface amplitude image of the sample in its post-impacted state. 

The impact damage region is identified with measurements. Figure E.82-4b is an internal reflection 

amplitude image. The gate region is selected to highlight reflections from the delaminations caused 

by the impact. 
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a) Back side surface amplitude image. 

 
b) Internal reflection amplitude image. 

Figure E.82-4. 10-MHz post-impact image. 

E.82.4 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:   

XCT is capable of imaging and quantifying the damage due to low-impact energy in this specimen. 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 
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microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. The system is supplied as a complete, large-dimension radiation enclosure, with X-ray 

source, specimen manipulator, and an amorphous silica detector as shown in Figure E.82-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer 16-bit 

amorphous silicon digital detector with a 2000 × 2000-pixel array. 

 

Figure E.82-5. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.82-6. Slices normal to the X, Y, and Z-directions are shown in Figure E.82-6a, b, and c, 

respectively. 
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a) b) c) 

Figure E.82-6. Slice direction nomenclature. 

 

Figure E.82-7. Impact specimen test stand setup. 
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 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity 5 axis fully programmable manipulator.  

 Detector: Perkin Elmer XRD 1621 – 2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10-inch × 10-inch – full volume 200 µm spatial resolution 

 Settings 

Table E.82-2. Data collection settings. 

Source Energy 160 kV 

Current 37 µA 

Magnification 5.0 X 

Filter 0.125 Sn 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 51 K 

# Averages 8 

Resolution (µm) 40.04 µm 

Array Dimensions (pixels) Set 1: 1999 × 362 × 1998 

Set 2: 1998 × 686 × 1997 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 

be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained. 

 Data and Results 

Specimen #82, is a 3 by 6-inch 8-ply flat panel with a Barely Visible Impact Damage (BVID) 

impact. XCT was performed on this specimen in NASA LaRC’s CT system with the settings 

defined in Table E-82.2. 

The damage caused by the impact is clearly seen from all viewing directions as shown in Figure 

E.82-8. There is no surface indication of an impact. Damage extends approximately halfway 

through the thickness of the specimen.  
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Figure E.82-8. CT slice normal to the thickness direction show delaminations and matrix cracking 

(left). CT slice normal to the front surface shows delaminations between plies (right). 

E.83 Specimen #83: Boeing Impact QI_45 8ply 3x6 Impact 2 

Structure Material Details Dimensions (inches) Partner Methods 

8 plies IM7/8552 
Single Impact 

Location 

6 × 5 

6 × 3 

Boeing 
E.81.1 XCT 

E.81.2 X-ray CR 

NASA 
E.81.3 PEUT 

E.81.4 XCT 

E.83.1 Method: X-ray Computed Tomography (XCT) 

 Partner: Boeing  

 Technique Applicability: ☆  

XCT is able to detect impact damage on some of the panels. Refer to Specimen #81. 

E.83.2 Method: X-ray Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆☆  

X-ray CR is able to detect impact damage on some of the panels. Refer to Specimen #81. 

E.83.3 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 
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 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.83-1 shows a simplified block diagram of a 

scanning Pulse-echo inspection 

 

Figure E.83-1. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.83-1. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 601 × 311 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.83-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 
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of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 

Figure E.83-2. Specimen baseline inspection orientation. 

 Inspection Results 

Specimen #83 is a 3 by 6-inch, 8-ply flat panel with a 0.37-inch impact. PEUT was performed on 

this specimen in NASA’s immersion tank specified above. 

Figure E.83-3 shows a back side surface amplitude image of the sample in its pre-impacted state. 

No significant internal flaws were noted. The highlighted areas above are high-amplitude 

reflections from the three spacers used to position the sample above the bottom of the immersion 

tank. 

 

Figure E.83-3. 10-MHz baseline image. 

Figure E.83-4a shows a back side surface amplitude image of the sample in its post-impacted state. 

The impact damage region is identified with measurements. Figure E.83-4b is an internal reflection 

amplitude image. The gate region is selected to highlight reflections from the delaminations caused 

by the impact. The large dark indication top-middle of both images is from a large air bubble on 

top of the sample overlooked during inspection. 
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a) Back side surface amplitude image.  

 
b) Internal reflection amplitude image. 

Figure E.83-4. 10-MHz post-impact image. 

E.83.4 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:   

XCT is capable of imaging and quantifying the damage due to low-impact energy in this specimen. 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 
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microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. The system is supplied as a complete, large-dimension radiation enclosure, with X-ray 

source, specimen manipulator, and an amorphous silica detector as shown in Figure E.83-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer 16-bit 

amorphous silicon digital detector with a 2000 × 2000-pixel array. 

 

Figure E.83-5. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.83-6. Slices normal to the X, Y, and Z-directions are shown in Figure E.83-6a, b, and c, 

respectively. 
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a) b) c) 

Figure E.83-6. Slice direction nomenclature. 

 

Figure E.83-7. Impact specimen test stand setup. 
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 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity 5 axis fully programmable manipulator.  

 Detector: Perkin Elmer XRD 1621  2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10-inch × 10-inch – full volume 200 µm spatial resolution 

 Settings 

Table E-83-2. Data collection settings. 

Source Energy 160 kV 

Current 37 µA 

Magnification 5.0 X 

Filter 0.125 Sn 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 54.7 K 

# Averages 8 

Resolution (µm) 40.04 µm 

Array Dimensions (pixels) Set 1: 1999 × 362 × 1998 

Set 2: 1998 × 686 × 1997 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 

be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained. 

 Data and Results 

Specimen #83, is a 3 by 6-inch 8-ply flat panel with a BVID impact. XCT was performed on this 

specimen in NASA LaRC’s CT system with the settings defined in Table E-83.2.  

The damage caused by the impact can be clearly seen from all viewing directions as shown in 

Figure E.83-8. There is no surface indication of an impact. Damage extends approximately one-

third of the way through the thickness of the specimen. Very minimal damage from the impact 

exists. 
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Figure E.83-8. CT slice normal to the thickness direction shows 1 delamination approximately 30% 

through the thickness from the impact surface (left). CT slice normal to the front surface shows small 

delaminations between plies (right). 

E.84 Specimen #84 – QI_45 8ply Impact 1  Not Tested 
Structure Material Details Dimensions (inches) Partner Methods 

Laminate IM7/8552  Flat panel – spare – no impact 11 × 11 × 8 ply Not Tested 

E.85 Specimen #85: Boeing Impact QI_45 8ply 22x22 Impact 1 

Structure Material Details Dimensions (inches) Partner Methods 

8 ply  

(45/90/-45/0)s  
IM7/8552 

4 impact-

damaged 

points 

N/A Boeing 

E.85.1 XCT 

E.85.2 X-ray CR 

E.85.3 Shearography 

E.85.4 Backscatter 
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a) b) 

Figure E.85-1. Photographs of impact panel reference standards 8-ply (a) and 16-ply (b). 

E.85.1 Method: X-ray Computed Tomography (XCT) 

 Partner: Boeing  

 Technique Applicability:   

XCT is capable of identifying the impact damage. 

 Equipment List and Specifications:  

 YXLON Modular CT System 

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity 7-axis granite based manipulator 

 XRD 1621 Detector- 2048 × 2048 pixels with 200-µm pitch, 400 × 400-mm active area 

 126-µm spatial resolution for half volume scan 

 Volume Graphics 3.0 visualizing software 

 Reconstruction Computer 

 Settings  

Table E.85-1. Data collection settings. 

Source Energy 140 kV 

Current 0.3 mA 

Magnification 1.48 X 

Filter Copper 

# Rotational angles 1800 

Exposure time / frame 1000 ms 

Spatial Resolution 0.0053” 

Array Dimensions (pixels) 2048 × 2048 

 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System. This system has the capability to utilize various 

X-ray sources for varying applications, including a 450-kV source, a microfocus source, and a 

nanofocus source. The microfocus source used has a variable focal spot size of less than 4 µm and 

is suitable for magnifications up to 10X, with the nanofocus ranging up to 187X. The detector has 
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3 DOFs, allowing the effective detector area to be increased through combined scans. The 

manipulator controls the position of the detector, object, and source. It has 7 DOFs including a 

rotating stage to rotate the object during the scan. The entire system includes the source, detector, 

manipulator, control and reconstruction computers, and user control station. The computers and 

control station are outside of the radiation enclosure (vault) and utilize a safety interlock system to 

operate. Cameras are located in the vault to allow the operator to monitor the part from outside the 

enclosure. 

 

Figure E.85-2. XCT system components. 



139 

 
a) b) c) 

Figure E.85-3. Slice direction nomenclature. 

The panels were individually placed in a clamp of the rotating stage of the CT system (Figure 

E.85-4). Plastic markers, which show up in 3D reconstruction, were placed to show the area of 

interest at the center of the panel. The position of the specimen, source, and detector are controlled 

to produce geometric magnification of the image and increase the spatial resolution. The image 

data are gathered as X-rays penetrate the part and expose the detector for a set amount of time. For 

each scan, these image data are collected at 1800 different angles throughout a 360° rotation. This 

high projection count helps to compensate for the few non-optimal angles in which the X-rays had 

to penetrate the full chord length of the panel. These images are then reconstructed to create the 

3D volume dataset. This dataset is viewed and analyzed in Volume Graphics, a volume rendering 

software, to identify the relevant components. 
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Figure E.85-4. Microfocus XCT setup for impact panel standard. 

 Inspection Results 

While the CT reconstructed data set includes the ability to view the part in 3D and 3-orthogonal 

slice views, for the flat panel only the slice view oriented with the laminate is particularly helpful 

for viewing (Figures E.85-5 and E.85-6). The brightness and contrast settings are also adjusted to 

make defects clear, but retain the visible noise at a reasonable level. As shown in the figures of the 

slices near the surface, one can identify the slight indent of the impact damage in two locations 

and three locations for the 8- and 16-ply panels, respectively. These are seen as small, dark circular 

areas meant to be located in four corner locations. 

  
a) b) 

Figure E.85-5. Slice view of impact standards showing top surface indent on 8-ply (a) and 16-ply (b). 

Moving the slice view deeper into the panel, nearing the back surface, indications of higher density 

appear at the damage locations as whiter marks. These are seen at 4 and 3 locations for the 8 and 

16-ply panels, respectively. This indicates that the impact damage created a small area in the panel 

with an increased density from compression. For both the indent and compression, the damage 

appears more intense on the 16-ply than the 8-ply panel, noted by the higher contrast of the damage 

to the surrounding panel. This may be due to the thinner panel’s ability to flex and disperse the 

energy of the impact more than the thicker panel. 



141 

  
a) b) 

Figure E.85-6. Slice view of impact standards showing bottom surface compression damage on 8-ply 

(a) and 16-ply (b). 

E.85.2 Method: X-ray Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆☆  

X-ray CR is unable to reliably detect the impact damage. 

 Equipment List and Specifications:  

 Philips 160 kV X-Ray source, 0.4-mm focal spot size 

 IPS Phosphorus Imaging Plate 

 GE CRxFlex Scanner, 50-µm resolution 

 GE Rhythm Review 5.0 visualizing software 

 Settings 

Table E.85-2. Imaging and exposure parameters. 

 Laboratory Setup 

The DRC has a small X-ray enclosure (vault) for the primary purpose of 2D X-ray imaging. It 

includes a Philips 160-kV X-ray source and the ability to use film, CR, and digital detector arrays. 

The CR imaging plates are placed on a table and the source, suspended from the ceiling by a  

3-axis crane, can be positioned to control the Source to Object Distance. Outside of the enclosure 

are the controls for the source, utilizing a safety interlock system. These controls allow the user to 

Source Energy 40, 20 kV (8-ply, 16-ply) 

Current 4, 6.65 mA (8-ply, 16-ply) 

Source-Detector Distance 60 in 

Magnification 1X 

Exposure time 15, 60 s 

Resolution (µm) 50 µm 

Imaging Area (in) 14 × 17 
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set the energy, current, and exposure time for the source. In addition to the vault, the DRC utilizes 

a CRxFlex system to scan and erase the CR imaging plates, storing the images on a computer. The 

phosphorus imaging plates, after exposure to X-rays, will luminesce the images when exposed to 

red light, allowing the 50-µm scanner to create digital versions and “erase” the plates using bright 

white light to be used again. The CR digital images are then reviewed using Rhythm Review. 

 

Figure E.85-7. X-ray CR imaging. 

The standards have a marked area containing the damage which was placed directly on the plastic 

cassette containing the imaging plate with the X-ray source directly overhead (Figure E.85-8). The 

source was located 60 inches from the specimen and imaging plate to reduce geometric distortion. 

Plastic markers were used to show the area boundaries and label the images, showing up in the 

results as brighter white. Because of the difference in laminate thicknesses between the standards, 

two separate source energies, currents, and exposure times were used. 

  
a) b) 

Figure E.85-8. Laboratory setup of impact plate standards for CR imaging. 

 Inspection Results 

CR imaging is dependent on the superimposed density of the part being imaged. In the case of the 

impact damage, the damaged portion tends to get indented, slightly compressing the material 

underneath the indent. Thus, the superimposed density remains approximately the same. This 



143 

makes the detection of impact damage by an operator using 2D radiography such as CR very 

difficult. As seen in Figure E.85-9, the impact damage is not easily visible. The damage is located 

within the bounds of the plastic markers in a 4-corner pattern. Given knowledge of the locations, 

an operator may be able to discern damage but contrast from the damage is not enough to reliably 

be detected. 

  
a) b) 

Figure E.85-9. Flash filtered CR images of 8-ply (a) and 16-ply (b) impact panels. 

E.85.3 Method: Electronics Shearography with Vacuum Excitation  

 Partner: Boeing  

 Technique Applicability: ☆☆  

Shearography could not see any of the impact damage in the standards.  

 Equipment List and Specifications:  

 Model LT5200 by Laser Technology Inc. 

 Settings 

Table E.85-3. Inspection time and vacuum. 

Vacuum  Up to 100 inches of water  

Inspection Time 10 sec  

Frame Rate 30 frames/sec  

Surface  Glossy and Brown  

 Laboratory Setup 

A shearography nondestructive inspection system with vacuum excitation was used in order to 

detect subsurface impact damage defects. Shearography is a laser interferometry technique that 

measures out of plane displacement see Figure E.85-10. Shearography inspection is a noncontact, 

full-field, single-sided, and real-time inspection technique. By using vacuum excitation above the 

part’s surface, any air entrapped beneath the surface will expand and cause surface deformation, 

as shown in Figures E.85-11a and E.85-11b. The resulting deformation can be depicted as a series 

of optical fringe patterns.  
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Figure E.85-12 shows a shearography detection setup. In electronics shearography, the shearing 

images are generated by subtracting the initial image (Pre Vacuum Excitation) from consecutive 

post excitation images where the fringe density is proportional to the surface displacement. 

 

Figure E.85-10. Shearography camera and speckle laser patterns. 

 

Air entrapped to form Disbond 

a) b) 

Figure E.85-11. a) shearography image of subsurface disbonds and b) surface deformation caused 

from vacuum excitation. 
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Figure E.85-12. Shearography inspection system with vacuum excitation.  

 Inspection Results 

The Standards were carbon fiber composite panels with four defined impact damage areas. The 

Impact damaged areas were verified using 10 MHz ultrasonic inspection. The impact-damaged 

areas were created by dropping a steel ball from a fixed height on the four corners of the panel. 

The standards were made of 8- and 16-ply unidirectional carbon fiber epoxy. 

Shearography inspection was not able to detect any of the subsurface impact damage due to 

excessive flexing of the panels from the vacuum excitation. Surface flexing can cause de-

correlation noise across the part and therefore it became extremely difficult to isolate the defects. 

In such cases, other excitation techniques for shearography inspection may be necessary.  

E.85.4 Method: X-Ray Backscatter 

 Partner: Boeing  

 Technique Applicability: ☆☆☆  

X-ray Backscatter is not capable of detecting impact damage. 

 Equipment List and Specifications:  

 Nucsafe Portable X-ray Backscatter imaging system 

 Settings 

Table E.85-4. Imaging and exposure parameters. 

Source Energy 60 kV 

Current 28.5 mA 

Scan Velocity 36 mm/min 

Collimator Speed 4.5 RPM 

Exposure per pixel 7.407 ms 

Image width and height 305 × 200 pixels 

Pixel Size 1 mm × 0.2° 

Imaging Sweep Area 40° 
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 Laboratory Setup 

The DRC has a large X-ray enclosure (vault) which is utilized for high-energy CT scanning, large 

2D X-ray imaging, and X-ray backscatter scanning. A custom Nucsafe portable backscatter system 

is set up in this enclosure. Because of the relatively low radiation output, it can be safely operated 

with the operator in the vault, outside of a boundary established by the controlling Radiation Health 

and Safety organization. Figure E.85-13 shows the backscatter unit facing the impact panel (left), 

while the high voltage, generator, cooling system, and control computer are housed in a portable 

cart (right), which can also hold the unit for transportation.  

  
Figure E.85-13. Nucsafe portable X-ray Backscatter system. 

Unlike most other X-ray methods, which are TT, Backscatter X-ray is a method of 2D imaging 

that only requires one-sided access. When X-rays interact with a material, most pass through with 

some attenuation; however, a small fraction scatters back and can be detected (Compton 

Scattering). Backscatter uses this by exposing a small area of a specimen to a rotating collimated 

X-ray beam (Figure E.85-14). The scattered X-rays are collected with detectors and used along 

with the swept area of the beam to construct a column of an image. By translating the whole source, 

another column is made and sequentially a full 2D image is created as seen from the source side. 

In this test, the part was simply placed a short distance from the unit with the X-rays initially 

aligned to one side. During scanning the unit then translated across the part to build the image.  
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Figure E.85-14. X-ray Backscatter imaging. 

 Inspection Results 

Backscatter X-ray is particularly sensitive to material differences that cause large variations in 

scatter. Metallic foreign material or water in honeycomb panels are examples of detectable 

phenomena. Changes in surface orientation such as the indents from impact damage are 

theoretically detectable, if they cause a large enough change in scatter. Figure E.85-15 shows no 

indent indications however. The lack of detectability in this case may be caused by the limited 

resolution of this imagining method or an insufficient difference in X-ray scatter that cannot be 

effectively detected. In this case, X-ray backscatter imagining is not able to detect the small impact 

damage that is present in this panel. 

The faint horizontal lines in this image are the metal pipes along the wall that was behind the panel 

(about +10 ft.). This showcases backscatter X-ray’s ability to detect concealed foreign material, 

which is applied in law enforcement due to backscatter’s relatively low radiation exposure. The 

black rectangle at the bottom of the image is the clamp holding the panel in place. 

 

Figure E.85-15. X-ray Backscatter image of 8-ply impact damage panel. 
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E.86 Specimen #86: Boeing Impact QI_45 16ply 6x6 Impact 1 

Structure Material Details Dimensions (inches) Partner Methods 

16 plies IM7/8552 Single Impact Location 6 × 6 
Boeing 

E.86.1 X-ray CR 

E.86.2 XCT 

NASA E.86.3 PEUT  

 

Figure E-86.1. Photographs of radii delamination standard. 

E.86.1 Method: X-ray Computed Tomography (XCT) 

 Partner: Boeing  

 Technique Applicability: ☆  

XCT is able to detect impact damage on some of the panels. 

 Equipment List and Specifications:  

 YXLON Modular CT System 

 225 kV microfocus X-ray source with variable focal spot size 

 100kg capacity 7-axis granite based manipulator 

 XRD 1621 Detector- 2048 × 2048 pixels with 200-m pitch, 400 × 400-mm active area 

 111-m spatial resolution for impact panel scan 

 Volume Graphics 3.0 visualizing software 

 Reconstruction Computer 

 Settings 

Table E.86-1. Data collection settings. 

Source Energy 120 kV 

Current 0.60 mA 

Magnification 1.80 X 

Filter Copper 

# Rotational angles 1410 

Exposure time / frame 500 ms 

Frame Binning 2 

Spatial Resolution (m) 111 µm 

Array Dimensions (pixels) 2048 × 2048 
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 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System. This system has the capability to utilize various 

X-ray sources for varying applications, including a 450-kV source, a microfocus source, and a 

nanofocus source. The microfocus source used has a variable focal spot size of less than 4 µm and 

is suitable for magnifications up to 10X, with the nanofocus ranging up to 187X. The detector has 

3 DOFs, allowing the effective detector area to be increased through combined scans. The 

manipulator controls the position of the detector, object, and source. It has 7 DOFs including a 

rotating stage to rotate the object during the scan. The entire system includes the source, detector, 

manipulator, control and reconstruction computers, and user control station. The computers and 

control station are outside of the radiation enclosure (vault) and utilize a safety interlock system to 

operate. Cameras are located in the vault to allow the operator to monitor the part from outside the 

enclosure. 

 

Figure E.86-2. XCT system components. 
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a) b) c) 

Figure E.86-3. Slice direction nomenclature. 

To reduce overall scan time, the standard panels of the same thickness were stacked together, 

separated by light foam sheets and held together with tape. This allowed three parts to be scanned 

at once and analyzed separately in post-processing. The panel bundle was then secured in a foam 

fixture. The position of the specimen, source, and detector are controlled to produce geometric 

magnification of the image and increase the spatial resolution. The image data are gathered as  

X-rays penetrate the part and expose the detector for a set amount of time. For each scan, these 

image data are collected at 1410 different angles throughout a 360° rotation. These images are then 

reconstructed to create the 3D volume dataset. This dataset is viewed and analyzed in Volume 

Graphics, a volume rendering software, to identify the relevant components. 
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Figure E.86-4. Microfocus XCT setup for impact damage standards. 

 Inspection Results 

Unlike 2D X-ray imaging, CT shows slice views of the object that are not superimposed. This 

allows for improved detection of flaws. In the case of the impact panels, the damage would show 

as a slightly dented region at the near surface. Figure E.86-5 shows a slice view at the near surface 

of each panel. The dark spot in the center of Figure E.86-5b and c indicates less dense or lack of 

material, caused by the indentation of the impact on Panels 87 and 88. Figure E.86-5a shows no 

detectable evidence of impact damage on Panel 86. 

 

  

a) b) c) 

Figure E-86.5. CT slice view of 16-ply impact damage panels 86 (a), 87 (b), and 88 (c). 

E.86.2 Method: X-ray Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆☆  

X-ray CR is unable to reliably detect the impact damage. 



152 

 Equipment List and Specifications:  

 Philips 160 kV X-Ray source, 0.4-mm focal spot size 

 IPS Phosphorus Imaging Plate 

 GE CRxFlex Scanner, 50-µm resolution 

 GE Rhythm Review 5.0 visualizing software 

 Settings 

Table E.86-2. Imaging and exposure parameters. 

Source Energy 40 kV 

Current 2 mA 

Source-Detector Distance 60 in 

Magnification 1X 

Exposure time 30 s 

Resolution (m) 50 µm 

Imaging Area (in) 14 × 17 

 Laboratory Setup 

The Digital Radiography Center (DRC) has a small X-ray enclosure (vault) for the primary 

purpose of 2D X-ray imaging. It includes a Philips 160-kV X-ray source and the ability to use film, 

CR, and digital detector arrays. The CR imaging plates are placed on a table and the source, 

suspended from the ceiling by a 3-axis crane, can be positioned to control the Source to Object 

Distance. Outside of the enclosure are the controls for the source, utilizing a safety interlock 

system. These controls allow the user to set the energy, current, and exposure time for the source. 

In addition to the vault, the DRC utilizes a CRxFlex system to scan and erase the CR imaging 

plates, storing the images on a computer. The phosphorus imaging plates, after exposure to X-rays, 

will luminesce the images when exposed to red light, allowing the 50-µm scanner to create digital 

versions and “erase” the plates using bright white light to be used again. The CR digital images 

are then reviewed using Rhythm Review. 

The three panels of the same thickness, each containing an impact damaged point, were placed 

directly on the plastic cassette containing the imaging plate with the X-ray source directly overhead 

(Figure E.86-6). The source was located 60-inches from the specimen and imaging plate to reduce 

geometric distortion. Lead markers were used to label the image, showing up in the results as 

bright white.  
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Figure E.86-6. X-ray CR imaging. 

 

 
a) b) 

Figure E.86-7. Laboratory setup of impact plate standards for CR imaging. 

 Inspection Results 

CR imaging is dependent on the superimposed density of the part being imaged. In the case of the 

impact damage, the damaged portion tends to get indented, slightly compressing the material 

underneath the indent. Therefore, the superimposed density remains approximately the same. This 

makes the detection of impact damage by an operator using 2D radiography such as CR very 

difficult. As seen in Figure E.86-8, the impact damage is not easily visible. Given knowledge of 

the locations, an operator may be able to discern damage but contrast from the damage is not 

enough for detection in a general case. 
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Figure E.86-8. Flash filtered CR image of 16-ply impact panels. 

E.86.3 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.86-9 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.86-9. Ultrasonic system components. 
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Figure E.86-10. Specimen baseline inspection orientation. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.86-3. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 601 × 601 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.86-9. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #86 is a 6 by 6-inch, 16-ply flat panel with a 2.0-inch impact. PEUT was performed on 

this specimen in NASA’s immersion tank specified above. 

Figure E.86-11 shows a back side surface amplitude image of the sample in its pre-impacted state. 

No significant internal flaws were noted. The highlighted areas above are high-amplitude 
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reflections from the four spacers used to position the sample above the bottom of the immersion 

tank. 

 

Figure E.86-11. 10-MHz baseline image. 

Figure E.86-12a shows a back side surface amplitude image of the sample in its post-impacted 

state. The impact damage region is identified with measurements. Air bubles and a spacer under 

the sample are also noted. Figure E.86-12b is an internal reflection amplitude image. The gate 

region is selected to highlight reflections from the delaminations caused by the impact. 
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a) Back side surface amplitude image. 
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b) Internal reflection amplitude image. 

Figure E.86-12. 10-MHz post-impact image. 

E.87 Specimen #87: Boeing Impact QI_45 16ply 3x5 Impact 1 

Structure Material Details Dimensions (inches) Partner Methods 

16 plies IM7/8552 Single Impact Location 
6 × 5 

5 × 3 
NASA 

E.87.1 SSIR 

E.87.2 X- Ray CT 

E.87.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 



159 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.87-1 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.87-1. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.87-1. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 501 × 299 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.87-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 
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Figure E.87-2. Specimen baseline inspection orientation. 

 Inspection Results 

Specimen #87 is a 3 by 5-inch, 16-ply flat panel with a 1.28-inch impact. PEUT was performed 

on this specimen in NASA’s immersion tank specified above. 

Figure E.87-3 shows a back side surface amplitude image of the sample in its pre-impacted state. 

No significant internal flaws were noted. The highlighted areas above are high-amplitude 

reflections from the three spacers used to position the sample above the bottom of the immersion 

tank. A small internal flaw can be seen on the left side of the sample. The small indication is also 

visible in the post-impact image below. 

 

Figure E.87-3. 10-MHz baseline image. 

Figure E.87-4 shows an internal reflection amplitude image of the sample in its post-impacted 

state. The gate region is selected to highlight reflections from the delaminations caused by the 

impact. The impact damage region is identified with measurements.  
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Figure E.87-4. 10-MHz post-impact image. 

 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:   

XCT is capable of imaging and quantifying the damage due to low-impact energy in this specimen. 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. The system is supplied as a complete, large-dimension radiation enclosure, with X-ray 

source, specimen manipulator, and an amorphous silica detector as shown in Figure E.87-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer 16-bit 

amorphous silicon digital detector with a 2000 × 2000-pixel array. 
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Figure E.87-5. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.87-6. Slices normal to the X, Y, and Z-directions are shown in Figure E.87-6a, b, and c, 

respectively. 

 
a) b) c) 

Figure E.82-6. Slice direction nomenclature. 
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Figure E.87-7. Impact specimen test stand setup. 

 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity 5 axis fully programmable manipulator.  

 Detector: Perkin Elmer XRD 1621  2000 × 2000 pixels with 200 m pitch 

 10 m spatial resolution for specimens 1.5 cm wide 

 Thin panels 10-inch × 10-inch – full volume 200 m spatial resolution 

 Settings 

Table E.87-2. Data collection settings. 

Source Energy 160 kV 

Current 37 µA 

Magnification 5.0 X 

Filter 0.125 Sn 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 53 K 

# Averages 8 

Resolution (m) 40.04 µm 

Array Dimensions (pixels) 1999 × 207 × 1998 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 
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be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained. 

 Data and Results 

Specimen #87, is a 3 by 5-inch 16-ply flat panel with a BVID impact. XCT was performed on this 

specimen in NASA LaRC’s CT system with the settings defined in Table E-87.2. 

The damage caused by the impact can be clearly seen from all viewing directions as shown in 

Figure E.87-8. There is a very small surface indication of an impact. Damage extends almost 

completely through the thickness of the specimen.  

 

Figure E.87-8. CT slice normal to the thickness direction show delaminations and matrix cracking 

(left). CT slice normal to the front surface shows delaminations between plies (right). 

E.88 Specimen #88: Boeing Impact QI_45 16ply 3x5 Impact 2 

Structure Material Details Dimensions (inches) Partner Methods 

16 plies IM7/8552 
Single Impact 

Location 

6 × 6 

5 × 3 
NASA 

E.88.1 PEUT 

E.88.2 XCT 

E.88.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 
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 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.88-1 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.88-1. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.88-1. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 498 × 298 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point one mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.88-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 
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Figure E.88-2. Specimen baseline inspection orientation. 

 Inspection Results 

Specimen #88 is a 3 by 5-inch, 16-ply flat panel with a 0.88-inch impact. PEUT was performed 

on this specimen in NASA’s immersion tank specified above. 

Figure E.81-3 shows a back side surface amplitude image of the sample in its pre-impacted state. 

No significant internal flaws were noted. The highlighted areas above are high-amplitude 

reflections from the three spacers used to position the sample above the bottom of the immersion 

tank. 

 

Figure E.88-3. 10-MHz baseline image. 

Figure E.88-4 shows an internal reflection amplitude image of the sample in its post-impacted 

state. The gate region is selected to highlight reflections from the delaminations caused by the 

impact.The impact damage region is identified with measurements.  
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Figure E.88-4. 10-MHz post-impact image. 

E.88.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:   

XCT is capable of imaging and quantifying the damage due to low-impact energy in this specimen 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. The system is supplied as a complete, large-dimension radiation enclosure, with X-ray 

source, specimen manipulator, and an amorphous silica detector as shown in Figure E.88-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer 16 bit 

amorphous silicon digital detector with a 2000 × 2000-pixel array. 
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Figure E.88-5. XCT system components 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.88-6. Slices normal to the X, Y, and Z-directions are shown in Figure E.88-6a, b, and c, 

respectively. 

 
a) b) c) 

Figure E.88-6. Slice direction nomenclature. 
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Figure E.88-7. Impact specimen test stand setup. 

 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity 5 axis fully programmable manipulator.  

 Detector: Perkin Elmer XRD 1621  2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10-inch × 10-inch – full volume 200 µm spatial resolution 

 Settings 

Table E.88-2. Data collection settings. 

Source Energy 160 kV 

Current 37 µA 

Magnification 5.0 X 

Filter 0.125 Sn 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 55 K 

# Averages 8 

Resolution (µm) 40.04 µm 

Array Dimensions (pixels) 1999 × 204 × 1998 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 
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be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained. 

 Data and Results 

Specimen #88, is a 3 by 5-inch 16-ply flat panel with a BVID impact. XCT was performed on this 

specimen in NASA LaRC’s CT system with the settings defined in Table E-88.2.  

The damage caused by the impact can be clearly seen from all viewing directions as shown in 

Figure E.88-8. There is a small surface indication of an impact. Damage extends approximately 

three-fourths of the way through the thickness of the specimen. Delaminations and matrix cracking 

are detectable. 

 

Figure E.88-8. CT slice normal to the thickness direction show delaminations and matrix cracking 

(left). CT slice normal to the front surface shows delaminations between plies (right). 

E.89 Specimen #89: Boeing Impact QI_45 16ply 22x22 Impact 1 

Structure Material Details Dimensions (inches) Partner Methods 

16 plies IM7/8552 
Single Impact 

Location 
22 × 22 

Boeing 

E.89.1 X-ray CR 

E.89.2 XCT 

E.89.3 Shearography 

NASA E.89.4 SSIR 

E.90 Specimen #90: Boeing Impact QI_45 24ply 6x6 Impact 1 
Structure Material Details Dimensions (inches) Partner Methods 

24 plies IM7/8552 Single Impact Location 
6 × 6 

5 × 3 

Boeing 
E.90.1 XCT 

E.90.1 X-ray CR 

NASA E.90.3 PEUT  
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Figure E.90-1. Photographs of radii delamination standard. 

E.90.1 Method: X-ray Computed Tomography (XCT) 

 Partner: Boeing  

 Technique Applicability:   

XCT is able to detect impact damage on some of the panels. 

 Equipment List and Specifications:  

 YXLON Modular CT System 

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity 7-axis granite based manipulator 

 XRD 1621 Detector- 2048 × 2048 pixels with 200-m pitch, 400 × 400-mm active area 

 111-m spatial resolution for impact panel scan 

 Volume Graphics 3.0 visualizing software 

 Reconstruction Computer 

 Settings  

Table E.90-1. Data collection settings. 

Source Energy 120 kV 

Current 0.60 mA 

Magnification 1.80 X 

Filter Copper 

# Rotational angles 1410 

Exposure time / frame 500 ms 

Frame Binning 2 

Spatial Resolution (m) 111 µm 

Array Dimensions (pixels) 2048 × 2048 

 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System. This system has the capability to utilize various 

X-ray sources for varying applications, including a 450-kV source, a microfocus source, and a 

nanofocus source. The microfocus source used has a variable focal spot size of less than 4 µm and 

is suitable for magnifications up to 10X, with the nanofocus ranging up to 187X. The detector has 

3 DOFs, allowing the effective detector area to be increased through combined scans. The 
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manipulator controls the position of the detector, object, and source. It has 7 DOFs including a 

rotating stage to rotate the object during the scan. The entire system includes the source, detector, 

manipulator, control and reconstruction computers, and user control station. The computers and 

control station are outside of the radiation enclosure (vault) and utilize a safety interlock system to 

operate. Cameras are located in the vault to allow the operator to monitor the part from outside the 

enclosure. 

 

Figure E.90-2. XCT system components. 



173 

 
a) b) c) 

Figure E.90-3. Slice direction nomenclature. 

To reduce overall scan time, the standard panels of the same thickness were stacked together, 

separated by light foam sheets and held together with tape. This allowed three parts to be scanned 

at once and analyzed separately in post-processing. The panel bundle was then secured in a foam 

fixture. The position of the specimen, source, and detector are controlled to produce geometric 

magnification of the image and increase the spatial resolution. The image data are gathered as  

X-rays penetrate the part and expose the detector for a set amount of time. For each scan, these 

image data are collected at 1410 different angles throughout a 360° rotation. These images are then 

reconstructed to create the 3D volume dataset. This dataset is viewed and analyzed in Volume 

Graphics, a volume rendering software, to identify the relevant components. 



174 

 

Figure E.90-4. Microfocus XCT setup for impact damage standards. 

 Inspection Results 

Unlike 2D X-ray imaging, CT shows slice views of the object that are not superimposed. This 

allows for improved detection of flaws. In the case of the impact panels, the damage would show 

as a slightly dented region at the near surface. Figure E.90-5 shows a slice view at the near surface 

of each panel. The dark spot in the center of Figure E.90-5b and c indicates less dense or lack of 

material, caused by the indentation of the impact on Panels 91 and 92. The tape used to hold the 

panels together for the scan is visible in Figure E.90-5a, with similar impact damage visible in the 

center for Panel 90. 

 

  

a) b) c) 

Figure E.90-5. CT slice view of 24-ply impact damage panels 90 (a), 91 (b), and 92 (c). 

E.90.2 Method: X-ray Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆☆  

X-ray CR is unable to reliably detect the impact damage. 
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 Equipment List and Specifications:  

 Philips 160 kV X-Ray source, 0.4-mm focal spot size 

 IPS Phosphorus Imaging Plate 

 GE CRxFlex Scanner, 50-µm resolution 

 GE Rhythm Review 5.0 visualizing software 

 Settings 

Table E.90-2. Imaging and exposure parameters. 

Source Energy 40 kV 

Current 2 mA 

Source-Detector Distance 60 in 

Magnification 1X 

Exposure time 35 s 

Resolution (m) 50 µm 

Imaging Area (in) 14 × 17 

 Laboratory Setup 

The DRC has a small X-ray enclosure (vault) for the primary purpose of 2D X-ray imaging. It 

includes a Philips 160-kV X-ray source and the ability to use film, CR, and digital detector arrays. 

The CR imaging plates are placed on a table and the source, suspended from the ceiling by a  

3-axis crane, can be positioned to control the Source to Object Distance. Outside of the enclosure 

are the controls for the source, utilizing a safety interlock system. These controls allow the user to 

set the energy, current, and exposure time for the source. In addition to the vault, the DRC utilizes 

a CRxFlex system to scan and erase the CR imaging plates, storing the images on a computer. The 

phosphorus imaging plates, after exposure to X-rays, will luminesce the images when exposed to 

red light, allowing the 50-µm scanner to create digital versions and “erase” the plates using bright 

white light to be used again. The CR digital images are then reviewed using Rhythm Review. 

The three panels of the same thickness, each containing an impact damaged point, were placed 

directly on the plastic cassette containing the imaging plate with the X-ray source directly overhead 

(Figure E.90-6). The source was located 60 inches from the specimen and imaging plate to reduce 

geometric distortion. Lead markers were used to label the image, showing up in the results as 

bright white. 
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Figure E.90-6. X-ray CR imaging. 

 

 
a) b) 

Figure E.90-7. Laboratory setup of impact plate standards for CR imaging. 

 Inspection Results 

CR imaging is dependent on the superimposed density of the part being imaged. In the case of the 

impact damage, the damaged portion tends to get indented, slightly compressing the material 

underneath the indent. Therefore, the superimposed density remains approximately the same. This 

makes the detection of impact damage by an operator using 2D radiography such as CR very 

difficult. As seen in Figure E.90-8, the impact damage is not easily visible. Given knowledge of 

the locations, an operator may be able to discern damage but contrast from the damage is not 

enough to be detected in a general case. 
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Figure E.90-8. Flash filtered CR image of 24-ply impact panels. 

E.90.3 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.90-9 shows a simplified block diagram of a 

scanning Pulse-echo inspection 

 

Figure E.90-9. Ultrasonic system components. 
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 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.90-3. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 601 × 601 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.90-10. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 

Figure E.90-10. Specimen baseline inspection orientation. 
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 Inspection Results 

Specimen #90 is a 6 by 6-inch, 24-ply flat panel with a 1-inch impact. PEUT was performed on 

this specimen in NASA’s immersion tank specified above. 

Figure E.90-11 shows a back side surface amplitude image of the sample in its pre-impacted state. 

Small voids are visible in the upper left and lower right of the sample. There is also an indication 

from visible damage near the lower right corner. 

 

Figure E.90-11. 10-MHz baseline image. 

Figure E.90-12a shows an internal reflection amplitude image of the sample in its post-impacted 

state. The gate region is selected to highlight reflections from the delaminations caused by the 

impact.The impact damage region is identified with measurements. Figure E.90.12b shows the 

same time gated region as above allowing the high-amplitude delamination reflections to saturate 

revealing the internal flaws noted on the pre-impact inspection. 
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a) 
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b) 

Figure E.90-12. 10-MHz post-impact image. 

E.91 Specimen #91: Boeing Impact QI_45 24ply 3x5 Impact 1 

Structure Material Details Dimensions (inches) Partner Methods 

24 plies IM7/8552 Single Impact Location 
6 × 6 

5 × 3 
NASA 

E.91.1 PEUT 

E.91.2 XCT 
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E.91.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.91-1 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.91-1. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.91-1. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 500 × 301 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 
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remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.91-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 

Figure E.91-2. Specimen post-impact inspection orientation. 

 Inspection Results 

Specimen #91 is a 3 by 5-inch, 24-ply flat panel with a 1.11-inch impact. Only post-impacted 

PEUT was performed on this specimen in NASA’s immersion tank specified above.  

Figure E.91-3 shows a photograph of the pre-impacted sample. NASA did not perform baseline 

PEUT on this sample. 

 

Figure E.91-3. Baseline PEUT was not performed on this sample.  

Figure E.91-4a shows an internal reflection amplitude image of the sample in its post-impacted 

state. The gate region is selected to highlight reflections from the delaminations caused by the 

impact.The impact damage region is identified with measurements. Figure E.91.4b shows the same 
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time gated region as above allowing the high-amplitude delamination reflections to saturate 

revealing the internal features. 

 
a) 

 
b)  

Figure E.91-4. 10-MHz post-impact image. 



185 

E.91.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:   

XCT is capable of imaging and quantifying the damage due to low-impact energy in this specimen 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. The system is supplied as a complete, large-dimension radiation enclosure, with X-ray 

source, specimen manipulator, and an amorphous silica detector as shown in Figure E.91-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer 16-bit 

amorphous silicon digital detector with a 2000 × 2000-pixel array. 

 

Figure E.91-5. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.91-6. Slices normal to the X, Y, and Z-directions are shown in Figure E.91-6a, b, and c, 

respectively. 
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a) b) c) 

Figure E.91-6. Slice direction nomenclature. 

 

Figure E.91-7. Impact specimen test stand setup. 
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 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity 5 axis fully programmable manipulator.  

 Detector: Perkin Elmer XRD 1621  2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10-inch × 10-inch – full volume 200 µm spatial resolution 

 Settings 

Table E.91-2. Data collection settings. 

Source Energy 160 kV 

Current 37 µA 

Magnification 5.0 X 

Filter 0.125 Sn 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 54.8 K 

# Averages 8 

Resolution (µm) 40.04 µm 

Array Dimensions (pixels) 1999 × 305 × 1998 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 

be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained. 

 Data and Results 

Specimen #91, is a 3 by 5-inch 24-ply flat panel with a BVID impact. XCT was performed on this 

specimen in NASA LaRC’s CT system with the settings defined in Table E-91.2.  

The damage caused by the impact can be clearly seen from all viewing directions as shown in 

Figure E.91-8. There is a very small surface indication of an impact. Damage extends almost 

completely through the thickness of the specimen.  
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Figure E.91-8. CT slice normal to the thickness direction show delaminations and matrix cracking 

(left). CT slice normal to the front surface shows delaminations between plies (right). 

E.92 Specimen #92: Boeing Impact QI_45 24ply 3x5 Impact 2 

Structure Material Details Dimensions (inches) Partner Methods 

24 plies IM7/8552 Single Impact Location 
6 × 6 

5 × 3 
NASA 

E.92.1 PEUT 

E.92.2 XCT 

E.92.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 
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ultrasonic probe(s) in relation to a part. Figure E.92-1 shows a simplified block diagram of a 

scanning Pulse-echo inspection 

 

Figure E.92-1. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.92-1. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 500 × 301 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.92-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 
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Figure E.92-2. Specimen baseline inspection orientation. 

 Inspection Results 

Specimen #92 is a 3 by 5-inch, 24-ply flat panel with a one inch impact. PEUT was performed on 

this specimen in NASA’s immersion tank specified above. 

Figure E.92-3a shows a back side surface amplitude image of the sample in its pre-impacted state. 

The highlighted areas above are high-amplitude reflections from the three spacers used to position 

the sample above the bottom of the immersion tank. A high-amplitude sub-surface reflection is 

noted in Figure E.92-4b just above and right of center. 
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a) Back side surface amplitude image. 

 
b) High-amplitude sub-surface reflection. 

Figure E.92-3. 10-MHz baseline image. 

Figure E.92-4a shows an internal reflection amplitude image of the sample in its post-impacted 

state. The gate region is selected to highlight reflections from the delaminations caused by the 

impact.The impact damage region is identified with measurements. Figure E.92.4b shows the same 

time gated region as above allowing the high-amplitude delamination reflections to saturate 

revealing the internal flaws noted on the pre-impact inspection. The high-amplitude region above 

and right of center appears unchanged after impact. 
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a) 

 
b) 

Figure E.92-4. 10-MHz post-impact image. 

E.92.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:   

XCT is capable of imaging and quantifying the damage due to low-impact energy in this specimen 



193 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. The system is supplied as a complete, large-dimension radiation enclosure, with X-ray 

source, specimen manipulator, and an amorphous silica detector as shown in Figure E.92-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer 16-bit 

amorphous silicon digital detector with a 2000 × 2000-pixel array. 

 

Figure E.92-5. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.92-6. Slices normal to the X, Y, and Z-directions are shown in Figure E.92-6a, b, and c, 

respectively. 
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a) b) c) 

Figure E.92-6. Slice direction nomenclature. 

 

Figure E.92-7. Impact specimen test stand setup. 
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 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity 5 axis fully programmable manipulator.  

 Detector: Perkin Elmer XRD 1621  2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10-inch × 10-inch – full volume 200 µm spatial resolution 

 Settings 

Table E.92-2. Data collection settings. 

Source Energy 160 kV 

Current 37 µA 

Magnification 5.0 X 

Filter 0.125 Sn 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 55 K 

# Averages 8 

Resolution (µm) 40.04 µm 

Array Dimensions (pixels) 1999 × 259 × 1998 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 

be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained. 

 Data and Results 

Specimen #92, is a 3 by 5-inch 24-ply flat panel with a BVID impact. XCT was performed on this 

specimen in NASA LaRC’s CT system with the settings defined in Table E-92.2.  

The damage caused by the impact can be clearly seen from all viewing directions as shown in 

Figure E.92-8. There is no surface indication of an impact. Damage extends all the way through 

the thickness of the specimen. The impact location is in the lower left portion of the FOV, and the 

impacted side is on the left in left hand image of Figure E.92-8. There is a very small inclusion in 

the image (yellow arrow). 
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Figure E.92-8. CT slice normal to the thickness direction show delaminations and matrix cracking 

(left). CT slice normal to the front surface shows delaminations between plies (right). 

E.93 Specimen #93: Boeing Impact QI_45 32ply 6x6 Impact 1 

Structure Material Details Dimensions (inches) Partner Methods 

32 plies IM7/8552 Single Impact Location 
6 × 6 

5 × 3 

Boeing 
E.93.1 XCT 

E.93.2 X-ray CR 

NASA E.93.3 PEUT 

 

Figure E.93-1. Photographs of radii delamination standard. 
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E.93.1 Method: X-ray Computed Tomography 

 Partner: Boeing  

 Technique Applicability: ☆  

XCT is able to detect impact damage on some of the panels. 

 Equipment List and Specifications:  

 YXLON Modular CT System 

 225 kV Microfocus X-ray source with variable focal spot size 

 100 kg capacity 7-axis granite based manipulator 

 XRD 1621 Detector- 2048 × 2048 pixels with 200-µm pitch, 400 × 400-mm active area 

 111 µm spatial resolution for impact panel scan 

 Volume Graphics 3.0 visualizing software 

 Reconstruction Computer 

 Settings  

Table E.93-1. Data collection settings. 

Source Energy 125 kV 

Current 0.60 mA 

Magnification 1.80 X 

Filter Copper 

# Rotational angles 1410 

Exposure time / frame 500 ms 

Frame Binning 2 

Spatial Resolution (µm) 111 µm 

Array Dimensions (pixels) 2048 × 2048 

 Laboratory Setup 

The DRC utilizes an YXLON Modular CT System. This system has the capability to utilize various 

X-ray sources for varying applications, including a 450-kV source, a microfocus source, and a 

nanofocus source. The microfocus source used has a variable focal spot size of less than 4 µm and 

is suitable for magnifications up to 10X, with the nanofocus ranging up to 187X. The detector has 

3 DOFs, allowing the effective detector area to be increased through combined scans. The 

manipulator controls the position of the detector, object, and source. It has 7 DOFs including a 

rotating stage to rotate the object during the scan. The entire system includes the source, detector, 

manipulator, control and reconstruction computers, and user control station. The computers and 

control station are outside of the radiation enclosure (vault) and utilize a safety interlock system to 

operate. Cameras are located in the vault to allow the operator to monitor the part from outside the 

enclosure. 
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Figure E.93-2. XCT system components. 

 
a) b) c) 

Figure E.93-3. Slice direction nomenclature. 

To reduce overall scan time, the standard panels of the same thickness were stacked together, 

separated by light foam sheets and held together with tape. This allowed three parts to be scanned 

at once and analyzed separately in post-processing. The panel bundle was then secured in a foam 

fixture. The position of the specimen, source, and detector are controlled to produce geometric 

magnification of the image and increase the spatial resolution. The image data are gathered as  
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X-rays penetrate the part and expose the detector for a set amount of time. For each scan, these 

image data are collected at 1410 different angles throughout a 360° rotation. These images are then 

reconstructed to create the 3D volume dataset. This dataset is viewed and analyzed in Volume 

Graphics, a volume rendering software, to identify the relevant components. 

 

Figure E.93-4. Microfocus XCT setup for impact damage standards. 

 Inspection Results 

Unlike 2D X-ray imaging, CT shows slice views of the object that are not superimposed. This 

allows for improved detection of flaws. In the case of the impact panels, the damage would show 

as a slightly dented region at the near surface. Figure E.93-5 shows a slice view at the near surface 

of each panel. The dark spot in the center of Figure E.93-5b indicates less dense or lack of material, 

caused by the indentation of the impact on Panel 94. A surface gouge is visible in Figure E.93-5a, 

however there is no detected impact damage for Panel 93 or Panel 95 (Figure E.93-5c). 

 

  

a) b) c) 

Figure E.93-5. CT slice view of 32-ply impact damage panels 93 (a), 94 (b), and 95 (c). 
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E.93.2 Method: X-ray Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆☆  

X-ray CR is unable to reliably detect the impact damage. 

 Equipment List and Specifications:  

 Philips 160 kV X-Ray source, 0.4-mm focal spot size 

 IPS Phosphorus Imaging Plate 

 GE CRxFlex Scanner, 50-µm resolution 

 GE Rhythm Review 5.0 visualizing software 

 Settings 

Table E.93-2. Imaging and exposure parameters. 

Source Energy 40 kV 

Current 2 mA 

Source-Detector Distance 60 in 

Magnification 1X 

Exposure time 38 s 

Resolution (m) 50 µm 

Imaging Area (in) 14 × 17 

 Laboratory Setup 

The DRC has a small X-ray enclosure (vault) for the primary purpose of 2D X-ray imaging. It 

includes a Philips 160-kV X-ray source and the ability to use film, CR, and digital detector arrays. 

The CR imaging plates are placed on a table and the source, suspended from the ceiling by a  

3-axis crane, can be positioned to control the Source to Object Distance. Outside of the enclosure 

are the controls for the source, utilizing a safety interlock system. These controls allow the user to 

set the energy, current, and exposure time for the source. In addition to the vault, the DRC utilizes 

a CRxFlex system to scan and erase the CR imaging plates, storing the images on a computer. The 

phosphorus imaging plates, after exposure to X-rays, will luminesce the images when exposed to 

red light, allowing the 50-µm scanner to create digital versions and “erase” the plates using bright 

white light to be used again. The CR digital images are then reviewed using Rhythm Review. 
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Figure E.93-6. X-ray CR imaging. 

The three panels of the same thickness, each containing an impact damaged point, were placed 

directly on the plastic cassette containing the imaging plate with the X-ray source directly overhead 

(Figure E.93-7). The source was located 60 inches from the specimen and imaging plate to reduce 

geometric distortion. Lead markers were used to label the image, showing up in the results as 

bright white. 

 

 
a) b) 

Figure E.93-7. Laboratory setup of impact plate standards for CR imaging. 

 Inspection Results 

CR imaging is dependent on the superimposed density of the part being imaged. In the case of the 

impact damage, the damaged portion tends to get indented, slightly compressing the material 

underneath the indent. Therefore, the superimposed density remains approximately the same. This 

makes the detection of impact damage by an operator using 2D radiography such as CR very 

difficult. As seen in Figure E.93-8, the impact damage is not easily visible. Given knowledge of 
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the locations, an operator may be able to discern damage but contrast from the damage is not 

enough to for detection in a general case. 

 

Figure E.93-8. Flash filtered CR image of 32-ply impact panels. 

E.93.3 Method: Pulse-Echo Ultrasound Testing (PEUT)) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.93-9 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 
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Figure E.93-9. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.93-3. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 601 × 601 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.93-10. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 
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Figure E.93-10. Specimen baseline inspection orientation. 

 Inspection Results 

Specimen #93 is a 6 by 6-inch, 32-ply flat panel with a 0.23-inch impact. PEUT was performed 

on this specimen in NASA’s immersion tank specified above. 

Figure E.93-11 shows a back side surface amplitude image of the sample in its pre-impacted state. 

No significant internal flaws were noted. The highlighted areas above are high-amplitude 

reflections from the three spacers used to position the sample above the bottom of the immersion 

tank. 
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Figure E.93-11. 10-MHz baseline image. 

Figure E.93-12a shows a back side surface amplitude image of the sample in its post-impacted 

state. The barely visible impact damage region is identified with measurements. Figure E.93-12b 

is an internal reflection amplitude image. The gate region is selected to highlight reflections from 

an indication to the left of center consistent with a twisted tow. 
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a) Back side surface amplitude image. 
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b) Internal reflection amplitude image. 

Figure E.93-12. 10-MHz post-impact image. 

E.94 Specimen #94: Boeing Impact QI_45 32ply 3x5 Impact 1 

Structure Material Details Dimensions (inches) Partner Methods 

32 plies IM7/8552 
Single Impact 

Location 

6 × 6 

5 × 3 
NASA 

E.94.1 PEUT 

E.94.2 XCT 

E.94.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:  

PEUT detected the impact damage in this sample. 
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 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.94-1 shows a simplified block diagram of a 

scanning Pulse-echo inspection 

 

Figure E.94-1. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.94-1. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 497 × 304 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point one mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.94-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 
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Figure E.94-2. Specimen baseline inspection orientation. 

 Ispection Results 

Specimen #94 is a 3 by 5-inch, 32-ply flat panel with a 1.12-inch impact. PEUT was performed 

on this specimen in NASA’s immersion tank specified above.  

Figure E.94-3 shows a back side surface amplitude image of the sample in its pre-impacted state. 

No significant internal flaws were noted. The highlighted areas above are high-amplitude 

reflections from the four spacers used to position the sample above the bottom of the immersion 

tank. 

 

Figure E.94-3. 10-MHz baseline image. 

Figure E.94-4a shows an internal reflection amplitude image of the sample in its post-impacted 

state. The gate region is selected to highlight reflections from the delaminations caused by the 

impact.The impact damage region is identified with measurements. Figure E.94.4b shows the same 

time gated region as above allowing the high-amplitude delamination reflections to saturate 

revealing the internal layup features. 
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a) 

 
b) 

Figure E.94-4. 10-MHz post-impact image. 

E.94.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:  

XCT is capable of imaging and quantifying the damage due to low-impact energy in this specimen. 
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 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. The system is supplied as a complete, large-dimension radiation enclosure, with X-ray 

source, specimen manipulator, and an amorphous silica detector as shown in Figure E.94-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer 16-bit 

amorphous silicon digital detector with a 2000 × 2000-pixel array. 

 

Figure E.94-5. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.94-6. Slices normal to the X, Y, and Z-directions are shown in Figure E.94-6a, b, and c, 

respectively. 
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a) b) c) 

Figure E.94-6. Slice direction nomenclature. 

 

Figure E.94-7. Impact specimen test stand setup. 
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 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity 5 axis fully programmable manipulator.  

 Detector: Perkin Elmer XRD 1621  2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10-inch × 10-inch – full volume 200 µm spatial resolution 

 Settings 

Table E.94-2. Data collection settings. 

Source Energy 160 kV 

Current 37 µA 

Magnification 5.0 X 

Filter 0.125 Sn 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 50 K 

# Averages 8 

Resolution (µm) 40.04 µm 

Array Dimensions (pixels) 1999 × 303 × 1998 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 

be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained. 

 Data and Results 

Specimen #94, is a 3 by 5-inch 32-ply flat panel with a BVID impact. XCT was performed on this 

specimen in NASA LaRC’s CT system with the settings defined in Table E-94.2.  

The damage caused by the impact can be clearly seen from all viewing directions as shown in 

Figure E.94-8. There is no surface indication of an impact. Damage extends all the way through 

the thickness of the specimen.  
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Figure E.94-8. CT slice normal to the thickness direction show delaminations and matrix cracking 

(left). CT slice normal to the front surface shows delaminations between plies (right). 

E.95 Specimen #95: Boeing Impact QI_45 32ply 3x5 Impact 2 

Structure Material Details Dimensions (inches) Partner Methods 

32 plies IM7/8552 
Single Impact 

Location 

6 × 6 

5 × 3 
NASA 

E.95.1 PEUT 

E.95.2 XCT 

E.95.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:  

PEUT detected the impact damage in this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 
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a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.95-1 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.95-1. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.95-1. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 502 × 306 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.95-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 
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Figure E.95-2. Specimen baseline inspection orientation. 

 Inspection Results 

Specimen #95 is a 3 by 5-inch, 32-ply flat panel with a 0.25-inch impact. Only post-impacted 

PEUT was performed on this specimen in NASA’s immersion tank specified above.  

Figure E.95-2 above shows a photograph of the pre-impacted sample. NASA did not perform 

baseline PEUT on this sample. 

 

Figure E.95-3. Baseline PEUT was not performed on this sample. 

Figure E.95-4a shows a back side surface amplitude image of the sample in its post-impacted state. 

The impact damage region is identified with measurements. Dark artifacts caused by a sound 

absorbing spacer under the sample are also noted. Figure E.95-4b is an internal reflection 

amplitude image. The gate region is selected to highlight reflections from the delaminations caused 

by the impact. 
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a) 

 
b) 

Figure E.95-4. 10-MHz post-impact image. 

 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:   

XCT is capable of imaging and quantifying the damage due to low-impact energy in this specimen. 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. The system is supplied as a complete, large-dimension radiation enclosure, with X-ray 
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source, specimen manipulator, and an amorphous silica detector as shown in Figure E.95-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer 16-bit 

amorphous silicon digital detector with a 2000 × 2000-pixel array. 

 

Figure E.95-5. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.95-6. Slices normal to the X, Y, and Z-directions are shown in Figure E.95-6a, b, and c, 

respectively. 
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a) b) c) 

Figure E.95-6. Slice direction nomenclature. 

 

Figure E.95-7. Impact specimen test stand setup. 
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 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity 5 axis fully programmable manipulator.  

 Detector: Perkin Elmer XRD 1621  2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10-inch × 10-inch – full volume 200 µm spatial resolution 

 Settings 

Table E.95-2. Data collection settings. 

Source Energy 160 kV 

Current 37 µA 

Magnification 5.0 X 

Filter 0.125 Sn 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 55 K 

# Averages 8 

Resolution (µm) 40.04 µm 

Array Dimensions (pixels) 1999 × 253 × 1998 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 

be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained. 

 Data and Results 

Specimen #95, is a 3 by 5-inch 32-ply flat panel with a BVID impact. XCT was performed on this 

specimen in NASA LaRC’s CT system with the settings defined in Table E-95.2.  

Impact specimen #95 contained no detectable impact damage as shown in Figure E.95-8. There is 

no surface indication of an impact.  
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Figure E.95-8. CT slice normal to the thickness direction show no damage (left). CT slice normal to 

the front surface shows no damage plies (right). 

E.96 Specimen #96: Boeing Impact TC1 18ply 6x6 Impact 1 

Structure Material Details Dimensions (inches) Partner Methods 

18 plies IM7/8552 Single Impact Location 
6 × 6 

5 × 3 

Boeing 
E.96.1 XCT 

E.96.2 X-ray CR 

NASA E.96.3 PEUT  
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Figure E.96-1. Photographs of radii delamination standard. 

E.96.1 Method: X-ray Computed Tomography (XCT) 

 Partner: Boeing  

 Technique Applicability: ☆  

XCT is able to detect impact damage on some of the panels. 

 Equipment List and Specifications:  

 YXLON Modular CT System 

 225 kV microfocus X-ray source with variable focal spot size 

 100 kg capacity 7-axis granite based manipulator 

 XRD 1621 Detector  2048 × 2048 pixels with 200-m pitch, 400 × 400-mm active area 

 111-m spatial resolution for impact panel scan 

 Volume Graphics 3.0 visualizing software 

 Reconstruction Computer 

 Settings  

Table E.96-1. Data collection settings. 

Source Energy 120 kV 

Current 0.60 mA 

Magnification 1.80 X 

Filter Copper 

# Rotational angles 1410 

Exposure time / frame 500 ms 

Frame Binning 2 

Spatial Resolution (m) 111 µm 

Array Dimensions (pixels) 2048 × 2048 

 Laboratory Setup 

The Digital Radiography Center (DRC) utilizes an YXLON Modular CT System. This system has 

the capability to utilize various X-ray sources for varying applications, including a 450-kV source, 

a microfocus source, and a nanofocus source. The microfocus source used has a variable focal spot 

size of less than 4 µm and is suitable for magnifications up to 10X, with the nanofocus ranging up 

to 187X. The detector has 3 DOFs, allowing the effective detector area to be increased through 
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combined scans. The manipulator controls the position of the detector, object, and source. It has  

7 DOFs including a rotating stage to rotate the object during the scan. The entire system includes 

the source, detector, manipulator, control and reconstruction computers, and user control station. 

The computers and control station are outside of the radiation enclosure (vault) and utilize a safety 

interlock system to operate. Cameras are located in the vault to allow the operator to monitor the 

part from outside the enclosure. 

 

Figure E.96-2. XCT system components. 
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a) b) c) 

Figure E.96-3. Slice direction nomenclature. 

To reduce overall scan time, the standard panels of the same thickness were stacked together, 

separated by light foam sheets and held together with tape. This allowed three parts to be scanned 

at once and analyzed separately in post-processing. The panel bundle was then secured in a foam 

fixture. The position of the specimen, source, and detector are controlled to produce geometric 

magnification of the image and increase the spatial resolution. The image data are gathered as  

X-rays penetrate the part and expose the detector for a set amount of time. For each scan, these 

image data are collected at 1410 different angles throughout a 360° rotation. These images are then 

reconstructed to create the 3D volume dataset. This dataset is viewed and analyzed in Volume 

Graphics, a volume rendering software, to identify the relevant components. 
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Figure E.96-4. Microfocus XCT setup for impact damage standards. 

 Inspection Results 

Unlike 2D X-ray imaging, CT shows slice views of the object that are not superimposed. This 

allows for improved detection of flaws. In the case of the impact panels, the damage would show 

as a slightly dented region at the near surface. Figure E.96-5 shows a slice view at the near surface 

of each panel. The dark spot in the center of Figure E.96-5b and c indicates less dense or lack of 

material, caused by the indentation of the impact on Panels 97 and 98. Figure E.96-5a shows no 

detectable impact damage on Panel 96. 

 

  

a) b) c) 

Figure E.96-5. CT slice view of 18-ply impact damage panels 96 (a), 97 (b), and 98 (c). 

E.96.2 Method: X-ray Computed Radiography (CR) 

 Partner: Boeing  

 Technique Applicability: ☆☆☆  

X-ray CR is unable to reliably detect the impact damage. 
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 Equipment List and Specifications:  

 Philips 160 kV X-Ray source, 0.4-mm focal spot size 

 IPS Phosphorus Imaging Plate 

 GE CRxFlex Scanner, 50-µm resolution 

 GE Rhythm Review 5.0 visualizing software 

 Settings 

Table E.96-2. Imaging and exposure parameters. 

Source Energy 40 kV 

Current 2 mA 

Source-Detector Distance 60 in 

Magnification 1X 

Exposure time 30 s 

Resolution (m) 50 µm 

Imaging Area (in) 14 × 17 

 Laboratory Setup 

The DRC has a small X-ray enclosure (vault) for the primary purpose of 2D X-ray imaging. It 

includes a Philips 160-kV X-ray source and the ability to use film, CR, and digital detector arrays. 

The CR imaging plates are placed on a table and the source, suspended from the ceiling by a  

3-axis crane, can be positioned to control the Source to Object Distance. Outside of the enclosure 

are the controls for the source, utilizing a safety interlock system. These controls allow the user to 

set the energy, current, and exposure time for the source. In addition to the vault, the DRC utilizes 

a CRxFlex system to scan and erase the CR imaging plates, storing the images on a computer. The 

phosphorus imaging plates, after exposure to X-rays, will luminesce the images when exposed to 

red light, allowing the 50-µm scanner to create digital versions and “erase” the plates using bright 

white light to be used again. The CR digital images are then reviewed using Rhythm Review. 

 

Figure E.96-6. X-ray CR imaging. 

The three panels of the same thickness, each containing an impact damaged point, were placed 

directly on the plastic cassette containing the imaging plate with the X-ray source directly overhead 

(Figure E.96-7). The source was located 60 inches from the specimen and imaging plate to reduce 
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geometric distortion. Lead markers were used to label the image, showing up in the results as 

bright white.  

 

 
a) b) 

Figure E.96-7. Laboratory setup of impact plate standards for CR imaging. 

 Inspection Results 

CR imaging is dependent on the superimposed density of the part being imaged. In the case of the 

impact damage, the damaged portion tends to get indented, slightly compressing the material 

underneath the indent. Therefore the superimposed density remains approximately the same. This 

makes the detection of impact damage by an operator using 2D radiography such as CR very 

difficult. As seen in Figure E.96-8, the impact damage is not easily visible. Given knowledge of 

the locations, an operator may be able to discern damage but contrast from the damage is not 

enough to be detected in a general case. 
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Figure E.96-8. Flash filtered CR image of 18-ply impact panels. 

E.96.3 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:  

PEUT detected the impact damage in this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.96-9 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.96-9. Ultrasonic system components. 
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Figure E.96-10. Specimen baseline inspection orientation. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.96-3. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 601 × 601 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.96-9. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 Inspection Results 

Specimen #96 is a 6 by 6-inch, 18-ply flat panel with a 0.3-inch imipact. PEUT was performed on 

this specimen in NASA’s immersion tank specified above. 

Figure E.96-11 shows an interior echo amplitude image of the sample in its pre-impacted state. 

One small void and a feature consistent with a twisted tow were noted.  



230 

 

Figure E.96-11. 10-MHz baseline image. 

Figure E.96-12a shows a back side surface amplitude image of the sample in its post-impacted 

state. The impact damage region is identified with measurements. An air buble and a spacer on the 

under side of the sample in the immersion tank is also noted. Figure E.96-12b below is an internal 

reflection amplitude image. The gate region is selected to highlight reflections from the void and 

twisted tow noted above. These features appear unchanged by the impact. 



231 

 
a) 
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b) 

Figure E.96-12. 10-MHz post-impact image. 

E.97 Specimen #97: Boeing Impact TC1 18ply 3x5 Impact 1 

Structure Material Details Dimensions (inches) Partner Methods 

18 plies IM7/8552 Single Impact Location 
6 × 6 

5 × 3 
NASA 

E.97.1 PEUT  

E.97.2 XCT 
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E.97.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 

 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.97-1 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.97-1. Ultrasonic system components. 

 Equipment List and Specifications:  

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.97-1. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 496 × 310 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 
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sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.97-1. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 

of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 

Figure E.97-2. Specimen baseline inspection orientation. 

 Inspection Results 

Specimen #97 is a 3 by 5-inch, 18-ply flat panel with a 0.92-inch impact. PEUT was performed 

on this specimen in NASA’s immersion tank specified above. 

Figure E.97-3 shows a back side surface amplitude image of the sample in its pre-impacted state. 

No significant internal flaws were noted. The highlighted areas above are high-amplitude 

reflections from the three spacers used to position the sample above the bottom of the immersion 

tank. The bright indication in the lower right is from an air bubble under the sample. 

 

Figure E.97-3. 10-MHz baseline image. 
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Figure E.97-4 shows an internal reflection amplitude image of the sample in its post-impacted 

state. The gate region is selected to highlight reflections from the delaminations caused by the 

impact.The impact damage region is identified with measurements. 

 

Figure E.97-4. 10-MHz post-impact image. 

E.97.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:   

XCT is capable of imaging and quantifying the damage due to low-impact energy in this specimen. 

 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. The system is supplied as a complete, large-dimension radiation enclosure, with X-ray 

source, specimen manipulator, and an amorphous silica detector as shown in Figure E.97-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer 16-bit 

amorphous silicon digital detector with a 2000 × 2000-pixel array. 
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Figure E.97-5. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.97-6. Slices normal to the X, Y, and Z-directions are shown in Figure E.97-6a, b, and c, 

respectively. 

 
a) b) c) 

Figure E.97-6. Slice direction nomenclature. 
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Figure E.97-7. Impact specimen test stand setup. 

 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity 5 axis fully programmable manipulator.  

 Detector: Perkin Elmer XRD 1621  2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10-inch × 10-inch – full volume 200 µm spatial resolution 

 Settings 

Table E.97-2. Data collection settings. 

Source Energy 160 kV 

Current 37 µA 

Magnification 5.0 X 

Filter 0.125 Sn 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 52.7 K 

# Averages 8 

Resolution (µm) 40.04 µm 

Array Dimensions (pixels) 1999 × 201 × 1998 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 
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be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained. 

 Data and Results 

Specimen #97, is a 3 by 5-inch 18-ply flat panel with a BVID impact. XCT was performed on this 

specimen in NASA LaRC’s CT system with the settings defined in Table E-97.2.  

The damage caused by the impact is clearly seen from all viewing directions as shown in Figure 

E.97-8. There is no surface indication of an impact. Damage extends almost completely through 

the thickness of the specimen, getting wider at depths furthest from the impacted side. As can be 

seen in Figure E.97-8 (left), the delaminations are also getting wider at depths furthest from the 

impacted side.  

 

Figure E.97-8. CT slice normal to the thickness direction show delaminations and matrix cracking 

(left). CT slice normal to the front surface shows delaminations between plies (right). 

E.98 Specimen #98: Boeing Impact TC1 18ply 3x5 Impact 2 

Structure Material Details Dimensions (inches) Partner Methods 

18 plies IM7/8552 Single Impact Location 
6 × 6 

5 × 3 
NASA 

E.98.1 PEUT 

E.98.2 XCT 

E.98.1 Method: Pulse-Echo Ultrasound Testing (PEUT) 

 Partner: NASA 

 Technique Applicability:   

PEUT detected the impact damage in this sample. 
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 Laboratory Setup 

Immersion Ultrasonic Testing: NASA LaRC uses a custom-designed single-probe ultrasonic 

scanning system. The system has an 8-axis motion controller, a multi-axis gantry robot mounted 

above a medium-size water tank, a dual-channel, 16-bit, high-speed digitizer, and an off-the-shelf 

ultrasonic pulser receiver. The system can perform TTUT and PEUT inspections. TT inspection 

employs two aligned ultrasonic probes, one transmitter, and one receiver, placed on either side of 

a test specimen. Pulse-echo inspection is a single-sided method where a single ultrasonic probe is 

both transmitter and receiver. In each method, data are acquired while raster scanning the 

ultrasonic probe(s) in relation to a part. Figure E.98-1 shows a simplified block diagram of a 

scanning Pulse-echo inspection. 

 

Figure E.98-1. Ultrasonic system components. 

 Equipment List and Specifications: 

 Pulser/Receiver: Olympus 5073PR 

 Digitizer: AlazarTech ATS9462, dual channel, 16 bit, 180 MS/s 

 Sensor: Olympus 2-inch spherical focus immersion ultrasonic transducer 

 Motion system: open looped stepper motor based X-YY-Z gantry robot 

 Motion Controller: Galil DMC-4183 

 Acquisition Software: FastScan, custom developed at NASA LaRC 

 Signal Processing Software: DataViewer, custom developed at NASA LaRC 

 Settings 

Table E.98-1. Post-impact inspection settings. 

Resolution (horz) [in/pixel] 0.01 

Resolution (ver) [in/pixel] 0.01 

Probe frequency [MHz] 10 

Focal Length [in] 2 

Array Dimensions [pixels] 504 × 309 

The specimen is placed flat against the zero position of the tank raised above the glass bottom by 

several metal washers. The test probe is computer-controlled and correlated to the position on the 

sample. It is also focused to a point 1 mm below the surface of the test material. The specimen 

remains in place while the transducer follows a preprogrammed test grid across the surface as 

indicated in Figure E.98-2. At each point, ultrasonic data are collected from individual pulses. 

Larger step sizes between data collection result in lower image resolution. These data points are 

reconstructed into a data cube displaying spatial coordinates as time progresses. 2D reconstruction 
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of the collection of ultrasonic responses create flattened slices at varying depths within the 

material. 

 

Figure E.98-2. Specimen baseline inspection orientation. 

 Inspection Results 

Specimen #98 is a 3 by 5-inich, 18-ply flat panel with a 0.96-inch impact. PEUT was performed 

on this specimen in NASA’s immersion tank specified above. 

Figure E.98-3 shows a back side surface amplitude image of the sample in its pre-impacted state. 

No significant internal flaws were noted. The highlighted areas above are high-amplitude 

reflections from the three spacers used to position the sample above the bottom of the immersion 

tank. 

 

Figure E.98-3. 10-MHz baseline image. 

Figure E.98-4a shows an internal reflection amplitude image of the sample in its post-impacted 

state. The gate region is selected to highlight reflections from the delaminations caused by the 

impact.The impact damage region is identified with measurements. Figure E.98.4b shows the same 

time gated region as above allowing the high-amplitude delamination reflections to saturate 

revealing the internal features. 
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a) 

 
b) 

Figure E.98-4. 10-MHz post-impact image. 

E.98.2 Method: X-ray Computed Tomography (XCT) 

 Partner: NASA  

 Technique Applicability:   

XCT is capable of imaging and quantifying the damage due to low-impact energy in this specimen. 
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 Laboratory Setup 

The microfocus XCT system at NASA LaRC is a commercially available Avonix (Nikon C2) 

Metrology System designed for high-resolution NDE inspections. The system is an advanced 

microfocus X-ray system, capable of resolving details down to 5 m, and with magnifications up 

to 60X. The system is supplied as a complete, large-dimension radiation enclosure, with X-ray 

source, specimen manipulator, and an amorphous silica detector as shown in Figure E.98-5. The 

imaging controls are housed in a separate control console. The detector is a Perkin-Elmer 16-bit 

amorphous silicon digital detector with a 2000 × 2000-pixel array. 

 

Figure E.98-5. XCT system components. 

A consistent Cartesian coordinate system is used to define slice direction as illustrated in Figure 

E.98-6. Slices normal to the X, Y, and Z-directions are shown in Figure 98-6a, b, and c, 

respectively. 
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a) b) c) 

Figure E.98-6. Slice direction nomenclature. 

 

Figure E.98-7. Impact specimen test stand setup. 
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 Equipment List and Specifications:  

 Avonix 225 CT System 

 225 kV microfocus X-ray source with 5 µm focal spot size 

 15 or 30kg Capacity 5 axis fully programmable manipulator  

 Detector: Perkin Elmer XRD 1621  2000 × 2000 pixels with 200 µm pitch 

 10 µm spatial resolution for specimens 1.5 cm wide 

 Thin panels 10-inch × 10-inch – full volume 200 µm spatial resolution 

 Settings 

Table E.98-2. Data collection settings. 

Source Energy 160 kV 

Current 37 µA 

Magnification 5.0 X 

Filter 0.125 Sn 

# Rotational angles 3142 

Exposure time / frame 1.0 sec 

Max Histogram Grey Level 53 K 

# Averages 8 

Resolution (µm) 40.04 µm 

Array Dimensions (pixels) 1999 × 221 × 1998 

The specimen is placed vertically (rotated about the smallest dimension) on the rotational stage 

located between the radiation source and the detector. The rotational stage is computer-controlled 

and correlated to the position of the sample. As the sample is rotated the full 360° (~0.11° 

increments), the detector collects radiographs at each rotated angle as the X-ray path intersects the 

sample. 3D reconstruction of the collection of radiographs produces a volume of data that can then 

be viewed along any plane in the volume. The closer the sample can be placed to the X-ray source, 

the higher the spatial resolution that can be obtained. 

 Data and Results 

Specimen #98, is a 3 by 5-inch 18-ply flat panel with a BVID impact. XCT was performed on this 

specimen in NASA LaRC’s CT system with the settings defined in Table E-98.2.  

The damage caused by the impact can be clearly seen from all viewing directions as shown in 

Figure E.98-8. There is no surface indication of an impact. Damage extends most of the way 

through the thickness of the specimen.  
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Figure E.98-8. CT slice normal to the thickness direction show delaminations and matrix cracking 

(left). CT slice normal to the front surface shows delaminations between plies (right). 


	Appendix E Individual Test Reports by Specimen (Sections 61(98)
	E.61 Specimen #61: NASA-03-Folded-Tow-002
	E.61.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.61.1.1 Partner: NASA
	E.61.1.2 Technique Applicability: ★★★
	E.61.1.3 Laboratory Setup
	E.61.1.4 Equipment List and Specifications:
	E.61.1.5 Settings
	E.61.1.6 Inspection Results

	E.61.2 Method: Single-Sided Infrared Thermography (SSIR)
	E.61.2.1 Partner: NASA
	E.61.2.2 Technique Applicability: ★★☆
	E.61.2.3 Equipment List and Specifications:
	E.61.2.4 Settings:
	E.61.2.5 Laboratory Setup
	E.61.2.6 Principal Component Analysis
	E.61.2.7 Inspection Results
	E.61.2.8 References

	E.61.3 Method: Through-Transmission Infrared Thermography (TTIR)
	E.61.3.1 Technique Applicability: ★★☆
	E.61.3.2 Equipment List and Specifications:
	E.61.3.3 Settings:
	E.61.3.4 Laboratory Setup
	E.61.3.5 Principal Component Analysis
	E.61.3.6 Inspection Results
	E.61.3.7 References

	E.61.4 Method: Single-Side Flash Thermography (SSFT-TSR)
	E.61.4.1 Partner: Thermal Wave Imaging, Inc.*
	E.61.4.2 Technique Applicability: ★★★
	E.61.4.3 Laboratory Setup:
	E.61.4.4 Equipment List and Specifications:
	E.61.4.5 Settings:
	E.61.4.6 Thermographic Signal Reconstruction (TSR)
	E.61.4.7 Inspection Results
	E.61.4.8 References


	E.62 Specimen #62: NASA-03-Missing-Tow-001
	E.62.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.62.1.1 Partner: NASA
	E.62.1.2 Technique Applicability: ★★★
	E.62.1.3 Laboratory Setup
	E.62.1.4 Equipment List and Specifications:
	E.62.1.5 Settings
	E.62.1.6 Inspection Results

	E.62.2 Method: Single-Sided Infrared Thermography (SSIR)
	E.62.2.1 Partner: NASA
	E.62.2.2 Technique Applicability: ☆☆☆
	E.62.2.3 Equipment List and Specifications:
	E.62.2.4 Settings:
	E.62.2.5 Laboratory Setup
	E.62.2.6 Principal Component Analysis
	E.62.2.7 Inspection Results
	E.62.2.8 References

	E.62.3 Method: Through-Transmission Infrared Thermography (TTIR)
	E.62.3.1 Partner: NASA
	E.62.3.2 Technique Applicability: ★★☆
	E.62.3.3 Equipment List and Specifications:
	E.62.3.4 Settings:
	E.62.3.5 Laboratory Setup
	E.62.3.6 Principal Component Analysis
	E.62.3.7 Inspection Results
	E.62.3.8 References

	E.62.4 Method: Single-Side Flash Thermography (SSFT-TSR)
	E.62.4.1 Partner: Thermal Wave Imaging, Inc.*
	E.62.4.2 Technique Applicability: ★★★
	E.62.4.3 Laboratory Setup:
	E.62.4.4 Equipment List and Specifications:
	E.62.4.5 Settings:
	E.62.4.6 Thermographic Signal Reconstruction (TSR)
	E.62.4.7 Inspection Results
	E.62.4.8 References


	E.63 Specimen #63: NASA-03-Missing-Tow-002
	E.63.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.63.1.1 Partner: NASA
	E.63.1.2 Technique Applicability: ★★★
	E.63.1.3 Laboratory Setup
	E.63.1.4 Equipment List and Specifications:
	E.63.1.5 Settings
	E.63.1.6 Inspection Results

	E.63.2 Method: Single-Sided Infrared Thermography (SSIR)
	E.63.2.1 Partner: NASA
	E.63.2.2 Technique Applicability: ★☆☆
	E.63.2.3 Equipment List and Specifications:
	E.63.2.4 Settings:
	E.63.2.5 Laboratory Setup:
	E.63.2.6 Principal Component Analysis
	E.63.2.7 Inspection Results
	E.63.2.8 References

	E.63.3 Method: Through-Transmission Infrared Thermography (TTIR)
	E.63.3.1 Partner: NASA
	E.63.3.2 Technique Applicability: ★★☆
	E.63.3.3 Equipment List and Specifications:
	E.63.3.4 Settings:
	E.63.3.5 Laboratory Setup
	E.63.3.6 Principal Component Analysis
	E.63.3.7 Inspection Results
	E.63.3.8 References

	E.63.4 Method: Single-Side Flash Thermography (SSFT-TSR)
	E.63.4.1 Partner: Thermal Wave Imaging, Inc.*
	E.63.4.2 Technique Applicability: ★★★
	E.63.4.3 Laboratory Setup:
	E.63.4.4 Equipment List and Specifications:
	E.63.4.5 Settings:
	E.63.4.6 Thermographic Signal Reconstruction (TSR)
	E.63.4.7 Inspection Results
	E.63.4.8 References


	E.64 Specimen #64 – NASA-03-Bridged Joggle-001 – Not Tested
	E.65 Specimen #65 – NASA-03-Bridged-Joggle-002 – Not Tested
	E.66 Specimen #66 – NASA-03-Bridged-Joggle-003 – Not Tested
	E.67 Specimen #67 – NASA-03-Bridged-Joggle-004 – Not Tested
	E.68 Specimen #68: NAA-03-FOD-Panel-001:
	E.68.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.68.1.1 Partner: NGIS
	E.68.1.2 Technique Applicability: ★★★
	E.68.1.3 Laboratory Setup
	E.68.1.4 Equipment List and Specifications:
	E.68.1.5 Settings
	E.68.1.6 Inspection Results

	E.68.2 Method: Through-Transmission Ultrasound Testing (TTUT)
	E.68.2.1 Partner: GE Aviation
	E.68.2.2 Technique Applicability: ★★★
	E.68.2.3 Laboratory Setup
	E.68.2.4 Equipment List and Specifications:
	E.68.2.5 Settings
	E.68.2.6 Inspection Results

	E.68.3 Method: Pulse Echo Ultrasound Testing (PEUT)
	E.68.3.1 Partner: GE Aviation
	E.68.3.2 Technique Applicability: ★★★
	E.68.3.3 Laboratory Setup
	E.68.3.4 Equipment List and Specifications:
	E.68.3.5 Settings
	E.68.3.6 Inspection Results


	E.69 Specimen #69: NASA-03-Porosity-Panel-001
	E.69.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.69.1.1 Partner: NASA
	E.69.1.2 Technique Applicability: ((☆
	E.69.1.3 Laboratory Setup
	E.69.1.4 Equipment List and Specifications:
	E.69.1.5 Settings
	E.69.1.6 Inspection Results

	E.69.2 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.69.2.1 Partner: NGIS
	E.69.2.2 Technique Applicability: ★★★
	E.69.2.3 Laboratory Setup
	E.69.2.4 Equipment List and Specifications:
	E.69.2.5 Settings
	E.69.2.6 Inspection Results
	E.69.2.7 References

	E.69.3 Method: Through-Transmission Ultrasound Testing (TTUT)
	E.69.3.1 Partner: NGIS
	E.69.3.2 Technique Applicability: ★★★
	E.69.3.3 Laboratory Setup
	E.69.3.4 Equipment List and Specifications:
	E.69.3.5 Settings
	E.69.3.6 Inspection Results
	E.69.3.7 References

	E.69.4 Method: Single-Sided Infrared Thermography (SSIR)
	E.69.4.1 Partner: NGIS
	E.69.4.2 Technique Applicability: ★☆☆
	E.69.4.3 Laboratory Setup
	E.69.4.4 Equipment List and Specifications:
	E.69.4.5 Settings
	E.69.4.6 Inspection Results
	E.69.4.7 References

	E.69.5 Method: Through-Transmission Infrared Thermography (TTIR)
	E.69.5.1 Partner: NGIS
	E.69.5.2 Technique Applicability: ★★☆
	E.69.5.3 Laboratory Setup
	E.69.5.4 Equipment List and Specifications:
	E.69.5.5 Settings
	E.69.5.6 Inspection Results
	E.69.5.7 References


	E.70 Specimen #70: NASA-03-Porosity-Panel-002
	E.70.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.70.1.1 Partner: NASA
	E.70.1.2 Technique Applicability: (((
	E.70.1.3 Laboratory Setup
	E.70.1.4 Equipment List and Specifications:
	E.70.1.5 Settings
	E.70.1.6 Inspection Results

	E.70.2 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.70.2.1 Partner: NGIS
	E.70.2.2 Technique Applicability: ★★★
	E.70.2.3 Laboratory Setup
	E.70.2.4 Equipment List and Specifications:
	E.70.2.5 Settings
	E.70.2.6 Inspection Results
	E.70.2.7 References

	E.70.3 Method: Through-Transmission Ultrasound Testing (TTUT)
	E.70.3.1 Partner: NGIS
	E.70.3.2 Technique Applicability: ★★★
	E.70.3.3 Laboratory Setup
	E.70.3.4 Equipment List and Specifications:
	E.70.3.5 Settings
	E.70.3.6 Inspection Results
	E.70.3.7 References

	E.70.4 Method: Single-Sided Infrared Thermography (SSIR)
	E.70.4.1 Partner: NGIS
	E.70.4.2 Technique Applicability: ★☆☆
	E.70.4.3 Laboratory Setup
	E.70.4.4 Equipment List and Specifications:
	E.70.4.5 Settings
	E.70.4.6 Inspection Results
	E.70.4.7 References

	E.70.5 Method: Through-Transmission Infrared Thermography (TTIR)
	E.70.5.1 Partner: NGIS
	E.70.5.2 Technique Applicability: ★★☆
	E.70.5.3 Laboratory Setup
	E.70.5.4 Equipment List and Specifications:
	E.70.5.5 Settings
	E.70.5.6 Inspection Results
	E.70.5.7 References


	E.71 Specimen #71A&B: NASA-03-Porosity-Panel-003
	E.71.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.71.1.1 Partner: NASA
	E.71.1.2 Technique Applicability: (((
	E.71.1.3 Laboratory Setup
	E.71.1.4 Equipment List and Specifications:
	E.71.1.5 Settings
	E.71.1.6 Inspection Results

	E.71.2 Method: X-ray Computed Tomography (XCT)
	E.71.2.1 Partner: NASA
	E.71.2.2 Technique Applicability: (((
	E.71.2.3 Laboratory Setup
	E.71.2.4 Equipment List and Specifications:
	E.71.2.5 Settings
	E.71.2.6 Inspection Results

	E.71.3 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.71.3.1 Partner: NGIS
	E.71.3.2 Technique Applicability: ★★★
	E.71.3.3 Laboratory Setup
	E.71.3.4 Equipment List and Specifications:
	E.71.3.5 Settings
	E.71.3.6 Inspection Results
	E.71.3.7 References

	E.71.4 Method: Through-Transmission Ultrasound Testing (TTUT)
	E.71.4.1 Partner: NGIS
	E.71.4.2 Technique Applicability: ★★★
	E.71.4.3 Laboratory Setup
	E.71.4.4 Equipment List and Specifications:
	E.71.4.5 Settings
	E.71.4.6 Inspection Results
	E.71.4.7 References

	E.71.5 Method: Single-Sided Infrared Thermography (SSIR)
	E.71.5.1 Partner: NGIS
	E.71.5.2 Technique Applicability: ★☆☆
	E.71.5.3 Laboratory Setup:
	E.71.5.4 Equipment List and Specifications:
	E.71.5.5 Settings
	E.71.5.6 Inspection Results
	E.71.5.7 References

	E.71.6 Method: Through-Transmission Infrared Thermography (TTIR)
	E.71.6.1 Partner: NGIS
	E.71.6.2 Technique Applicability: ★★☆
	E.71.6.3 Laboratory Setup:
	E.71.6.4 Equipment List and Specifications:
	E.71.6.5 Settings
	E.71.6.6 Inspection Results
	E.71.6.7 References


	E.72 Specimen #72A&B: NASA-03-Porosity-Panel-004
	E.72.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.72.1.1 Partner: NASA
	E.72.1.2 Technique Applicability: (((
	E.72.1.3 Laboratory Setup
	E.72.1.4 Equipment List and Specifications:
	E.72.1.5 Settings
	E.72.1.6 Inspection Results

	E.72.2 Method: X-ray Computed Tomography (XCT)
	E.72.2.1 Partner: NASA
	E.72.2.2 Technique Applicability: 
	E.72.2.3 Laboratory Setup
	E.72.2.4 Equipment List and Specifications:
	E.72.2.5 Settings
	E.72.2.6 Inspection Results

	E.72.3 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.72.3.1 Partner: NGIS
	E.72.3.2 Technique Applicability: ★★★
	E.72.3.3 Laboratory Setup
	E.72.3.4 Equipment List and Specifications:
	E.72.3.5 Settings
	E.72.3.6 Inspection Results
	E.72.3.7 References

	E.72.4 Method: Through-Transmission Ultrasound Testing (TTUT)
	E.72.4.1 Partner: NGIS
	E.72.4.2 Technique Applicability: ★★★
	E.72.4.3 Laboratory Setup
	E.72.4.4 Equipment List and Specifications:
	E.72.4.5 Settings
	E.72.4.6 Inspection Results
	E.72.4.7 References

	E.72.5 Method: Single-Side Infrared Thermography (SSIR)
	E.72.5.1 Partner: NGIS
	E.72.5.2 Technique Applicability: ★☆☆
	E.72.5.3 Laboratory Setup
	E.72.5.4 Equipment List and Specifications:
	E.72.5.5 Settings
	E.72.5.6 Inspection Results
	E.72.5.7 References

	E.72.6 Method: Through-Transmission Infrared Thermography (TTIR)
	E.72.6.1 Partner: NGIS
	E.72.6.2 Technique Applicability: ★★☆
	E.72.6.3 Laboratory Setup
	E.72.6.4 Equipment List and Specifications:
	E.72.6.5 Settings
	E.72.6.6 Inspection Results
	E.72.6.7 References


	E.73 Specimen #73 – NASA-005-STANDARD-001 ( Not Tested
	E.74 Specimen #74 – NASA-005-STANDARD-002 ( Not Tested
	E.75 Specimen #75 – NASA-005-Wrinkle-001 ( Not Tested
	E.76 Specimen #76 – NASA-05-Wrinkle-002 ( Not Tested
	E.77 Specimen #77 – NASA-005-Porosity-001 ( Not Tested
	E.78 Specimen #78 – NASA-005-Porosity-002 ( Not Tested
	E.79 Specimen #79: NASA-005-Porosity-003
	E.79.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.79.1.1 Partner: NASA
	E.79.1.2 Technique Applicability: ★★★
	E.79.1.3 Laboratory Setup
	E.79.1.4 Equipment List and Specifications:
	E.79.1.5 Settings
	E.79.1.6 Inspection Results


	E.80 Specimen #80 – NASA-005-Porosity-004 ( Not Tested
	E.81 Specimen #81: Boeing Impact QI_45 8ply 6x5 Impact 1
	E.81.1 Method: X-ray Computed Tomography (XCT)
	E.81.1.1 Partner: Boeing
	E.81.1.2 Technique Applicability: ★★☆
	E.81.1.3 Equipment List and Specifications:
	E.81.1.4 Settings
	E.81.1.5 Laboratory Setup
	E.81.1.6 Inspection Results

	E.81.2 Method: X-ray Computed Radiography (CR)
	E.81.2.1 Partner: Boeing
	E.81.2.2 Technique Applicability: ☆☆☆
	E.81.2.3 Equipment List and Specifications:
	E.81.2.4 Settings
	E.81.2.5 Laboratory Setup:
	E.81.2.6 Inspection Results

	E.81.3 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.81.3.1 Partner: NASA
	E.81.3.2 Technique Applicability: (((
	E.81.3.3 Laboratory Setup
	E.81.3.4 Equipment List and Specifications:
	E.81.3.5 Settings
	E.81.3.6 Inspection Results


	E.82 Specimen #82: Boeing Impact QI_45 8ply 3x6 Impact 1
	E.82.1 Method: X-ray Computed Tomography
	E.82.1.1 Partner: Boeing
	E.82.1.2 Technique Applicability: ★★☆

	E.82.2 Method: X-ray Computed Radiography (CR)
	E.82.2.1 Partner: Boeing
	E.82.2.2 Technique Applicability: ☆☆☆

	E.82.3 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.82.3.1 Partner: NASA
	E.82.3.2 Technique Applicability: (((
	E.82.3.3 Laboratory Setup
	E.82.3.4 Equipment List and Specifications:
	E.82.3.5 Settings
	E.82.3.6 Inspection Results

	E.82.4 Method: X-ray Computed Tomography (XCT)
	E.82.4.1 Partner: NASA
	E.82.4.2 Technique Applicability: (((
	E.82.4.3 Laboratory Setup
	E.82.4.4 Equipment List and Specifications:
	E.82.4.5 Settings
	E.82.4.6 Data and Results


	E.83 Specimen #83: Boeing Impact QI_45 8ply 3x6 Impact 2
	E.83.1 Method: X-ray Computed Tomography (XCT)
	E.83.1.1 Partner: Boeing
	E.83.1.2 Technique Applicability: ((☆

	E.83.2 Method: X-ray Computed Radiography (CR)
	E.83.2.1 Partner: Boeing
	E.83.2.2 Technique Applicability: ☆☆☆

	E.83.3 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.83.3.1 Partner: NASA
	E.83.3.2 Technique Applicability: (((
	E.83.3.3 Laboratory Setup
	E.83.3.4 Equipment List and Specifications:
	E.83.3.5 Settings
	E.83.3.6 Inspection Results

	E.83.4 Method: X-ray Computed Tomography (XCT)
	E.83.4.1 Partner: NASA
	E.83.4.2 Technique Applicability: (((
	E.83.4.3 Laboratory Setup
	E.83.4.4 Equipment List and Specifications:
	E.83.4.5 Settings
	E.83.4.6 Data and Results


	E.84 Specimen #84 – QI_45 8ply Impact 1 ( Not Tested
	E.85 Specimen #85: Boeing Impact QI_45 8ply 22x22 Impact 1
	E.85.1 Method: X-ray Computed Tomography (XCT)
	E.85.1.1 Partner: Boeing
	E.85.1.2 Technique Applicability: (((
	E.85.1.3 Equipment List and Specifications:
	E.85.1.4 Settings
	E.85.1.5 Laboratory Setup
	E.85.1.6 Inspection Results

	E.85.2 Method: X-ray Computed Radiography (CR)
	E.85.2.1 Partner: Boeing
	E.85.2.2 Technique Applicability: ☆☆☆
	E.85.2.3 Equipment List and Specifications:
	E.85.2.4 Settings
	E.85.2.5 Laboratory Setup
	E.85.2.6 Inspection Results

	E.85.3 Method: Electronics Shearography with Vacuum Excitation
	E.85.3.1 Partner: Boeing
	E.85.3.2 Technique Applicability: (☆☆
	E.85.3.3 Equipment List and Specifications:
	E.85.3.4 Settings
	E.85.3.5 Laboratory Setup
	E.85.3.6 Inspection Results

	E.85.4 Method: X-Ray Backscatter
	E.85.4.1 Partner: Boeing
	E.85.4.2 Technique Applicability: ☆☆☆
	E.85.4.3 Equipment List and Specifications:
	E.85.4.4 Settings
	E.85.4.5 Laboratory Setup
	E.85.4.6 Inspection Results


	E.86 Specimen #86: Boeing Impact QI_45 16ply 6x6 Impact 1
	E.86.1 Method: X-ray Computed Tomography (XCT)
	E.86.1.1 Partner: Boeing
	E.86.1.2 Technique Applicability: ((☆
	E.86.1.3 Equipment List and Specifications:
	E.86.1.4 Settings
	E.86.1.5 Laboratory Setup
	E.86.1.6 Inspection Results

	E.86.2 Method: X-ray Computed Radiography (CR)
	E.86.2.1 Partner: Boeing
	E.86.2.2 Technique Applicability: ☆☆☆
	E.86.2.3 Equipment List and Specifications:
	E.86.2.4 Settings
	E.86.2.5 Laboratory Setup
	E.86.2.6 Inspection Results

	E.86.3 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.86.3.1 Partner: NASA
	E.86.3.2 Technique Applicability: (((
	E.86.3.3 Laboratory Setup
	E.86.3.4 Equipment List and Specifications:
	E.86.3.5 Settings
	E.86.3.6 Inspection Results


	E.87 Specimen #87: Boeing Impact QI_45 16ply 3x5 Impact 1
	E.87.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.87.1.1 Partner: NASA
	E.87.1.2 Technique Applicability: (((
	E.87.1.3 Laboratory Setup
	E.87.1.4 Equipment List and Specifications:
	E.87.1.5 Settings
	E.87.1.6 Inspection Results
	E.87.1.7 Method: X-ray Computed Tomography (XCT)
	E.87.1.8 Partner: NASA
	E.87.1.9 Technique Applicability: (((
	E.87.1.10 Laboratory Setup
	E.87.1.11 Equipment List and Specifications:
	E.87.1.12 Settings
	E.87.1.13 Data and Results


	E.88 Specimen #88: Boeing Impact QI_45 16ply 3x5 Impact 2
	E.88.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.88.1.1 Partner: NASA
	E.88.1.2 Technique Applicability: (((
	E.88.1.3 Laboratory Setup
	E.88.1.4 Equipment List and Specifications:
	E.88.1.5 Settings
	E.88.1.6 Inspection Results

	E.88.2 Method: X-ray Computed Tomography (XCT)
	E.88.2.1 Partner: NASA
	E.88.2.2 Technique Applicability: (((
	E.88.2.3 Laboratory Setup
	E.88.2.4 Equipment List and Specifications:
	E.88.2.5 Settings
	E.88.2.6 Data and Results


	E.89 Specimen #89: Boeing Impact QI_45 16ply 22x22 Impact 1
	E.90 Specimen #90: Boeing Impact QI_45 24ply 6x6 Impact 1
	E.90.1 Method: X-ray Computed Tomography (XCT)
	E.90.1.1 Partner: Boeing
	E.90.1.2 Technique Applicability: (((
	E.90.1.3 Equipment List and Specifications:
	E.90.1.4 Settings
	E.90.1.5 Laboratory Setup
	E.90.1.6 Inspection Results

	E.90.2 Method: X-ray Computed Radiography (CR)
	E.90.2.1 Partner: Boeing
	E.90.2.2 Technique Applicability: ☆☆☆
	E.90.2.3 Equipment List and Specifications:
	E.90.2.4 Settings
	E.90.2.5 Laboratory Setup
	E.90.2.6 Inspection Results

	E.90.3 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.90.3.1 Partner: NASA
	E.90.3.2 Technique Applicability: (((
	E.90.3.3 Laboratory Setup
	E.90.3.4 Equipment List and Specifications:
	E.90.3.5 Settings
	E.90.3.6 Inspection Results


	E.91 Specimen #91: Boeing Impact QI_45 24ply 3x5 Impact 1
	E.91.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.91.1.1 Partner: NASA
	E.91.1.2 Technique Applicability: (((
	E.91.1.3 Laboratory Setup
	E.91.1.4 Equipment List and Specifications:
	E.91.1.5 Settings
	E.91.1.6 Inspection Results

	E.91.2 Method: X-ray Computed Tomography (XCT)
	E.91.2.1 Partner: NASA
	E.91.2.2 Technique Applicability: (((
	E.91.2.3 Laboratory Setup
	E.91.2.4 Equipment List and Specifications:
	E.91.2.5 Settings
	E.91.2.6 Data and Results


	E.92 Specimen #92: Boeing Impact QI_45 24ply 3x5 Impact 2
	E.92.1 Method: Pulse-Echo Ultrasound Testing (PEUT)
	E.92.1.1 Partner: NASA
	E.92.1.2 Technique Applicability: (((
	E.92.1.3 Laboratory Setup
	E.92.1.4 Equipment List and Specifications:
	E.92.1.5 Settings
	E.92.1.6 Inspection Results

	E.92.2 Method: X-ray Computed Tomography (XCT)
	E.92.2.1 Partner: NASA
	E.92.2.2 Technique Applicability: (((
	E.92.2.3 Laboratory Setup
	E.92.2.4 Equipment List and Specifications:
	E.92.2.5 Settings
	E.92.2.6 Data and Results


	E.93 Specimen #93: Boeing Impact QI_45 32ply 6x6 Impact 1
	E.93.1 Method: X-ray Computed Tomography
	E.93.1.1 Partner: Boeing
	E.93.1.2 Technique Applicability: ((☆
	E.93.1.3 Equipment List and Specifications:
	E.93.1.4 Settings
	E.93.1.5 Laboratory Setup
	E.93.1.6 Inspection Results

	E.93.2 Method: X-ray Computed Radiography (CR)
	E.93.2.1 Partner: Boeing
	E.93.2.2 Technique Applicability: ☆☆☆
	E.93.2.3 Equipment List and Specifications:
	E.93.2.4 Settings
	E.93.2.5 Laboratory Setup
	E.93.2.6 Inspection Results

	E.93.3 Method: Pulse-Echo Ultrasound Testing (PEUT))
	E.93.3.1 Partner: NASA
	E.93.3.2 Technique Applicability: (((
	E.93.3.3 Laboratory Setup
	E.93.3.4 Equipment List and Specifications:
	E.93.3.5 Settings
	E.93.3.6 Inspection Results
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