

Operational and Technical Updates to the Object Reentry Survival Analysis Tool

NASA Orbital Debris Program Office

Safety Team

- J. Bacon (NASA Lead)
 - B. Greene
 - J. Marichalar
 - J. Opiela
- C. Ostrom (Contract Lead)
 - M. Matney
 - C. Sanchez
 - A. Smith
 - R. Toledo-Burdett

Agenda

- ORSAT History
- Model Updates
- AutoORSAT
- Satellite Test Case
- Conclusions
- Future Work

ORSAT

- Reentry risk assessments are required for all NASA missions
 - For <u>uncontrolled</u> reentry, the risk of human casualty from surviving debris shall not exceed 1 in 10,000 (NASA Standard 8719.14A)
- Object Reentry Survival Analysis Tool (ORSAT) is a high fidelity reentry model developed/maintained by the ODPO to support NASA missions

Delta II propellant tank (Georgetown, TX, 1997)

Titanium casting of STAR-48B SRM (Saudi Arabia, 2001)

Titanium casting of STAR-48B SRM (Argentina, 2004)

All photos courtesy The Aerospace Corporation

ORSAT History

- Originally developed in 1994 (version 4.0) to estimate DCA for reentering satellites
- Version 5.X developed from 1999-2003
- Version 6.0 complete in 2005
- Version 6.1 complete in 2008
- Version 6.2 and 6.2.1 developed 2017-2019

Model Updates (1/5)

CFRP and GFRP

- Previous models assumed no residual strength existed in FRP
- Tests conducted by ODPO and others indicate that survivability is much higher [1-7]
- Examples in the media of COPV found on the ground after reentries of spacecraft and upper stages [8-10]
- "Two-material model" proposed in [7]
 - If material > 1mm thick, assume fiber fraction will survive to ground

National Aeronautics and Space Administration

The Basic Effect:

(and why it precedes the nodal crossing)

Atmosphere "falls away" faster than decay rate for most objects that survive passage through the "wall of air".

Unlikely to decay in next ¹/₄ orbit

Dives into atmosphere

Objects that survive the previous pass have perigee near equator, and rapidlyrising density on the approach National Aeronautics and Space Administration

When Ratio'ed to Uniform Spacing, the Spacings of Entry ArgLats Make a "Compression Curve"

200 kg/m² Compression Curve Data: 24000 Uniformly-Spread Date and RAAN Conditions

Model Updates (2/5)

- Entry Conditions
 - Research over past 15-20 years indicates that reentry is not equally likely in time around an orbit ("latitude bias") [11-16]
 - This bias also creates a bias in conditions at entry interface [17]
 - Effect is not same with varying inclination (or season, or beta) [18]

Model Updates (3/5)

Breakup altitude

- "Standard" ORSAT assumption is that spacecraft and rocket bodies breakup at 78 km (42 nmi) altitude, based on an Aerospace report [19]
- Same report suggests that catastrophic breakup occurs when surface radiative equilibrium temperature reaches melting point of structure
- New ORSAT functionality allows for computation of breakup altitude based on this criterion for each set of entry conditions
- Objects may now breakup >78km (CubeSats), others lower (steel frames)

Model Updates (4/5)

- Radiation models
 - ORSAT 6.0 used "Jones-Park" [20]
 - ORSAT 6.1 added both "Tauber-Sutton" [21] and the program QRAD [22-23]
 - All these models produce minimal effects on entries from circular LEO

Model Updates (5/5)

- Atmosphere model
 - MSISe-90 was upgraded to NRLMSISE-00 for analysis of controlled entries

DCA Update

- New model only requires area of object (previous Opiela-Matney model required both area and perimeter [24])
- RMSE 1% better with new model

Source code

- Upgraded from F77 to F95
- Removed parametric study functionality from within ORSAT proper
- Improved file IO new "speed mode"

AutoORSAT

- Python wrapper developed by Greene and Smith [24]
- Improved parametric study capability
 - ORSAT internal function could only do univariate studies
 - Parallel processing
- Allows simplification of ORSAT code
 - Use Fortran for heavy lifting, python for "accounting"
- Combined with computer cluster, >100K runs per hour
 - Cf. ORSAT 6.0 1 run in ~3-6 hours

Satellite Test Case (1/)

- 1100 kg S/C
 - 150 unique components
- 98.0° inclination
- 8640 trajectories simulated in GMAT to generate the entry conditions
 - Varying time of year, RAAN, dithered BC
- "Standard" ORSAT analysis for comparison

Satellite Test Case (2/)

STD ORSAT

- 43 surviving components
- 26 m² DCA
- Ec 1:2700 (using equal temporal likelihood-based population density)

AutoORSAT

- DCA between 21-29 m², depending on conditions
- Ec depends on where objects land (latitude binning)
- Average Ec 1:3300
- Median Ec better than 1:10K (Compliant?)
- Worst Ec ~1:500

National Aeronautics and Space Administration

Satellite Test Case (3/)

Conclusions

- ORSAT 6.2.1 up to 100x faster than v6.0 (single-thread)
- AutoORSAT allows for significant exploration of parametric space
- Simplification and update allows for faster development going forward and more robust code

Future Work

- Design-for-demise (D4D)
 - Sensitivity to breakup altitude (see Lips [25])
- Statistics!
 - Ability to quickly see effects of each parameter (which to ignore and which to refocus on)
- Improving FRP ablation/demise models
- Hollow object modeling
 - Currently all objects treated as solid, but with less area if hollow
 - New models for transitional flow being developed (see Marichalar [26])

Questions

Thanks for your time!

References (1/3)

- 1. 31st ISTS "Experimental Investigation of Material Demisability in Uncontrolled Earth Re-entries"
- 2. 8th IAASS "ABOUT THE DEMISABILITY OF PROPELLANT TANKS
- 3. DURING ATMOSPHERIC RE-ENTRY FROM LEO"
- 4. ODQN 22-3 "Spacecraft Material Ablation Testing at UT Austin"
- 5. ODQN 23-3 "Testing and Modeling the Demisability of Fiber-Reinforced Plastics"
- 6. 6th ESDC -- "Modelling the Thermal Decomposition of Carbon Fibre Materials During Re-entry"
- 10th IAASS "Demisability of Various Reinforced Polymer Components of Reentering Orbital Debris: Phase I Test Results"
- 8. <u>https://www.campograndenews.com.br/cidades/objeto-que-caiu-em-</u> <u>chacara-e-tanque-de-combustivelestrangeiro-diz-aeb</u>
- 9. <u>https://www.reuters.com/article/us-australia-spacejunk/australian-farmer-finds-mystery-space-junkidUSSYD8466320080328</u>

References (2/3)

- 10. <u>https://timesofindia.indiatimes.com/city/madurai/Mysterious-object-inspectedby-ISRO-officials/articleshow/55380486.cms</u>
- 11. 9th IAASS "Casualty Risk Reduction by Semi-Controlled Reentry"
- 12. 9th IAASS "Oblate-Earth Effects on the Calculations of Ec During Spacecraft Reentry"
- 13. 8th IAASS "Statistical Issues for Calculating Reentry Hazards"
- 14. 7th ESDC "Fast Re-Entry Deorbitation with Acceptable Risk Level"
- 15. 3rd IAASS "Statistical Issues for Uncontrolled Reentry Hazards"
- 16. 4th IAASS "Statistical Issues for Uncontrolled Reentry Hazards: Empirical Tests of the Predicted Footprint for Uncontrolled Satellite Reentry Hazards"
- 17. 10th IAASS "Effect of Latitude Bias in Entry Angle on Ground Casualty Risk from Naturally Decaying Space Objects"
- 10th IAASS "Seasonal- and Beta-Angle-Dependent Latitude Bias Variations in Natural Decays"
- 19. "Aerospace Report No. ATR-92(2835)-1, Review of Orbital Reentry Risk Predictions"

References (3/3)

- 20. Hamilton, Gupta, Jones "Flight Stagnation-Point Heating Calculations on Aeroassist Flight Experiment Vehicle", 1991 JoS
- 21. Tauber and Sutton. "Stagnation-Point Radiative Heating Relations for Earth and Mars Entries"
- 22. Page et al. "Radiative Transport in Inviscid Nonadiabatic Stagnation-Region Shock Layers", 1968
- 23. JSC-26059 "User's Manual for QRAD Entry Radiation Program"
- 24. 1st IOC "Development and Analysis of the Automated Object Reentry Survival Analysis Tool's Parametric Study Wrapper
- 25. 10th IAASS "Probabilistic Casualty Risk Assessment and Labeling for the Re-Entry of Spacecraft Components"
- 26. 1st IOC "Estimating Drag and Heating Coefficients for Hollow Reentry Objects in Transitional Flow Using DSMC"