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Mars mission astronauts will be exposed to complex
mixed radiation fields both in flight and on Mars
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The NASA Radiation Risk Model
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Our current major problem

“» Low doses of densely-ionizing GCR radiation

appear to produce biological damage largely
through different (non-targeted) mechanisms
as compared to high doses of GCR radiation
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Non-Targeted Effects (NTE)

Also called “bystander effects”

Unirradiated cells respond to signals emitted by nearby irradiated cells

First noted by Nagasawa & Little (1992): Exposed cells to low doses of alpha

particles, about 1% of cells were hit, but 30% of cells showed increased
chromosomal aberrations

NTE reported for most endpoints, mainly after low doses of high-LET radiation

Many signaling pathways and reactive oxygen species (ROS) appear to be
involved, shifting cells into an “activated” stressed state
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To establish radiation weighting factors for

targeted effects (TE) and non-targeted effects (NTE),
and to develop a practical approach for their use in
complex and time-varying space radiation fields




Relative effects of different radiation qualities
must be due to the initial track structure
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Track Structure Models

1. Katz Model

® Phenomenological biophysically-based model,
initially of cell killing, developed by analogy to
radiation effects in nuclear emulsions

— Model input can’t be directly measured

— Needs large amount of nuclear data to
calculate model input for every radiation field



Track Structure Models:
2. Microdosimetry

®* Microdosimetry: Study of the distribution of deposited
energy in cell-nucleus sized microscopic volumes

Simulation of single gamma ray Simulation of single gamma ray
passing through cell nucleus passing through cell nucleus



Microdosimetric Distributions:

Distributions of energy depositions, v,
IN Microscopic site sizes

I I [

140 kV X-RAYS

0.5 MeV

w)
zZ
O
CE
'_
-
L
=
=

e8]
=
L
~

CO“y RAYS

y d(y)

102 101 109 101 1072 103
Lineal Energy, y (keV/um)



Microdosimetric distributions
can be directly measured or calculated
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From microdosimetric distributions
to relative biological response
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How do we estimate Q(y),
the Biological Response Function?

Imagine a set of experiments with biological endpoint
e In which 1 different radiation types were used.:

g oo Jdi(y) QUy)dy

These are a series of | Fredholm equations, and given
the experimental results, g and the microdosimetric
spectra, d,(y), they can be numerically unfolded to
produce an estimate of Q_(y)



Quantifying TE vs NTE responses for
densely-ionizing GCR at low doses

> Fornace et al. measured tumors in APC1638N+ mjce
exposed at NSRL to:

» Protons (50 to 120 cGy; 1.3 keV/um)

»“He (5 to 50 cGy; 2 keV/um)
» 12C (10 to 200 cGy; 13 keV/um)
» %0 (5to 50 cGy; 22 keV/um)
> 28Sj (5 to 140 cGy; 69 keV/um)
> “°Fe (5to 160 cGy; 148 keV/um)

» vyrays (5-200 cGy)

» 20-39 mice / radiation type / dose, including zero dose



Best-Fit Model Parameters for NTE and TE

LET NTE parameter TE parameter (Gy )
(keV/um)
Gamma 0.3 0.79[0.18, 16.5] 2.88 [0.00, 3.80]
Protons| 1.26 0.94 [0.00, 1.77] 2.88 [0.00, 4.30]
He ions 2 1.29[0.83, 1.76] 2.88 [0.00, 4.20]
C ions 13 2.64 [1.43, 4.69] 3.47 [2.05, 5.04]
O ions 22 2.72[1.99, 3.71] 2.88 [0.00, 5.52]
Si ions 69 4,53 [3.15, 6.85] 10.12 [7.68, 12.8]
Feions 148 3.94 [2.61, 6.49] 5.06 [2.67, 6.83]




Calculated vs. experimental microdosimetric spectra

Based on FLUKA or GEANT4 (Beck 2006)
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Calculated vs. experimental microdosimetric spectra

Based on FLUKA or GEANT4 (Beck 2006)
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LET NTE parameter TE parameter (Gy'l)
(keV/um)
Gamma 0.3 0.79 [0.18, 16.5] 2.88 [0.00, 3.80]
Protons 1.26 0.94 [0.00, 1.77] 2.88 [0.00, 4.30]
He ions 2 1.29 [0.83, 1.76] 2.88 [0.00, 4.20]
Cions 13 2.64 [1.43, 4.69] 3.47 [2.05, 5.04]
O ions 22 2.72[1.99, 3.71] 2.88 [0.00, 5.52]
Si ions 69 4.53 [3.15, 6.85] 10.12 [7.68, 12.8]
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How do we estimate Q(y),
the Biological Response Function?

Imagine a set of experiments with biological endpoint
e In which 1 different radiation types were used.:

g oo Jdi(y) QUy)dy

These are a series of | Fredholm equations, and given
the experimental results, g and the microdosimetric
spectra, d,(y), they can be numerically unfolded to
produce an estimate of Q_(y)



Preliminary Best-Fit Results:
Q.(y) shapes for mouse Gl tumor endpoint
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Ongoing.....
1. Generate more detailed d(y) microdosimetric spectra
(Geant 4+ RITRACKS) and redo this preliminary analysis

2. Generate Q.(y) functions for a variety of different endpoints
g, both for cancer and non-cancer endpoints

3. Generate consensus Q(y) function(s)

4. Assess in-flight d(y) measurement tools, to allow in-flight
assessments of Q

TE gas microdosimeter. Straume et al 2015 Silicon microdosimeter. Rosenfeld et al 2014




