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Mars mission astronauts will be exposed to complex 
mixed radiation fields both in flight and on Mars

O’Neill et al 2015,

Tripathi et al 2001
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Our current major problem

❖ Low doses of densely-ionizing GCR radiation 

appear to produce biological damage largely 

through different (non-targeted) mechanisms

as compared to high doses of GCR radiation
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Non-Targeted Effects (NTE)

 Also called “bystander effects”

 Unirradiated cells respond to signals emitted by nearby irradiated cells

 First noted by Nagasawa & Little (1992): Exposed cells to low doses of alpha 

particles, about 1% of cells were hit, but 30% of cells showed increased 

chromosomal aberrations

 NTE reported for most endpoints, mainly after low doses of high-LET radiation

 Many signaling pathways and reactive oxygen species (ROS) appear to be 

involved, shifting cells into an “activated” stressed state

Zhou et al. Cancer Res, 2008
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To establish radiation weighting factors for 

targeted effects (TE) and non-targeted effects (NTE), 

and to develop a practical approach for their use in 

complex and time-varying space radiation fields



Relative effects of different radiation qualities 
must be due to the initial track structure

Wright 1982



Track Structure Models

1. Katz Model

• Phenomenological biophysically-based model, 

initially of cell killing, developed by analogy to 

radiation effects in nuclear emulsions

– Model input can’t be directly measured

– Needs large amount of nuclear data to 

calculate model input for every radiation field



Track Structure Models:

2. Microdosimetry

• Microdosimetry: Study of the distribution of deposited 

energy in cell-nucleus sized microscopic volumes

Simulation of single gamma ray 

passing through cell nucleus

Simulation of single gamma ray 

passing through cell nucleus



Microdosimetric Distributions:
Distributions of energy depositions, y,  

in microscopic site sizes
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Microdosimetric distributions
can be directly measured or calculated



Response   d(y)   × Q(y) dy
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From microdosimetric distributions 
to relative biological response



How do we estimate Q(y),
the Biological Response Function?

Imagine a set of experiments with biological endpoint 

e in which i different radiation types were used: 

These are a series of i Fredholm equations, and given 

the experimental results, ei and the microdosimetric 

spectra, di(y), they can be numerically unfolded to 

produce an estimate of Qe(y)

ei  ∫ di(y) Qe(y) dy 



➢ Fornace et al. measured tumors in APC1638N/+ mice 

exposed at NSRL to: 

➢ Protons (50 to 120 cGy; 1.3 keV/µm)

➢
4He (5 to 50 cGy; 2 keV/µm)

➢
12C (10 to 200 cGy; 13 keV/µm)

➢
16O (5 to 50 cGy; 22 keV/µm)

➢
28Si (5 to 140 cGy; 69 keV/µm)

➢
56Fe (5 to 160 cGy; 148 keV/µm)

➢ g rays (5-200 cGy)

➢ 20-39 mice / radiation type / dose, including zero dose 
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Quantifying TE vs NTE responses for 

densely-ionizing GCR at low doses
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Best-Fit Model Parameters for NTE and TE

LET 

(keV/µm)

NTE parameter TE parameter (Gy
-1

)

Gamma 0.3 0.79 [0.18, 16.5] 2.88 [0.00, 3.80]

Protons 1.26 0.94 [0.00, 1.77] 2.88 [0.00, 4.30]

He ions 2 1.29 [0.83, 1.76] 2.88 [0.00, 4.20]

C ions 13 2.64 [1.43, 4.69] 3.47 [2.05, 5.04]

O ions 22 2.72 [1.99, 3.71] 2.88 [0.00, 5.52]

Si ions 69 4.53 [3.15, 6.85] 10.12 [7.68, 12.8]

Fe ions 148 3.94 [2.61, 6.49] 5.06 [2.67, 6.83]



Based on FLUKA or GEANT4 (Beck 2006)

Calculated vs. experimental microdosimetric spectra
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Based on FLUKA or GEANT4 (Beck 2006)

Calculated vs. experimental microdosimetric spectra

Oxygen 400 MeV/u                  Iron 300 MeV/uIron 300 MeV/u

LET approximation LET approximation
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OP He C Si Fe
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y (keV/µm)    

LET 

(keV/µm)

NTE parameter TE parameter (Gy
-1

)

Gamma 0.3 0.79 [0.18, 16.5] 2.88 [0.00, 3.80]

Protons 1.26 0.94 [0.00, 1.77] 2.88 [0.00, 4.30]

He ions 2 1.29 [0.83, 1.76] 2.88 [0.00, 4.20]

C ions 13 2.64 [1.43, 4.69] 3.47 [2.05, 5.04]

O ions 22 2.72 [1.99, 3.71] 2.88 [0.00, 5.52]

Si ions 69 4.53 [3.15, 6.85] 10.12 [7.68, 12.8]

Fe ions 148 3.94 [2.61, 6.49] 5.06 [2.67, 6.83]



How do we estimate Q(y),
the Biological Response Function?

Imagine a set of experiments with biological endpoint 

e in which i different radiation types were used: 

These are a series of i Fredholm equations, and given 

the experimental results, ei and the microdosimetric 

spectra, di(y), they can be numerically unfolded to 

produce an estimate of Qe(y)

ei  ∫ di(y) Qe(y) dy 
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Preliminary Best-Fit Results: 

Qe(y) shapes for mouse GI tumor endpoint 

NTE

TE



Silicon microdosimeter. Rosenfeld et al 2014TE gas microdosimeter. Straume et al 2015

Ongoing…..

1. Generate more detailed d(y) microdosimetric spectra 

(Geant 4+ RITRACKS) and redo this preliminary analysis

2. Generate Qe(y) functions for a variety of different endpoints 

e, both for cancer and non-cancer endpoints

3. Generate consensus Q(y) function(s)

4. Assess in-flight d(y) measurement tools, to allow in-flight 

assessments of Q


