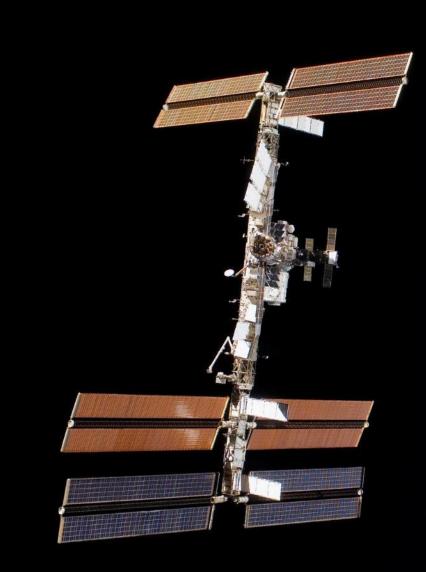


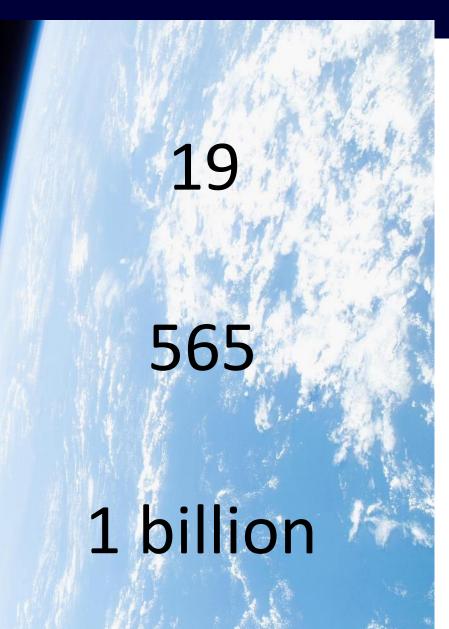
Risk and Analogs in Human Spaceflight

Presented by: Erik Antonsen, MD, PhD

Assistant Director, Human System Risk Management Human Health and Performance Directorate NASA, Johnson Space Center

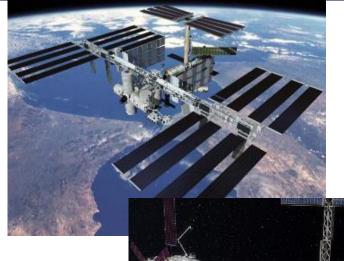
"I may say that this is the greatest factor—the way in which the expedition is equipped—the way in which every difficulty is foreseen, and precautions taken for meeting or avoiding it. Victory awaits him who has everything in order — luck, people call it. Defeat is certain for him who has neglected to take the necessary precautions in time; this is called bad luck."

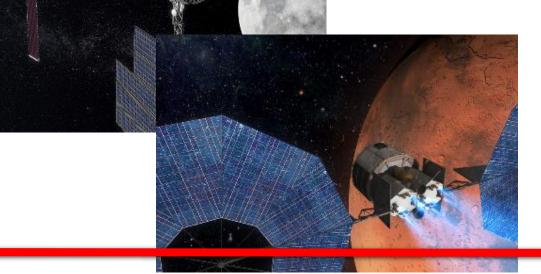

- Roald Amundsen



NASA

Complex Engineered Systems




Progressive Earth Independence

- Real Time Communications
- Evacuation Capability (1.5 36 hrs)
- Strong Consumables Resupply

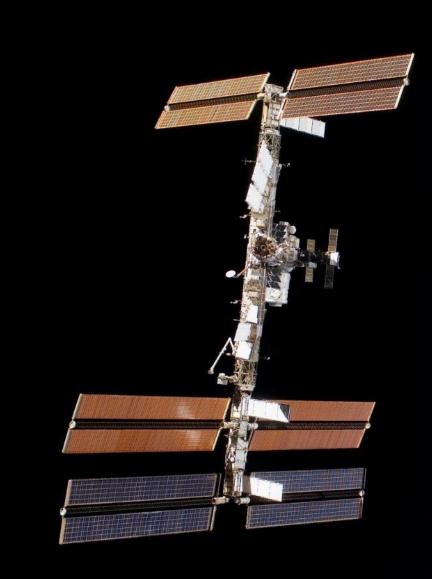
- Near Real Time Communications
- Evacuation Capability (**3 11 days**)
- Limited Consumables Resupply

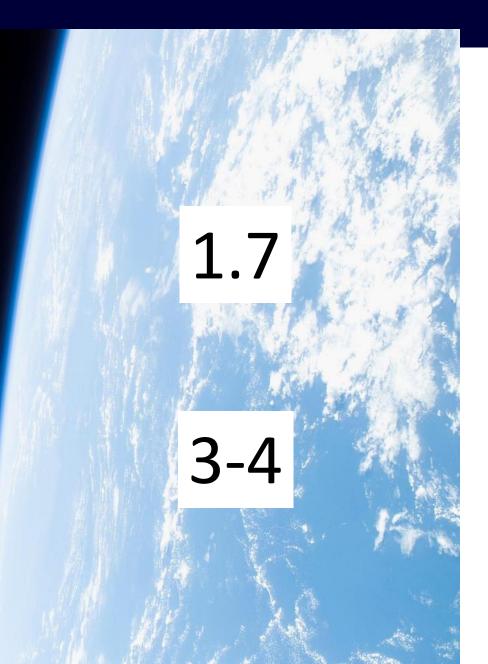
- **No** Real Time Communications
- No Evacuation Capability
- No Consumables Resupply

Increasing Exposure to Hazards 5

Complex Engineered Systems

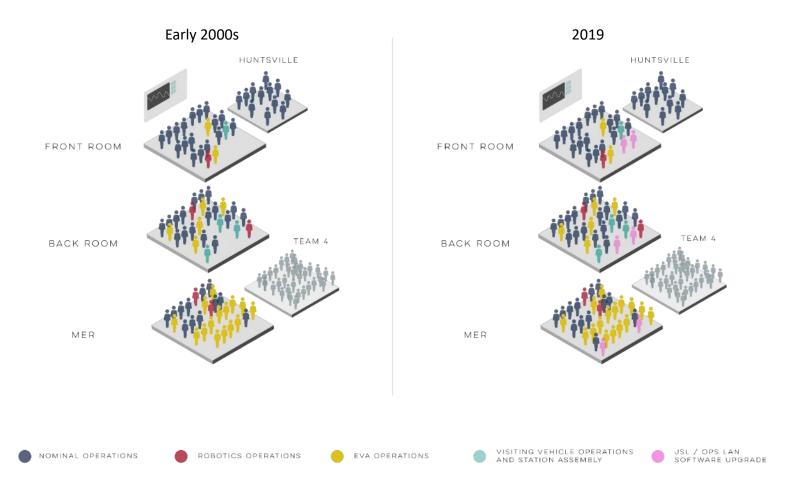
Significant Incidents & Close Calls in Human Spaceflight


- LEGEND Crew Injury/Illness and/or Loss of Vehicle or Mission Related or Recurring event Sovuz 1 Apollo 1 Soyuz 11 Challenger X-15 Columbia SpaceShipTwo Apollo 10 5/22/1969 STS-110 roaress M-12I Apollo 14 Medical Evacuations (1976-1987) Soyuz TM-5 9/6/1988 Service/Descent Module (1961-2008 EVA Incidents Summary 4/8/2002 8/24/2011 1/31/1971 eparation Failures (1965 - 2014)Mir FO-2, 1987, Crew: 3 0/2/1984 (44P) STS-109 Soyuz TMA-11 (15S) 4/19/2008 Apollo 13 3/1/2002 13 EVAs resulted in crew injury Salvart 7, 1985, Crown 3 Soyuz 33 +/12/1975 6/8/2007 4/13/197 Gemini 10, Apollo 17, Salyut 3 STS-108 Skylab 4 2/8/1974 Sovuz TMA-10 (14S) 10/21/07 Crew: PE-1, Salyut 7 VE-3, STS-61-B Salyut 5, 8/25/1976, Crew: 2 5/26/2006 12/5/200 EVAs 1&2, STS-37, Mir PE-9, 1/18/69 Crew wuz 11 TS-63, STS-97/4A, STS-100/6 Crew Illness 2/11/1 7/23/1999 EVAs 1&2, STS-134/ULF6 Voskhod 2 3/19/65 Crew: Apollo 11 7/21/1969 8/29/1965 Ascent Debr Gemini 5 S-511 (Ch Vostok 5 6/19/63 Crew: STS-124 Gemini 4 6/7/1965 Vostok 2 8/7/61 Crew: 1 Other SRB gas seal anomalies 573192008 EARTH ORBIT Voskhod 2 3/19/1965 STS-2, 6, 41B, 41C, 41D, 51C, Vostok 1 4/12/61 Crew: 1 10/29/1998 51D, 51B, 51G, 51F, 51I, 51J, Mercury MA-7 5/24/1962 debris events have STS-95 **Docking Anomalies** ISS Increment 38 12/1/2013 61A, 61B, 61C, 42, 70, 71, 78 **FPS Entry Events** (1981-2003 occurred on: 10/29/1998 ercury M/ 20/1962 STS-133 2/26/2011 Soyuz TMA-18 (225) TS-107 (Columbia) STS-116 and STS-125 9/23/2010 11/27/1997 7/29/1985 STS-51D 4419/1985 ate Release Orbite . #63/16⁹13 vvek Covers 7/22/100 ISS, Increment 15 6/10 STS-83 4/14/1981 Other significant STS TPS anomalies STS-114, 115, 118, 119, /6/1997 Skylab 2 5/26/1973 4/11/1970 124, 126 STS-6, 41B, 51G, 27*, 28, 40, 42, 45 9/12/1993 4/23/1971 11/14/1969 ISS. Increment 10 *Most severe tile damage to date. 11/24/1991 Soyuz 15 8/28/1974 7/18/1966 ISS, Increment 5&6 mid 2002 1/9/1990 Soyuz Landing Events TS-134 ir Collision Events ire/Overheating 1967-1993) Events (1971-2008) 12/8/1983 (1994-1997) ISS, Incr 55 10/10/08 Crew: STS-112 oyuz TM-15 /1/93 Mir 6/25/1997 ISS. 9/18/06, Crew: 3 1/12/1981 ISS 8/2001 /3/1998 10/7/200 oyuz IM-14 2/26/1998 STS-104 STS-37 4/11/1991 8/10/92 1/6/1986 Mir 8/30/1994 ovuz IM-12 2/24/199 7/2001 0/10/91 Soyuz 21 8/24/1976 Mir 1/14/1994 STS-41D Mir 10/94. Crew: 6 /19/1985 uz TM-6/26/1984 STS-99 4/23/1967 [S-9 2/8/1983 Soyuz TM-25 8/17/1997 STS-35, 12/90, Crew: -28, 8/89, Crew: 5 9/26/1983 S-3 30/1982 oyuz 36 7/31/80 M367866 STS-6, 4/83, Crew: 4* Salvut 7 9/82 Crew STS-51F, STS-55, STS-51, STS-68 /28/1974 Salyut 6, 1979, Crew: Mercury MA-7 5/24/1962 Soyuz 23 10/16/76 5/16/1963 Salvut 1, 6/71, Crew: STS-1 pollo 15 8/7/1971 yuz 18-1(1 SpaceShipOne 9/29/2004 4/12/1981 ltitude Chaml pollo 12 11/24/1969 16P Navy Chamber SpaceShipOne 5/13/2004 CRUISE 1/ID 12/12/1965 ShinTwo PE04 10/31/201 iaht 11P SUBORBITAL FLIGHTS LAUNCH/GROUND **RESEARCH FACILITY** ATMOSPHERIC FLIGHTS LANDING & POSTLANDING
 - Publicly available: https://spaceflight.nasa.gov/outreach/SignificantIncidents/index.html


 The "Significant Incidents and Close Calls in Human Spaceflight" chart was created and is maintained by JSC's Flight Safety Office to raise awareness of lessons learned through the years.

NASA

Complex Engineered Systems



What does autonomous mean?

First hour response to a critical event can involve around **150** people (All-hands-on-deck)

MCC Staffing

Complex Engineered Systems

P

"Today's spacecraft are giant bundles of software wrapped in metal."

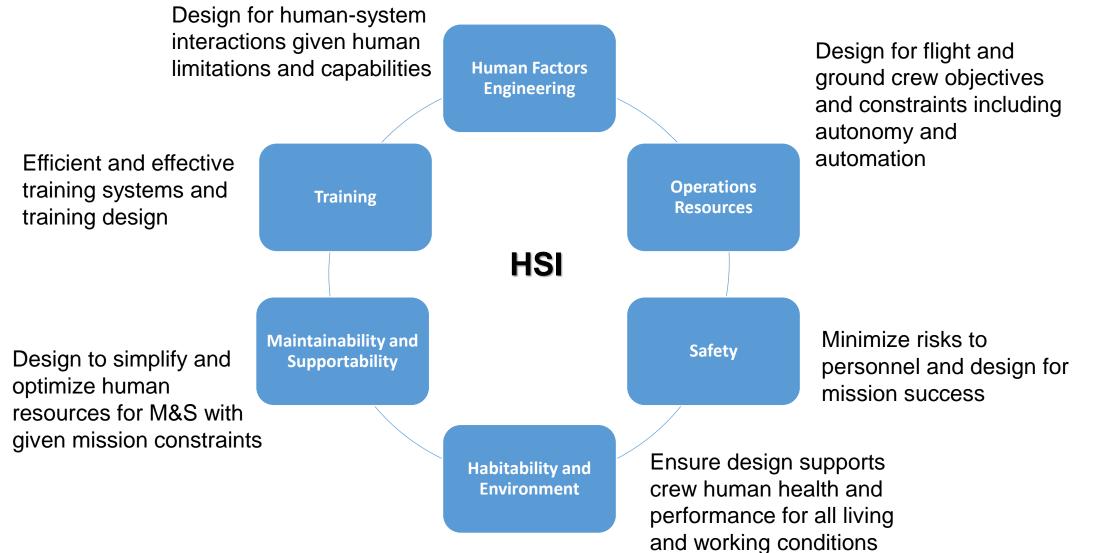
The Washington Post Democracy Dies in Darkness

NASA finds 'fundamental' software problems in Boeing's Starliner spacecraft

The malfunctions could have had 'catastrophic' consequences, a space agency official says



	DRM Categories Details		In Mission Risk - Operations					Post Mission Risk - Long Term Health					
	Human Spaceflight Risks	Low Earth Orbit	Low Earth Orbit	Deep Space Sortie	Lunar Visit/ Habitation	Deep Space Journey/ Habitation	Planetary Visit/ Habitation	Low Earth Orbit	Low Earth Orbit	Deep Space Sortie	Lunar Visit/ Habitation	Deep Space Journey/ Habitation	Planetary Visit/ Habitation
		6 Months	1 Year	1 Month	1 Year	1 Year	3 Years	6 Months	1 Year	1 Month	1 Year	1 Year	3 Years
	Renal Stone Formation	Accepted	Accepted	Accepted	Accepted	Requires Mitigation	Requires Mitigation	Accepted	Accepted	Accepted	Accepted	Requires Mitigation	Requires Mitigation
	Inflight Medical Conditions	Accepted	Accepted	Accepted	Requires Mitigation	Requires Mitigation	Requires Mitigation	Accepted	Accepted	Accepted	Requires Mitigation	Requires Mitigation	Requires Mitigation
	Vision Alterations	Accepted	Accepted	Accepted	Accepted	Requires Mitigation	Requires Mitigation	Accepted	Accepted	Accepted	Accepted	Requires Mitigation	Requires Mitigation
	Inadequate Human Systems Integration Architecture	Accepted with Monitoring	Accepted with Monitoring	+Standard Refinement; May Require Mitigation	Requires Mitigation	Standard Refinement, May Require Mitigation	Requires Mitigation	Accepted	Accepted	Accepted	Accepted	Accepted	Accepted
	Cardiac Rhythm Problems	Accepted with Monitoring	Accepted with Monitoring	Accepted with Monitoring	Accepted with Monitoring	Requires Mitigation	Requires Mitigation	Accepted with Monitoring	Accepted with Monitoring	Accepted with Monitoring	Accepted with Monitoring	Accepted with Monitoring	Accepted with Monitoring
	Cognitive or Behavioral Conditions	Accepted with Monitoring	Requires Mitigation	Accepted with Monitoring	Requires Mitigation	Requires Mitigation	Requires Mitigation	Accepted with Monitoring	Accepted with Monitoring	Accepted with Monitoring	Accepted with Monitoring	Accepted with Monitoring	Requires Mitigation
	Space Radiation Exposure	Accepted	Accepted	Accepted	Accepted	Requires Mitigation / Data	Requires Mitigation / Data	Accepted with PELs	Accepted with PELs	Accepted with PELs	Requires Mitigation	Requires Mitigation	Requires Mitigation
-	Carbon Dioxide Exposure_	Accepted	Accepted	Accepted	Accepted	Requires Mitigation	Requires Mitigation	Accepted	Accepted	Accepted	Accepted	Accepted	Accepted
	Inadequate Food and Nutrition	Accepted / Optimize	Accepted / Optimize	Accepted / Optimize	Accepted / Optimize	Accepted / Optimize	Requires Mitigation	Accepted	Accepted	Accepted	Accepted	Accepted / Optimize	Requires Mitigation
	Ineffective or Toxic Medications	Accepted	Accepted	Accepted	Accepted	Accepted	Mitigation	Accepted	Accepted	Accepted	Accepted	Accepted	Requires Mitigation
	EVA Operations	Accepted	Accepted	Accepted / Optimize	Requires Mitigation	Accepted / Optimize	Requires Mitigation	Accepted	Accepted	Accepted / Optimize	Requires Mitigation	Accepted / Optimize	Requires Mitigation
	Psychosocial Adaptation within a Team	Accepted with Monitoring	Accepted with Monitoring	Accepted with Monitoring	Accepted with Monitoring	Requires Mitigation	Requires Mitigation	Accepted	Accepted	Accepted	Accepted	Accepted	Accepted with Monitoring


HSIA is Foundational for Risk

NASA Human System Integration Domains

Human System Integration and Testing

100% -Cumulative Percentage Life Cycle Cost against Time 90% 90% 100% 75% 500-1000× Committed Life 80% Cycle Costs 70% · Operations Cost to Change Design Direction through 60% Disposal 45% 50% olo Completed How do we know we are 3-6× 50% 40% Costs Expended getting it those designs 30% Prod/Test right? 20% Design Concept 20% 10% 15% Develop 8% 0% MCR SRR SDR PDR CDR SIR ORR

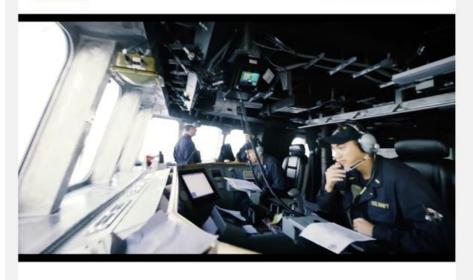
MCR	Mission Concept Review	CDR	Critical Design Review
SRR	System Requirements Review	SIR	System Integration Review
SDR	System Definition Review	ORR	Operational Readiness Review
PDR	Preliminary Design Review	DR/DRR	Decommissioning/Disposal Readiness Review

Time

DR/DRR

Getting it wrong happens in real life

Littoral Combat Ships: Automation will save us!


Manpower reduction effort:

- Planned: From ~200 to 45 sailors based on "smart" technologies
- Unplannned: E5 and up, avg age 30, multiple accidents and incidents

The Navy Basically Just Admitted That The Littoral Combat Ship Is A Floating Garbage Pile

By Jared Keller | August 12, 2018 at 03:55 PM

f Share 💙 Share in Share 🖂 Share

How do we tell if we are getting it right?

Analog testing and simulation

Can our crews effectively use systems as designed?

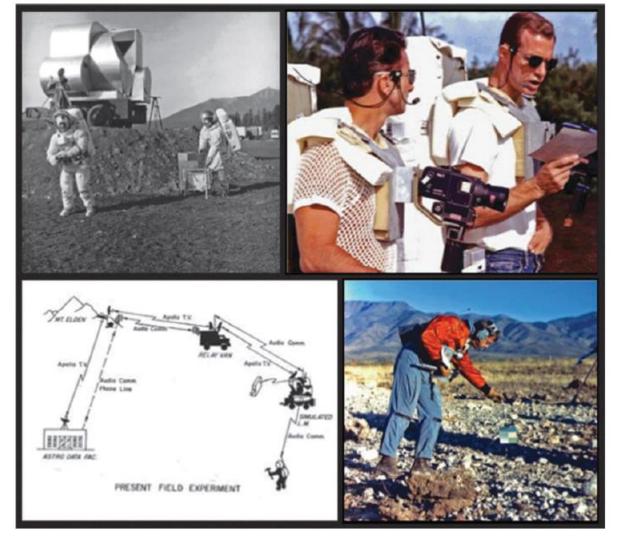
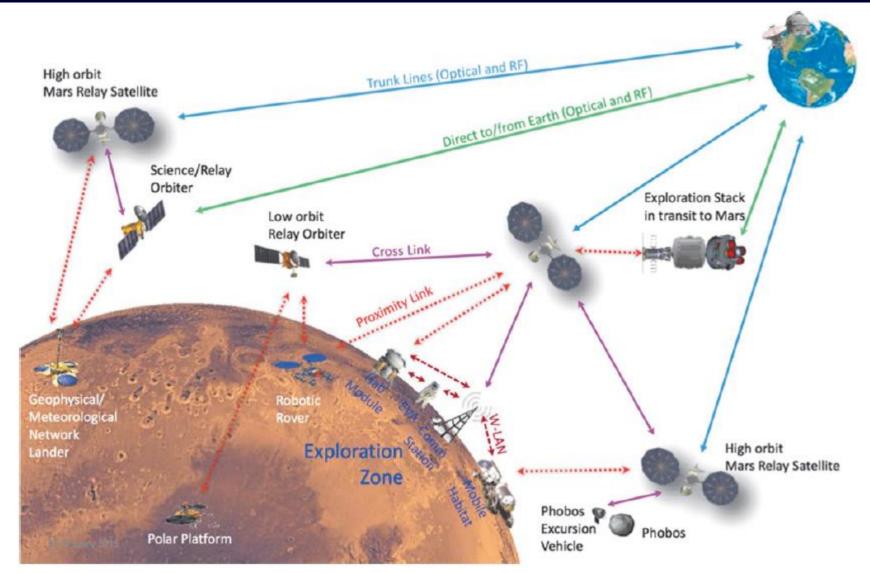
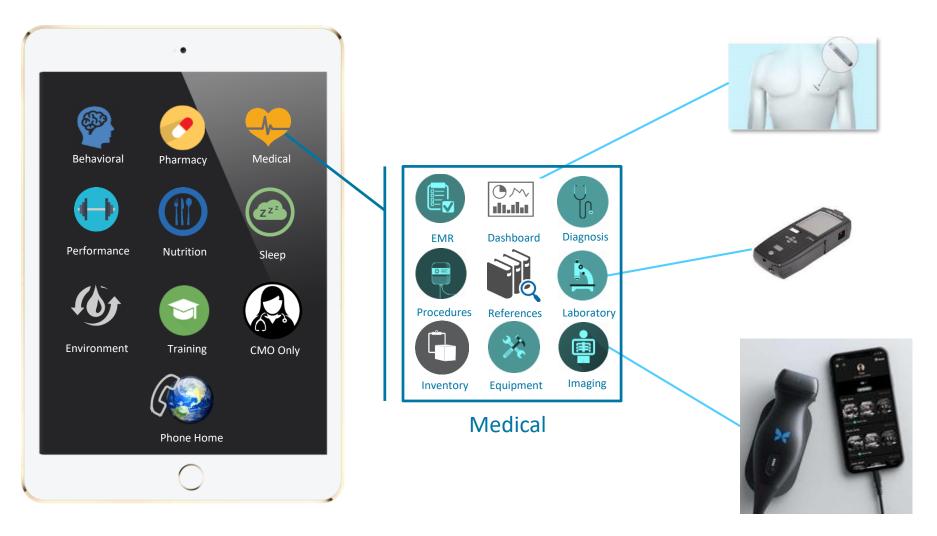



FIG. 1. Top row and lower right: Apollo crewmembers performing what we today call analog missions, for testing procedures, concepts, equipment, and training crews. Lower left: Apollo-era telecommunication link diagram closely resembles modern field test telecomm link diagrams (Schaber, 2005).

Siebert et al., Astrobiology Vol 19 (3) 2019 DOI: 10.1089/ast.2018.1915



Siebert et al., Astrobiology Vol 19 (3) 2019 DOI: 10.1089/ast.2018.1915

Do our systems do what we claim they will do?

Acceptability Ratings should reflect the extent to which the condition overall was considered an "Acceptable" approach to conducting human exploration given the following definitions:

Operational Acceptability: Able to effectively, efficiently and reliably conduct operations with accurate exchange of all pertinent information and without excessive workload or (in-sim) avoidable inefficiencies or delay.

Scientific Acceptability: Able to effectively and reliably complete and record scientific observations, measurements, and/or sampling with sufficient quantity, distribution, resolution, accuracy, and/or integrity to test the scientific hypothesis/hypotheses. <u>Note: Efficiency, or lack thereof, is addressed by Operational Acceptability.</u>

Task Acceptability: Able to effectively, efficiently and reliably complete a task without significant discomfort, exertion, fatigue, or avoidable inefficiencies, and without risk of injury to self or damage to equipment.

Examples of deficiencies: inefficiency, high mental workload, increased physical exertion,											
	Totally A	Acce	ptable	Bord	erline	Unacc	eptable	Totally Ur	No Rating		
	No improvements necessary and/or No deficiencies		-		Improvements warranted and/or Moderate deficiencies		improvements required and/or		Major improvements required and/or Totally unacceptable deficiencies		Unable to asse capability
	1	2	3	4	5	6	7	8	9	10	NR

Essential / Enabling	Significantly Enhancing	Moderately Enhancing	Marginally Enhancing	Little or No Enhancement	No Rating
Impossible or highly inadvisable to perform mission without capability	Capabilities are likely to significantly enhance one or more aspects of the mission	Capabilities likely to moderately enhance one or more aspects of the mission or significantly enhance the mission on rare occasions.	C apabilities are only marginally useful or useful only on very rare occasions	Capabilities are not useful under any reasonably foreseeable circum stances.	Unable to assess capability
1 2	3 4	5 6	7 8	9 10	NR

A.F.J. Abercromby et al. / Acta Astronautica 91 (2013) 34–48 ²¹

Do they work under the most challenging conditions?

How do we know we aren't making it worse?

