
Bridging the Gap Between Requirements and
Model Analysis : Evaluation on Ten
Cyber-Physical Challenge Problems

Anastasia Mavridou1,2, Hamza Bourbouh1,2, Pierre-Löıc Garoche1,2,3, Dimitra
Giannakopoulou1, Tom Pressburger1, and Johann Schumann1.2

1 NASA Ames Research Center
2 SGT, Inc.

3 Onera, The French Aerospace Lab

Abstract. [Context] Formal verification and simulation are powerful
tools to validate requirements against complex systems. [Problem] Re-
quirements are developed in early stages of the software lifecycle and are
typically written in ambiguous natural language. There is a gap between
such requirements and formal notations that can be used by verifica-
tion tools, and lack of support for proper association of requirements
with software artifacts for verification. [Principal idea] We propose
to write requirements in an intuitive, structured natural language with
formal semantics, and to support formalization and model/code verifi-
cation as a smooth, well-integrated process. [Contribution] We have
developed an end-to-end, open source requirements analysis framework
that checks Simulink models against requirements written in structured
natural language. Our framework is built in the Formal Requirements
Elicitation Tool (fret); we use fret’s requirements language named
fretish, and formalization of fretish requirements in temporal logics.
Our proposed framework contributes the following features: 1) automat-
ic extraction of Simulink model information and association of fretish
requirements with target model signals and components; 2) translation
of temporal logic formulas into synchronous dataflow cocospec speci-
fications as well as Simulink monitors, to be used by verification tools;
we establish correctness of our translation through extensive automat-
ed testing; 3) interpretation of counterexamples produced by verification
tools back at requirements level. These features support a tight inte-
gration and feedback loop between high level requirements and their
analysis. We demonstrate our approach on a major case study: the Ten
Lockheed Martin Cyber-Physical, aerospace-inspired challenge problems.

1 Introduction

The safety critical industry imposes a strict development process according to
which requirements are written in the early phases of the software lifecycle,
and are refined into models and/or code, while keeping track of traceability
information. Verification and validation (V&V) activities must ensure that the



2 A. Mavridou et al.

development process properly preserves these requirements (for example, see [19]
and its formal method supplement [20]).

Requirements are typically written in natural language, which is well-known
to be ambiguous and as such, not amenable to formal analysis. On the oth-
er hand, formal mathematical notations can be used by analysis tools but are
unintuitive for developers. Frameworks like Stimulus [15] or fret (Formal Re-
quirements Elicitation Tool) [12] address this problem by enabling the capture
of requirements in restricted natural languages with formal semantics. fret ad-
ditionally supports automated formalization of requirements in temporal logics.

To support V&V activities, it is necessary to associate high-level requirements
with software artifacts in terms of architectural information such as components
and signals. This is also the case when requirements are formal; for example,
the atomic propositions that make up a formula must be connected to variable
values or method executions in the target code.

This paper presents an end-to-end, open source requirements analysis frame-
work that supports a tight integration and feedback loop between high level
requirements and the V&V of models or code against these requirements. Our
framework is built on top of the open source tool fret4. It connects fretish
requirements to Simulink models for verification, and verification results back to
requirements.

More specifically, our framework provides the following features: 1) auto-
matic extraction of Simulink model information and association of fretish re-
quirements with target model signals and components; 2) translation of fret
temporal logic formulas into synchronous dataflow cocospec [3] specifications
as well as Simulink monitors, to be used by Simulink verification tools; we es-
tablish correctness of our translation through extensive automated testing; and
3) interpretation of counterexamples produced by verification tools back at re-
quirements level.

Our framework can be connected to any Simulink/Lustre V&V tools, al-
though it currently uses our group’s cocosim [6], and the Simulink Design
Verifier (SLDV). We have applied our framework to a major case study: the
Lockheed Martin Cyber Physical Systems (LMCPS) challenge [9], which is a
set of aerospace-inspired examples provided as text documents specifying the
requirements along with associated Simulink models. Examples range from ba-
sic integrators to complex autopilots. We report on our experience from the use
of FRET, cocosim, and their interconnection, to capture and analyze LMCPS
requirements.

The remainder of the paper is structured as follows: Section 2 recalls the
underlying semantics of temporal logics and synchronous dataflow languages.
Section 3 presents the workflow of our tool set. The generation of synchronous
data flow contracts and the injection of these contracts as model elements in
Simulink are presented in Sections 4 and 5, respectively. Section 6 describes the
LMCPS case study and the lessons learned. Section 7 positions the contribution
with respect to the state of the art, and finally, Section 8 concludes the paper.

4 https://github.com/nasa/FRET

https://github.com/nasa/FRET


Bridging the Gap Between Requirements and Model Analysis 3

2 Background

Requirements Language and Temporal Logics. fretish is based on a
restricted natural-language grammar and allows the user to conveniently express
requirements. Here is an example requirement in fretish:

AP-002: In roll hold mode RollAutopilot shall always satisfy autopilot engaged &
no other lateral mode

A fret requirement contains up to six fields: scope, condition, component*,
shall*, timing, and response*. Mandatory fields are indicated by an asterisk.

component specifies the component that the requirement refers to. shall is
used to express that the component’s behavior must conform to the require-
ment. response is a Boolean condition that the component’s behavior must
satisfy. scope specifies the period when the requirement holds. If omitted, the
requirement is deemed to hold universally, subject to condition. The option-
al condition field is a Boolean expression that further constrains when the
response shall occur. For instance, scope can specify system behavior before a
mode occurs, or after a mode ends, or when the system is in a mode. timing,
e.g., immediately, always, after/for/within N time units, specifies when the re-
sponse shall happen, subject to condition and mode.

For each such requirement, fret generates a pure Future Time Metric LTL
(fmLTL) and a pure Past Time Metric LTL (pmLTL) formalization. The syntax
of the generated formulas is compatible with the NuSMV model checker [5]. In
this paper, we focus on pmLTL, since cocospec assume-guarantee contracts
are pairs of past time formula predicates.

We briefly review the main pmLTL operators (Y, O, H, S, SI), which stand
for Yesterday, Once, Historically, Since, and Since Inclusive, respectively. Y refers
to the previous time step, i.e., at any non-initial time, Yφ is true iff φ holds at the
previous time step. O refers to at least one past time step, i.e., Oφ is true iff φ is
true at some past time step including the present time. Hφ is true iff φ is always
true in the past. φSψ is true iff ψ holds somewhere at step t in the past and for
all the step t′ (such that t′ > t) φ is true. Finally, φ SIψ ≡ φ S (ψ&φ). Timed
modifiers constrain an operator’s scope to specific intervals: Op [l, r] φ, where
Op ∈ {O, H, S, SI} and l, r ∈ N0. For instance, 0 [l, r] φ is true at time t iff f
was true in at least one of the previous time steps t′ such that t− r ≤ t′ ≤ t− l.
E.g., 0[0, 3] restricts the scope of 0 to the interval including the step where the
interval is interpreted and the previous 3 time steps.

Specification Language and Analysis Tools. We use the cocospec lan-
guage to generate monitors. cocospec [3] is an extension of the synchronous
dataflow language Lustre [13]. Lustre code consists of a set of nodes that trans-
form infinite streams of input flows to streams of output flows, with possible
local variables denoting internal flows. A notion of a symbolic “abstract” uni-
versal clock is used to model system progress. cocospec extends Lustre with
constructs for the specification of assume-guarantee contracts. Each contract is
linked to a node and has access only to the input/output streams of that node.



4 A. Mavridou et al.

Fig. 1: fret-cocosim Workflow.

The body of a contract contains assume (A) and guarantee (G) statements as
well as mode and internal variable declarations. Modes consist of require (R)
and ensure (E) statements. A mode is active at time t, if

∧
R = true at t. As-

sumptions and requires are expressions over input streams, while guarantees and
ensures are expressions over input/output streams. A node satisfies a contract
C = (A,G′) if it satisfies H A⇒ G′, where G′ = G ∪ {Ri ⇒ Ei}.

The main goal of the open-source cocosim framework [6] is to support
the analysis of safety-critical Simulink systems. Discrete systems developed in
Simulink can be faithfully translated into Lustre [22], which is the intermediate
language of cocosim. Using the Simulink API, cocosim iterates over Simulink
blocks and produces equivalent Lustre nodes. Different Lustre-based tools can
check the validity of the generated Lustre nodes, by using SMT-based model
checking. In this paper, we perform analysis with the Kind2 [4] model-checker
that uses k-induction, IC3/PDR [1], and invariant generation [16].

3 FRET-COCOSIM Workflow

Figure 1 shows the steps of the fret-cocosim workflow. The contributions of
this paper are highlighted by gray boxes and include steps 1b, 2b, 3, 4, 5, and
7. Continuous arrows represent manually-performed steps, whereas steps shown
as dashed arrows are performed automatically.

In Step 1a, requirements are manually written in fretish, which are sub-
sequently formalized by FRET (Step 2a) as pmLTL formulas. Our cocospec
code generator cocogen (Steps 2b and 3) takes pmLTL formulas and mod-
el information and generates a cocospec representation. Since cocospec, as a
stand-alone tool does not require fret, Steps 1a and 2a are optional (depicted by
dotted circles). We ensure in the workflow that requirements and analysis activi-
ties are fully aligned. As a result, 1) Simulink monitors are derived directly from
the requirements (and not handcrafted), and 2) analysis results can be traced
back not only at the model level but also at the level of requirements so that
the requirements engineer can benefit from insights gained through the analysis.



Bridging the Gap Between Requirements and Model Analysis 5

To do that, we need information that will bridge the gap between requirement
propositions and model signals/architecture. In Step 1b, this information can be
automatically generated from a Simulink model. In Step 2b, the mapping be-
tween the requirements’ propositions and the model signals/architecture can be
automatically or manually performed. In Step 3, cocogen generates cocospec
contracts and traceability information.

The generated files are imported into cocosim along with the Simulink mod-
el. Then cocosim automatically generates a new Simulink model with monitor
components generated from the imported contracts that are connected to the
Simlink model using traceability information. At Step 5, cocosim either: 1) gen-
erates equivalent Lustre code, which is annotated with the cocospec specifi-
cation properties that can be subsequently analyzed by the Kind2 and Zustre
model checkers (Step 6); or 2) transforms the cocospec monitors to make the
new system analyzable by SLDV. Any counterexample generated during the
analysis can be traced back to Simulink or fret for simulation (Step 7).

4 COCOSPEC Specification Generation

Requirement Examples Next, we provide examples of LMCPS requirements
that were given to us in natural language and show how we wrote them in
fretish. Let us consider requirement [FSM-001] from the Finite State Ma-
chine (FSM) challenge problem, which is an abstraction of an advanced autopi-
lot system with an independent sensor platform. The natural language form of
[FSM-001] is : “Exceeding sensor limits shall latch an autopilot pullup when the
pilot is not in control (not standby) and the system is supported without failures
(not apfail)”. A fretish version of this requirement is:

FSM-001: FSM shall always satisfy (limits & autopilot) ⇒ pullup

where autopilot equals (! standby & ! apfail & supported).
Additionally, let us consider requirement [AP-004b]. This challenge problem

includes a realistic full six degree of freedom model of the DeHavilland Beaver
airplane with an autopilot (AP). The natural language form of [AP-004b] is:
“Response to roll step commands shall not exceed 10% overshoot in calm air”.
A fretish version of this requirement is:

AP-004b: in roll hold mode AP shall always satisfy overshoot ≤ 0.1

Architectural Mapping To generate the cocospec monitors and automatical-
ly connect them at the right hierarchical level of the model, we need architectural
information from the model. For instance, for [FSM-001], we need information
about the hierarchical level, i.e., the path, of the model component that corre-
sponds to FSM. Additionally, we need information about the ports that form the
interface of the model component, i.e., name, port type (e.g., Inport, Outport),
datatype (e.g., boolean, double, enum, bus), dimensions of the port and its



6 A. Mavridou et al.

width.5 Our framework provides a mechanism to automatically extract this in-
formation from a Simulink model and import it into cocogen.

Fig. 2: Limits variable mapping.

Once imported, the architectural
mapping procedure starts (Step 2b),
which includes mapping every com-
ponent and proposition mentioned in
a requirement to a model component
and a model port path, respective-
ly. There are two ways to do the ar-
chitectural mapping: in the fortunate
case that the same names are used
both in the requirements and in the
model, cocogen automatically con-
structs the desired mapping. From our
experience however, this is usually not
the case. Different engineers work on
requirements and on models, and these two parts are hardly ever aligned. For
this reason, we provide an easy-to-use user interface in cocogen, through which
the user can pick the path of the corresponding model component or port from
a drop-down menu (see Figure 2) and map it with a requirement component or
proposition. Then cocogen can automatically identify all the other required
information (port types, data types, dimensions, etc) to generate correct-by-
construction monitors and corresponding traceability information. Alternatively,
a user may provide the required information manually.

Library of pmLTL Operators in Lustre cocogen receives as input a
pmLTL formula, which it translates into cocospec code. To facilitate this trans-
lation, we have created a library of pmLTL operators in Lustre. Before, we go
through the library of operators, let us briefly review the two main Lustre op-
erators: 1) the unary right-shift pre (for previous) operator and the binary
initialization -> (for followed-by) operator. At time t = 0, pre p is undefined for
an expression p, while for each time step t > 0 it returns the value of p at t− 1.
At time t = 0, p -> q returns the value of p at t = 0, while for t > 0 it returns
the value of q at t.

We now present the pmLTL operators O, H, S, SI.

--Once --Historically
node O(X:bool) returns (Y:bool); node H(X:bool) returns (Y:bool);
let let

Y = X or (false -> pre Y); Y = X -> (X and (pre Y));
tel tel

--Y since X --Y since inclusive X
node S(X,Y: bool) returns (Z:bool); node SI(X,Y: bool) returns (Z:bool);
let let
Z = X or (Y and (false -> pre Z)); Z = Y and (X or (false -> pre Z));
tel tel

5 https://www.mathworks.com/help/simulink/slref/common-block-parameters.

html

https://www.mathworks.com/help/simulink/slref/common-block-parameters.html
https://www.mathworks.com/help/simulink/slref/common-block-parameters.html


Bridging the Gap Between Requirements and Model Analysis 7

To support timed modifiers that constrain an operator’s scope to a specific
interval [l, r], we defined additional Lustre nodes. For instance for the timed
version of O, we added the following nodes to the library:

--Timed Once: general case
node OT(const L: int; const R: int; X: bool;) returns (Y: bool);

var D:bool;
let

D = delay(X,R);
Y = OTlore(L-R,D);

tel

--Timed Once: less than or equal to N
node OTlore(const N: int; X: bool; ) returns (Y: bool);

var C:int;
let

C = if X then 0
else (-1 -> pre C + (if pre C <0 then 0 else 1));

Y = 0 <= C and C <= N;
tel

The delay function delays input X by R time units to define the right bound
of the interval in which the valuation of X must be checked. Once the input X

has been delayed by R time steps, we can treat the R bound as zero and use
the OTlore (Once Timed less than or equal to) node to check the valuation of
X in the interval defined by the 0 (current) time step and the left bound L-R.
OTlore is implemented using an integer counter C, which counts the number of
time steps that occurred since the last occurrence of property X. If the event
has never occurred, the counter keeps its initial value of −1. Below we can see a
simple example with N = 2 for time steps t=[0..7]:

X F F F T F F F F . . .
C −1 −1 −1 0 1 2 3 4 . . .
Y F F F T T T F F . . .
t 0 1 2 3 4 5 6 7 . . .

Other time-constrained operators are defined through OT using the usual
temporal logic equivalences.

-- Timed Historically: general case
node HT(const L: int; const R: int; X: bool;) returns (Y: bool);
let

Y = not OT(L,R,not X);
tel

-- Timed Since: general case
node ST(const L: int; const R: int; X: bool; Y: bool;) returns (Z: bool);
let

Z = S(X, Y) and OT(L,R,X);
tel

COCOSPEC Code Generation From the fretish version of [FSM-001]

(Section 4), fret generates the following pmLTL formula: H f, where f is a
placeholder for (limits & autopilot) ⇒ pullup. The generated cocospec
code uses the data types of the input and output variables, provided through
the architectural mapping, to generate the contract signature.



8 A. Mavridou et al.

contract FSMSpec(apfail:bool; limits:bool; standby:bool; supported:bool; )
returns (pullup: bool; );

let
var autopilot:bool=supported and not apfail and not standby;
guarantee "FSM001" (limits and autopilot) => (pullup);
tel

Below we can see part of the generated code for roll hold mode from require-
ment [AP-004b]. For the complete code, cocogen aggregates all requirements
that refer to the same mode to generate all ensure and guarantee statements.

var overshoot : real = (roll - step)/step;
mode roll_hold_mode (

ensure "AP -004b" overshoot <= 0.1;
);

Verifying COCOSPEC Formalizations We provide assurance that the co-
cospec code generated by our approach captures the intended semantics. We
extend the verification framework provided by fret to check whether the co-
cospec code of a requirement conforms to the intended fret semantics. The
fret semantics [12] is compositionally defined based on different valuations of
the fretish fields scope, condition, and timing. We call template key a com-
bination of values of these fields, e.g., [in, null, after ] identifies requirements of
the following form: in mode m, the software shall after 2 seconds satisfy P. Our
framework uses the following fret components [12]:
– Trace Generator, which uses two approaches to produce traces, i.e., exam-

ple executions. The first approach uses boundary value analysis and equiv-
alence class to define concrete traces that capture interesting relations of
template keys. The second approach is based on random trace generation
and produces 60000 different random traces in range [0..12].

– Oracle, which takes a trace and a verification pair 〈t, φ〉, where t is a tem-
plate key and φ is its corresponding formalization and computes the truth
value of t on the trace, based on the fret semantics of t.

For cocogen, we have additionally developed the following components:
– CoCoSpec Retriever, which produces the set of all possible verification pairs
〈t, φ〉, that must be checked.

– CoCoSpec Evaluator, which receives a trace, a verification pair 〈t, φ〉, and
an expected value e from the Oracle and checks whether φ evaluates to e
on the trace. Essentially, it checks whether the generated cocospec code
conforms to the template key semantics, for a particular execution trace. For
conformance checking, CoCoSpec Evaluator uses the Kind2 model checker.

Trace Generator outputs a trace e. Both φ and e are then fed to the Kind2
model checker. We use the interpreter Kind2 mode to check conformity, in which
Kind2 uses the input valuations from the trace file to evaluate the cocospec
formalization at each time step. Since Lustre formalizations are based on past-
time formulas, those are evaluated at the end of the trace.

Our verification framework helped us detect discrepancies between the co-
cospec generated formulas and the intended fret template key semantics. De-
spite our deep knowledge of temporal logic operators and their semantics, we



Bridging the Gap Between Requirements and Model Analysis 9

detected a problem regarding our definition of the timed once operator in co-
cospec. Let us consider the generated formalization φ that corresponds to the
[null,null,within] template key (no scope, no condition, within timing).

node test164_3_null_null_within_CoCoSpec (RES: bool) returns (PROP: bool);
var FTP: bool = true -> false;
let

PROP = H((H(not RES)) => OT(1,0,FTP));
tel

In particular, this means that if RES has not occurred yet, we are either within
1 step from FTP (First Time Point of trace) or the property is violated. The
following discrepancy was reported by our framework over a trace interval [0..12]:

Mode: {[8..11]}; Duration: 2; Response: {[2..4][7..10]}
Discrepancy null,null,within: expected: true; Kind2: false.

Since the scope is null, φ is evaluated throughout the entire trace. Additionally
no condition means that RES must occur at time steps 0, 1, or 2. Our initial
definition of the (OT) operator was non-inclusive of the right bound interval, i.e.,
[l, r) instead of [l, r], which would omit evaluating φ at time step 2.

5 Checking requirements against the Simulink model

cocosim attaches cocospec contracts to Simulink subsystems. This process
relies heavily on cocosim’s Lustre-to-Simulink compiler. The first compilation
step is performed by LustreC [11], an open-source Lustre compiler, produces in-
formation necessary to extract the model structure. The second step transforms
the produced structure into Simulink blocks, relying on the Simulink API. Each
Lustre node is defined as a Simulink subsystem, hence each node call is trans-
formed into an instance of that subsystem in Simulink. Mathematical operators
are translated into equivalent Simulink blocks. The pre operator is implemented
as a Simulink Unit delay block. cocospec constructs (i.e., assume, guarantee,
require and ensure) are also compiled and translated: their equivalent Simulink
blocks are provided by a dedicated cocosim library [6]. Figure 3 illustrates the
generated Simulink observer for requirement [FSM-001].

After importing cocospec contracts as Simulink observers, the user may rely
on cocosim backends to evaluate these contracts; cocosim acts as a verification
hub, providing easy access to existing solvers. cocosim supports checking the
validity of requirements against the Simulink model: transforming the model to
an equivalent Lustre model with contracts. Kind2 or Zustre model checkers were
then used to check the validity of the properties. In case of a counterexample,
cocosim creates a harness model for the user to simulate the trace of the coun-
terexample, and thus, support model or specification debugging. The contracts
can also be transformed into SLDV-compatible verification blocks. SLDV can
then be used to prove properties, generate test cases, or evaluate the MC-DC
test coverage of a set of tests. The translation technique preserves the struc-
tural and modal behavior of the system, allowing us to compositionally analyze
it. cocosim carefully handles traceability during model analysis, which enables
simulating counter-examples on the model.



10 A. Mavridou et al.

Fig. 3: The generated Simulink version of requirement [FSM-001].

By translating cocospec contracts into executable Simulink blocks, the lat-
ter can be used as monitors for simulation, testing, and runtime verification.
Additionally, the required condition (activation) of a mode can be used to check
whether a mode can be activated or not for a given test suite. Checking the fea-
sibility of a mode activation allows us to perform a form of semantics coverage.

6 LMCPS Challenge Problems and Lessons Learned

The LMCPS case study [9] is representative of flight-critical systems and is
publicly available.6 It includes a set of challenge problems, which range from
basic integrators to more complex autopilots. The analysis of these challenge
problems is not an easy task due to the use of transcendental functions (e.g.,
trigonometric functions), nonlinear functions and discontinuous math (e.g. abs,
inverse of matrices), multi-dimensional signals, and delay blocks. The complete
case study and analysis results are presented in our technical report.7

For the analysis we used the Kind2 and SLDV tools. The verification results
are summarized in Table 1. The analysis was carried out on a MacBook Pro with
3.1 GHz intel Core i7 and 16 GB Memory, with a R2019b Matlab/Simulink, and
a v1.1.0 Kind2.

6.1 Lessons Learned

Counterexample interpretation. We found the ability to interpret and trace
counterexamples both at the model and requirement levels particularly useful,
since for certain cases, we did not need the model to interpret the counterex-
amples. For instance, in the FSM challenge problem we found several pairs of

6 https://github.com/hbourbouh/lm_challenges
7 https://drive.google.com/drive/u/1/folders/1GsKiu_O9_0SK_

5XcLZZefi6g9MDAe0CC

https://github.com/hbourbouh/lm_challenges
https://drive.google.com/drive/u/1/folders/1GsKiu_O9_0SK_5XcLZZefi6g9MDAe0CC
https://drive.google.com/drive/u/1/folders/1GsKiu_O9_0SK_5XcLZZefi6g9MDAe0CC


Bridging the Gap Between Requirements and Model Analysis 11

Kind2 SLDV

Name NR NF NA V/IN/UN t(s) V/IN/UN t(s)

Triplex Signal Monitor (TSM) 6 6 6 5/1/0 37.7 5/1/0 26

Finite State Machine (FSM) 13 13 13 7/6/0 141.1 7/6/0 96

Tustin Integrator (TUI) 4 3 3 2/1/0 19.2 2/1/0 19

Control Loop Regulators (REG) 10 10 10 1/5/4 TO 1/0/9 TO

Nonlinear Guidance (NLG) 7 7 7 0/0/7 TO 0/0/7 15

Feedforward Neural Network (NN) 4 4 4 0/0/4 TO 0/0/4 TO

Control Effector Blender (EB) 5 3 3 0/0/3 TO 0/0/3 131

6DoF Autopilot (AP) 14 13 8 5/3/0 40.6 5/3/0 32

System Safety Monitor (SWIM) 3 3 3 2/1/0 25 0/1/2 18

Euler Transformation (EUL) 8 7 7 1/6/0 43 1/0/6 30

Total 74 69 64 23/23/18 21/12/31

Table 1: LMCPS verification results. NR: #requirements, NF : #formalized re-
quirements, NA: # requirements analyzed by Kind2 and SLDV. Analysis results
categorized by Valid/INvalid/UNdecided. Timeout (TO) was set to 2 hours.

requirements that were not mutually exclusive, i.e., their preconditions could
be simultaneously satisfied leading to unrealizable specifications. This type of
analysis, e.g., consistency, realizability checking, can be performed directly at
the level of requirements. To perform such analysis, we still need information
regarding the type (input, output), and data types of the requirements’ proposi-
tions, for which we can use cocogen to infer8/map and automatically generate
the specifications.

Inputs T=0 T=1 T=2 T=3
standby F F F F
apfail F F F F
supported T T T T
limits T F T F
Outputs
pullup F T F F

Table 2: [FSM-001v2] Counter-example.

Requirements elicitation. The re-
quirements were initially written in
natural language and as a result their
semantics was often ambiguous. For
instance, we were not sure how to in-
terpret requirement [FSM-001]. Our
initial understanding of this require-
ment was the fretish version pre-
sented in Section 4, where all condi-
tions must be satisfied at the same
time step for pullup to be activated. But after revisiting the requirement, we
thought that potentially there is a time step difference between limits = true

and the activation of pullup. Thus, we wrote the following second version:

FSM-001v2: if autopilot & pre autopilot & pre limits FSM shall immediately satisfy pullup

Both versions, however, were shown to be invalid.

Reasoning for violated properties. Having a tight integration between re-
quirement and verification activities allowed us to use different approaches to
interpret violated properties. In particular, we found useful the combination of

8 cocogen supports automatic type inference directly from fretish.



12 A. Mavridou et al.

reasoning at the level of requirements and counterexample simulation at the
model level. When a property was shown to be invalid, we tried to understand
the reason; i.e., is it because of a faulty requirement or a faulty model? Since
in most cases, our formalized requirements were invariants of the form H (A ⇒
B), we used two approaches: 1) check a weaker property, e.g., by strengthening
the preconditions, i.e., A′ ⊂ A and check whether the invariant H (A′ ⇒ B)
is satisfied, and 2) check feasibility of B with bounded model checking, i.e., H
(¬B), in which case the model checker returns counterexamples that could help
construct stronger preconditions for B to be satisfied. Our case study showed
that using these approaches was helpful for reasoning about violated properties.
Furthermore, simulation of counterexamples was helpful for identifying weaker
properties and producing meaningful reasoning scenarios. For instance, let us
consider requirement FSM-001v2, for which Kind2 returned the counterexample
shown in Table 2. It is clear that even though pullup was activated the first
time limits = true, it was not activated the second time limits = true.

To better understand the behavior of the model, we performed a simulation
based on this counterexample. Figure 4 illustrates a scenario when limits =

true occurs multiple times during the autopilot operation, during which con-
dition autopilot must be true. We found that pullup is latched only when
limits = true in the previous step and has not been true for at least three
steps before that. Based on this simulation, we were able to refine requirement
FSM-001v2 to form a weaker property that was proven valid.

Fig. 4: Simulation of [FSM-001v2]

What we gained by using
COCOSPEC. cocospec mo-
des introduce structure in-
to the specification. A mo-
de has preconditions that de-
scribe the activation of the
mode (Requires) and actu-
al conditions to be checked
(Ensures) of the form H (R
⇒ E). Our case study showed

that it is interesting to check whether the activation of a mode R is reachable.
If not, the property is trivially true. So, in terms of analysis, showing that R is
reachable allows us to have a better understanding of whether the property is
meaningful for the current model. For instance, we discovered that in the 6DoF
Autopilot challenge problem, one of the modes was never reachable.

Scalability of the approach. Our architectural mapping approach allows us
to deploy cocospec specifications at different levels of the model behavior. For
instance, in the FSM challenge problem, we generated three different contracts
that we deployed at three different hierarchical levels of the model. This is espe-
cially important for complex models where verification does not scale for global
scopes. We applied modular verification to 20 out of the 69 requirements.

Comparison of analysis tools. The features provided by our framework are
generic and can be used to integrate a variety of analysis tools, with different



Bridging the Gap Between Requirements and Model Analysis 13

strengths and weaknesses. In our case study we used and compared the Kind2
and SLDV analysis tools, which performed similarly for 7 out of the 10 challenge
problems. For the remaining 3 case studies, Kind2 was able to return an answer
(valid/invalid) by using abstractions of non-linear functions such as trigono-
metric functions and the sqrt function, in comparison with SLDV that mostly
returned undecided. Overall, SLDV was faster, i.e., SLDV returned undecided
due to nonlinearities or stubbing in a shorter time than Kind2, which sometimes
reached timeout without converging to an answer. One main difference between
the two tools is when it comes to verifying requirements in sub-components:
SLDV analyzes them against the top level component, whereas Kind2 can be
used in both settings, locally on the sub-component level and globally. We expe-
rienced an interesting issue in the autopilot case study, which has an algebraic
loop in the Simulink model. An algebraic loop occurs when there is a circular
dependency of block outputs and inputs in the same time-step. Simulink solves it
numerically at each step using the ODE (Ordinary Differential Equation) solver,
whereas Lustre forbids such constructs. Strangely, Kind2 was not able to detect
the algebraic loop. We contacted a Kind2 developer and confirmed that there is
a bug in the algebraic loop detection algorithm.

7 Related work

An example of work aiming to connect assertions to models is the AGREE
tool [7]. It provides a specification layer for the AADL architecture language
that enables specification of assume/guarantee contracts on components using
the Lustre language. The specifications are therefore in a past-time (bounded)
temporal logic and are reasoned about using model checkers for Lustre. This
enables a compositional validation, at the architecture level, of the components’
interactions. In some case, when the underlying component is a Simulink model,
the Lustre specification can be evaluated with the SLDV solver thanks to a
compilation of the observer as a MATLAB block. The approach, however, does
not provide means to support the expression of natural language requirements.

Regarding the expression and formalization of requirements, there are vari-
ous solutions: from less formal but widely used in the industry to more advanced
frameworks. A widespread solution is IBM Rational DOORS, that provides a
framework to describe requirements and record their dependencies. This is crit-
ical when developing in a certified context where traceability and refinement of
requirements play a major role. DOORS typically deals with natural language
requirements but does not provide any means to associate a formal semantics
nor connect to formal verification.

Without trying to perform formal verification of requirements, the tool Stim-
ulus [15] intends to provide an intermediate solution between pure traceability
solutions and formal verification tools, supporting the debugging of requirements,
with a dataflow semantics. Using patterns in natural languages, similar to FRET,
it provides means to evaluate the consistency of these requirements, as well as
the possible lack of specificity. Without providing details on the algorithmic as-
pects of the approach, a set of test cases, satisfying the requirements is shown to



14 A. Mavridou et al.

the user, which may highlight undesired behavior. When associated components
are implemented, the formalized requirements can be used as test oracles. The
approach is interesting but does not provide insights on the formalization of the
properties, the mathematical frameworks used to synthesize the scenarios, nor
any connections to model based design tools and formal verification.

The Spider tool [18] allows users to incrementally derive, by means of instan-
tiating a grammar, a restricted natural language requirement. The connection
to a system is made via a model where its elements can be selected in the built-
up requirement. The requirement is translated to a formal logic sentence that
can be verified by an analysis tool. The grammar, formalization, connection to
software, and formal analysis tool are configurable; for example, in one instance,
it supports real-time relevant patterns, metric temporal logic, UML models, and
the Spin [14] model checker and the UML timing analysis tool Hydra [17]. Our
work supports similar real-time patterns, but, metric past-time logic, and the
connection to Simulink models is more elaborate.

Last, the SpeAR tool [10] accepts requirements written in a restricted nat-
ural language that has a past-time temporal logic semantics. It can then check
entailment of properties from assumptions and requirements, and n-step consis-
tency of the assumptions and requirements. It was proposed by the authors of
the AGREE framework but no connection is mentioned yet.

8 Conclusion

We described our framework in which requirements are written in a structured
natural language and then associated to Simulink model components where they
can be analyzed by model-checkers. The proposed approach was applied to sub-
stantial challenge problems from Lockheed Martin on which the elicitation and
verification tools showed adequate expressivity and verification capabilities. In
cases where the verification concluded that the model failed to satisfy a require-
ment, a counter-example was generated to produce feedback for further model
and requirement analysis. The features provided by our framework are generic
and can be used to integrate other requirement elicitation and analysis tools. In
the future, we plan to automate the reasoning of violated properties approach
that we used in LMCPS and also address the analysis of more advanced numeri-
cal components, which raised issues due to SMT solver limitations. We also plan
on connecting runtime analysis tools to our framework, for cases where model
checkers do not scale, or to support analysis during deployment.

References

1. Bradley, A.R.: IC3 and beyond: Incremental, inductive verification. In:
Proc. CAV 2012. Springer (2012). https://doi.org/10.1007/978-3-642-31424-7 4

2. Brat, G., Bushnell, D.H., Davies, M., Giannakopoulou, D., Howar, F., Kahsai, T.:
Verifying the safety of a flight-critical system. In: Proc. FM 2015 pp. 308–324.
Springer (2015). https://doi.org/10.1007/978-3-319-19249-9 20

https://doi.org/10.1007/978-3-642-31424-7_4
https://doi.org/10.1007/978-3-319-19249-9_20


Bridging the Gap Between Requirements and Model Analysis 15

3. Champion, A., Gurfinkel, A., Kahsai, T., Tinelli, C.: CoCoSpec: A mode-aware
contract language for reactive systems. In: Proc. SEFM 2016, pp. 347–366 (2016).
https://doi.org/10.1007/978-3-319-41591-8 24

4. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Proc. CAV, pp. 510–517. (2016). https://doi.org/10.1007/978-3-319-41540-6 29

5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Proc. CAV, pp. 359–364. Springer (2002)

6. CoCo-team: CoCoSim – Automated Analysis Framework for Simulink. https://
github.com/coco-team/cocoSim2

7. Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Composi-
tional verification of architectural models. In: Proc. NfM’12, pp. 126–140. (2012)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proc. ICSE, pp. 411–420. IEEE (1999)

9. Elliott, C.: An example set of cyber-physical V&V challenges for S5. In:
Proc. S5 (2016). http://mys5.org/Proceedings/2016/Day_2/2016-S5-Day2_

0945_Elliott.pdf

10. Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis,
J.A.: SpeAR v2.0: formalized past LTL specification and analysis of requirements.
In Proc. NfM, pp. 420–426. Springer (2017)

11. Garoche, P., Kahsai, T., Thirioux, X.: LustreC, https://github.com/coco-team/
lustrec

12. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schummann, J.: Generation
of formal requirements from structured natural language (2019), under Submission

13. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language Lustre. Proc. IEEE 79(9), 1305–1320 (1991)

14. Holzmann, G.: Spin Model Checker: Primer and Reference Manual. Addison-
Wesley. (2003)

15. Jeannet, B., Gaucher, F.: Debugging Embedded Systems Requirements with
STIMULUS: an Automotive Case-Study. In: Proc. ERTS 2016 (2016). https:

//hal.archives-ouvertes.fr/hal-01292286

16. Kahsai, T., Garoche, P., Tinelli, C., Whalen, M.: Incremental verification with
mode variable invariants in state machines. In: Proc. NfM’4, pp. 388–402. Springer
(2012). https://doi.org/10.1007/978-3-642-28891-3 35

17. Konrad, S., Campbell, L.A., Cheng, B.H.C.: Automated analysis of timing infor-
mation in UML diagrams. In: Proc. ASE’04, pp. 350–353 (2004)

18. Konrad, S., Cheng, B.H.C.: Facilitating the construction of specifica-
tion pattern-based properties. In: Proc. RE, pp. 329–338 IEEE (2005).
https://doi.org/10.1109/RE.2005.29

19. RTCA: DO-178C: software considerations in airborne systems and equipment cer-
tification. (2011)

20. RTCA: DO-333: formal methods supplement to DO-178C and DO-278A. (2011)
21. Souyris, J., Wiels, V., Delmas, D., Delseny, H.: Formal verification of Avionics

Software Products. In: Proc. FM, pp. 532–546 (2009). https://doi.org/10.1007/978-
3-642-05089-3 34

22. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time
Simulink to Lustre. ACM Trans. Emb. Comp. Syst. 4(4), 779–818 (2005).
https://doi.org/10.1145/1113830.1113834

https://doi.org/10.1007/978-3-319-41591-8_24
https://doi.org/10.1007/978-3-319-41540-6_29
https://github.com/coco-team/cocoSim2
https://github.com/coco-team/cocoSim2
http://mys5.org/Proceedings/2016/Day_2/2016-S5-Day2_0945_Elliott.pdf
http://mys5.org/Proceedings/2016/Day_2/2016-S5-Day2_0945_Elliott.pdf
https://github.com/coco-team/lustrec
https://github.com/coco-team/lustrec
https://hal.archives-ouvertes.fr/hal-01292286
https://hal.archives-ouvertes.fr/hal-01292286
https://doi.org/10.1007/978-3-642-28891-3_35
https://doi.org/10.1109/RE.2005.29
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/10.1145/1113830.1113834

	Bridging the Gap Between Requirements and Model Analysis : Evaluation on Ten Cyber-Physical Challenge Problems

