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Guidance and Navigation Challenges                                 

for a Mars Ascent Vehicle

Abstract—This work presents studies and analysis in support of 

a Mars Ascent Vehicle as part of a Martian Sample Return 

campaign. The vehicle design has been ongoing, with rapid 

development of a 6 Degree of Freedom simulation to capture full 

vehicle dispersions and integrated performance of vehicle, 

guidance, navigation and control. The maturation of this 

simulation is presented to provide an overview of its capabilities 

added over the past year of effort. The results describe in detail 

guidance algorithm development to increase the system’s 

robustness to thrust sensitivities. Navigation performance and 

sensitivity analysis are included to describe the capabilities of 

the current design as well as identify primary drivers of 

insertion performance.  Lastly, integrated vehicle 6DOF 

statistical results are presented to provide insight into the 

nominal performance of the current vehicle and insight into 

system-level drivers. Future work is described to outline the 

continuing maturation and development of the MSR MAV 

ascent vehicle. 
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1. INTRODUCTION 

As part of the next phase of Martian planetary science, the 

Mars 2020 rover includes the capability to collect samples of 

local surface material and prepare them for collection and 

return to Earth as part of a Martian Sample Return 

architecture. This concept of operations includes a lander 

housing a rover to collect the samples, an ascent vehicle to 

launch them into Martian orbit, and a separate orbiter which 

will rendezvous, capture, and return the samples to Earth. The 

focus of this work is in regards to the specific Guidance and 

Navigation challenges of launching a rocket from another's 

planet surface. The need for landing an integrated system 

consisting of these elements pushes the bounds of current 

capability. The long duration of the mission restricts the 

potential propellant options, focusing on solid or storable, 

liquid or hybrid systems. Uncertainties in propellant 

performance of the solid system bring forth a need for closed 

loop guidance algorithms that can manage excess energy. 

This research discusses the implementation and assessment 

of flight algorithms to meet the insertion requirements for the 

vehicles under consideration. Particular focus is placed on 

algorithms with energy management capability as well as 

full-closed solutions using traditional launch vehicle 

algorithms, such as Powered Explicit Guidance. The 

performance capability of these algorithms is assessed 

against the two reference solid and hybrid propulsion 

architectures against algorithm complexity, robustness, and 

insertion performance while simulating vehicle disturbances 

within a six degree of freedom simulation environment. 

With the need for constrained mass and closed-loop 

guidance, the navigation system also faces conflicting 

requirements of performance vs. size.  For closed-loop 

guidance approaches, any navigation errors directly correlate 

into insertion error. As such, a high quality solution is 

required. Due to the volume and mass limitations of the 

integrated Martian lander’s capability, navigation-grade 

solutions are not feasible. Additionally, the system needs to 

be robust to the launch environment and highly reliable. In 

order to meet these requirements, lower grade inertial 

measurement units (IMU) must be used for inertial 

navigation. This study provides a review of the potential IMU 

options available and their performance with an integrated 

vehicle for the ascent trajectories. Sensitivity studies show 

the need for an accurate initial attitude prior to launch. In 

order to attain this, gyrocompassing or external 

measurements must be used. The capability of the potential 

sensors is assessed in detail. Lastly, in order to reduce mass 

and maintain insertion accuracy, this paper also considers the 

use of small size star trackers to perform attitude updates, 

providing an integration approach and description of the 

tradeoff between IMU accuracy/weight with enhanced 

robustness from a star tracker. The additional constraints in 

this use case are also described. Combined with guidance 

algorithm development, this paper provides an overview of 

the challenges and potential solutions to successful rocket 

flight from the Martian surface 

2. SIMULATION EVOLUTION  

Successful retrieval of Martian surface samples from orbit 

around Mars depends heavily on the orbital insertion 
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accuracy of the ascent vehicle. Such an ascent vehicle must 

be capable of delivering the payload to the target orbit (within 

retrieval vehicle tolerances) under a variety of  unpredictable 

conditions. Though not limited to this list, these dispersions 

can be variations in launch azimuth or elevation, atmospheric 

dust or wind conditions, solid rocket motor total impulse 

delivered, IMU orientation error, thrust misalignments, etc.  

The determination of whether a notional vehicle design can 

meet such performance demands requires both a 6 degree-of-

freedom (6DOF) simulation capable of including these 

varying conditions, and a GNC architecture capable of 

adapting to the conditions. Previous studies employed the 

original Mars Ascent vehicle aNalysis Tool In Simscape 

(MANTIS) [1] tool to support detailed vehicle requirements 

development and analysis. As vehicle concepts matured 

however, additions and upgrades to MANTIS were required 

in order to better understand vehicle performance across the 

spectrum of dispersed parameters, such as engine dispersions 

and launch day uncertainties.   

As discussed in [1], MANTIS is a 6DOF ascent propagation 

tool created using Simscape Multibody [2]. The high level 

architecture of MANTIS is a plant block which propagates 

and integrates the dynamics, a sensor block to interpret 

signals from the plant and feed to GNC (guidance, 

navigation, and control), and the GNC block which uses 

measurements from the sensors to determine which signals to 

send forward to the plant: thrust vector commands, RCS 

(reaction control system) commands, staging commands (if 

applicable), and engine startup/shutdown commands (if 

applicable). 

Several upgrades to the plant model were required to better 

assess 6DOF vehicle performance in dispersed conditions. 

The standard atmosphere model was replaced with an 

interface to incorporate the atmosphere and winds outputs 

from an external call to Mars-GRAM 2010 (Mars Global 

Reference Atmospheric Model 2010) [3]. Propulsion and 

mass propagation were upgraded to incorporate guidance-

commanded staging and variable stage-two ignition timing 

for the solid motor vehicle, and variable startup/shutdown 

times and variable motor transients for the hybrid motor 

vehicle.  Various changes throughout the plant also enabled 

the introduction of off-nominal conditions in initial mass, 

moments of inertia, CG location, winds, atmosphere, motor 

performance, and aerodynamics, all controlled via user-

defined input flags.  

The majority of the upgrades however, were in the sensor and 

GNC blocks for both vehicles. The original sensor block was 

replaced with a more detailed IMU model, and the capability 

to switch between IMU models via user input flags. A star 

tracker model was also added. These updates facilitate 

quicker turn-around in performing navigation sensitivity 

analysis. The guidance block was overhauled from the 

original MANTIS framework to allow for the inclusion of 

updated algorithms. These updates were implemented in 

early to mid-2019 in advance of a vehicle design cycle and 

analysis cycle.. Guidance and control are now managed 

according to flight phase, and guidance undergoes the 

following process: 

1. Receive state information from navigation 

2. Calculate current orbital elements 

3. Update the phase manager 

4. Load appropriate guidance targets based on phase 

5. Update the time-to-ignition calculation (if 

applicable) for the second burn 

6. Perform closed loop guidance calculations (if 

applicable) 

7. Transform the guidance command to a controller 

command 

8. Send the appropriate commands forward  

In the case of the solid motor vehicle, guidance also 

determines when to drop the first stage inert mass and ignite 

the second stage. In the case of the hybrid motor vehicle, 

guidance determines the engine startup/shutdown commands 

to send to the plant. Various options for stage one and stage 

two guidance are also easily changed via input flags, enabling 

rapid assessment of the effects of different combinations of 

implemented guidance algorithms. Guidance targets are 

derived from optimal 3DOF trajectories using NASA 

Langley Research Center’s POST2 (Program to Optimize 

Simulated Trajectories) [4]. 

 

In addition to upgrades to the base simulation, additional 

functionality was added to enable rapid turn-around of linear 

sensitivity studies and statistically-based dispersion studies. 

This additional capability allowed analysis of the orbital 

insertion effects of dispersing a range of parameters 

throughout the plant, sensor, and GNC models to simulate 

off-nominal conditions and assess orbital dispersion results 

through Monte Carlo analysis. 

 

These upgrades to the MANTIS simulation enable a more 

detailed, dispersible simulation of the vehicle mode. In this 

way variable guidance algorithms, subsystem mass 

properties, motor properties, IMU models, and control laws 

can be tested and assessed in a dispersed environment.  

 

3. GUIDANCE DESIGN  

The importance of accurate orbital insertion mandates 

effective guidance strategies capable of responding to 

unexpected dispersions in vehicle and/or environmental 

parameters outside of pre-flight assumptions. In addition, 

responding to unpredicted conditions requires performance 

margin. For example, higher than anticipated drag and off-

nominal launch azimuth require additional delta-v capability 

in the vehicle in order to fly the sub-optimal trajectory 

required to insert into the target orbit. This performance 

margin manifests itself in different ways for each vehicle. 

The solid motor vehicle must burn all propellant available 

once a specific motor is ignited, and thus will expend its 

entire delta-v capability, regardless of the delta-v required to 

insert into the target orbit. The hybrid motor vehicle can cut-

off its engine when commanded by guidance, preserving its 

excess energy in unspent propellant. The guidance strategy 
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for each vehicle must respond to these inherent performance 

margin differences. 

 

The original guidance concepts for the ascent vehicle 

employed a single, flexible guidance algorithm for both the 

solid motor or hybrid motor concepts. Subsequent analysis 

has demonstrated the need for independent guidance 

algorithms for each vehicle in order to account for both 

performance dispersions and available strategies for energy 

management. Since the computational capability of the 

avionics has yet to be analyzed, simple, robust guidance 

algorithms are prioritized in the current design whenever 

possible. The solid motor vehicle guidance is explained first, 

followed by the hybrid motor vehicle guidance. 

 

Solid Motor Vehicle Guidance 

The first stage solid motor vehicle guidance employs open-

loop guidance in which the vehicle commands a series of roll, 

pitch, and yaw angles from a pre-loaded lookup table as a 

function of vehicle altitude. The lookup table is derived from 

an optimized 3DOF trajectory using POST2 [4].  

 

Second stage guidance for the solid motor vehicle employs 

SXS (Simple Cross-product Steering) [5]. This closed-loop 

guidance (CLG) algorithm is being developed at Marshall 

Space Flight Center (MSFC), and is based in cross-product 

steering (CPS) [7]. The algorithm is designed to target a 

desired semi-major axis and orbital plane, functioning 

without any inherent knowledge of motor performance.  The 

output of SXS is a Vgo vector: the difference between the 

current vehicle’s inertial velocity vector as estimated by 

navigation, and the inertial velocity vector calculated to 

achieve the semi-major axis and orbital plane of the guidance 

target.  The simplicity of this algorithm allows it to function 

in a wide variety of off-nominal vehicle parameters. 

 

The basic flow of SXS is as follows: 

1. Load the RAAN, inclination, and semi-major axis of 

the target orbit (performed once per target set) 

2. Load the current state as estimated by navigation 

3. Calculate the unit vectors of the target orbit frame 

4. Calculate the velocity-desired vector: the inertial 

velocity required to be on the target orbit plane, at 

the vehicle’s current, estimated position, with an 

orbit whose Semi-Major Axis (SMA) matches the 

SMA of the target orbit 

5. Calculate Vgo: velocity desired minus the current, 

estimated inertial velocity 

6. Pass Vgo on to steering and controller functions 

 

Neither open-loop or SXS are capable of managing excess 

energy in the solid motor vehicle. That task is performed by 

energy management. Given that the optimal location to 

perform an impulsive periapsis raise maneuver (PRM) is at 

the apoapsis of the current orbit [6] (or trajectory in this case), 

any impulsive delta-v maneuver not occurring at apoapsis 

will raise periapsis with a less efficient use of delta-v than if 

the burn were performed at apoapsis. The solid motor vehicle 

energy management strategy takes advantage of this fact.  

 

During coast, second stage guidance targets are loaded and 

closed-loop guidance calculations continuously occur. The 

magnitude of the Vgo vector output from guidance can be 

compared to a predicted onboard estimation of the delta-v to 

be gained from the vehicle’s second solid motor. As the 

vehicle coasts toward apoapsis, the delta-v required to 

achieve the target orbit decreases, while the predicted delta-v 

capability from the vehicle’s upper stage changes only 

marginally in response to vehicle mass changes from RCS 

usage. Ignition of the second stage can then be commanded 

when the predicted onboard delta-v matches the required 

delta-v calculated by closed-loop guidance (Vgo).  

 

This energy management strategy effectively shifts the time 

the second stage is ignited from apoapsis to some point prior 

to apoapsis in proportion to the amount of predicted excess 

delta-v capability onboard. The second burn is intentionally 

performed at a sub-optimal time in order to manage excess 

energy. The solid motors are sized so as to nominally impart 

more delta-v than required to meet the target orbit with 

known inert and payload masses, providing the vehicle with 

both the excess energy required to respond to off-nominal 

conditions and a guidance method to reduce the effect of 

those dispersions on orbital insertion accuracy. 

 

The efficacy of this energy management architecture 

however, is heavily dependent on accurately predicting the 

delta-v capability of the second stage. This delta-v estimate 

can be pre-loaded either as a constant, or as an effective 

specific impulse and employ onboard mass-estimation to 

calculate the predicted delta-v. In either case, real-world 

deviations from these estimates translate into orbital insertion 

error. 

 

In addition, it is worth noting that since this energy 

management architecture functions by altering the ignition 

time of the second stage, it cannot address variations in 

environment or performance that occur after second stage 

ignition. 

 

Figures 1, 2, and 3 below show the results of a generic 6DOF 

simulation used to test the results of running the described 

guidance architecture on the upper stage of the vehicle. This 

sim was used to capture specific guidance sensitivities 

independently of the MANTISS simulation. In these runs, the 

6DOF two-stage solid motor vehicle was dispersed by 

increasing the amount of total impulse delivered by stage one 

in each simulation run. The nominal vehicle contained more 

delta-v capability than was required to meet the target orbit 

nominally, and the vehicle targeted a known SMA and orbit 

plane. The runs were performed once with energy 

management active (‘ON’), i.e. igniting the second stage 

when predicted delta-v from stage two matches that required 

by CLG, and again with energy management inactive 

(‘OFF’), i.e. igniting stage two at apoapsis. Figures 1 and 2 

show that without energy management, the vehicle 

overshoots its target, causing an increased apoapsis and 

increasing SMA as the total impulse of stage one increases. 
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In the plots, the blue points are clustered around the simulated 

target altitude conditions. With energy management active 

(‘ON’) however, the increasing apoapsis effect disappears 

and the increase in SMA caused by increasing stage one total 

impulse is minimized. Additionally, Figure 3 shows how the 

delta-time before apoapsis that stage two ignition occurs 

increases as the total impulse delivered from stage one 

increases. For the ‘OFF’ case, the burn time is fixed to occur 

at apoapsis.  
 

 

Figure 1: Effect of Energy Management                         

on Orbit Apoapsis and Periapsis 

 

 

Figure 2: Effect of Energy Management                         

on Semi-major Axis 

 

Figure 3: Effect of Total Impulse Correction on                       

Second Stage Ignition Time  

Hybrid Motor Vehicle Guidance 

The hybrid motor vehicle employs Powered Explicit 

Guidance (PEG) [8] for both burns. PEG is an explicit, path-

adaptive, iterative guidance algorithm which assumes partial-

optimality through applying the linear-tangent steering law. 

Since the hybrid motor vehicle contains the capability to 

command engine shutdown and provides a more constant 

thrust while burning, a wider number of conventional CLG 

algorithms were available. PEG has a history of successful 

flight implementation though the Shuttle program, making it 

a primary candidate for MAV guidance. 

 

Although PEG does not explicitly account for atmospheric 

effects, the iterative nature allows PEG to correct for errors 

in vehicle stage that accumulate due to aerodynamic effects. 

 

The current hybrid vehicle reference trajectory terminates the 

first burn during a state of non-negligible dynamic pressure. 

The current vehicle center of mass, center of pressure, and 

reaction control system thruster locations increase the need to 

address aerodynamic torques in order to maintain 

controllability at the end of the first burn. This is 

accomplished by switching from PEG to an aerodynamic 

angle nulling guidance at a predetermined time before the 

PEG-predicted cutoff time of the first burn. This second 

guidance algorithm uses the current vehicle body orientation, 

as estimated by navigation, to estimate the aerodynamic 

angles, and steers to ramp the angles to zero over a 5-second 

period. Guidance then continues to command zero 

aerodynamic angles as the vehicle coasts through the 

remainder of the appreciable dynamic pressure. This 

approach minimizes the magnitudes of the aerodynamic 

torques in order to maintain body orientation at burnout in a 

vehicle potentially capable of marginal stability 

configurations. 

 

The second burn is initiated at apoapsis, and the engine 

commanded to shutdown when the vehicle has achieved the 

target orbit within guidance tolerances. Excess energy 

remaining is in the form of unspent propellant. 

 

4. NAVIGATION DESIGN ANALYSIS 

The capability of the above discussed guidance algorithms to 

meet orbital insertion performance is inherently limited by 

the ability of the vehicle to track its own state. Due to the lack 

of external infrastructure, the navigation solution must rely o 

a purely inertial solution. This is achieved through the 

measurement of inertial acceleration and angular rate in the 

sensor frame (rotated with some uncertainty to the body 

frame for controls) of the vehicle. To propagate the state 

forward over the ascent trajectory, a 2nd order high rate state 

integration process is used to track the vehicle attitude to a 

given inertial frame, rotate sensor-frame accelerations into 

the inertial frame, estimate the local gravitational force, and 

propagate the onboard state forward. 
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In order to assess the capability and performance of the 

navigation systems the detailed IMU sensor model developed 

in [1] was integrated into the simulation framework. A block 

diagram of the implementation is given below in Figure 4. 

This model takes the true inertial total accelerations, removes 

the gravity components, and transforms them into the body 

frame. This model also includes a star tracker model 

implementation, which uses body frame inertial acceleration 

and angular rates to provide constraints on operations (the 

results of this functionality are discussed in the final 

subsection). The IMU model will then apply a variety of 

errors to the truth in order to provide a sensed measurement. 

These individual errors are dispersed and enabled via input 

files mechanism with an automated approach to one-at-a-

time sensitivities and analysis.  
 

 

Figure 4: Sensor Model Architecture 

While IMU errors drive a large amount of navigation errors 

along the trajectory, much of this is dependent on the initial 

state knowledge of the vehicle (time, position, velocity, and 

attitude). In order to define requirements for state 

initialization, these terms are modeled in the simulation as an 

external measurement, rather than an internally calculated 

value (by a method such as gyrcompassing). The focus is on 

determining system requirements on initial knowledge. This 

input is provided as an uncertainty within the input file, 

allowing for ease of trade studies and sensitivity analysis. 

 

In terms of IMUs, the state of the art exhibits a strong 

correlation between performance and SWAP (Size, Weight, 

and Power). In order to achieve an accurate insertion state, a 

navigation grade unit is typically required, consuming a large 

amount of physical space. But the constraints on the 

integrated system directly place stringent limitations on the 

available SWAP for the IMU. This behavior can be observed 

in Figure 5, which depicts three potential navigation 

platforms (tactical MEMS – STIM300, low-grade navigation 

HG5700, and high-grade navigation MIMU platforms) to 

scale in terms of total enclosed volume. Power required and 

mass show similar trades, syncing performance to physical 

characteristics.   

 

As such, the analysis initially focused on a range of options 

that are discussed herein. The baseline design was selected to 

be a HG5700 unit, a new product coming online in 2019 from 

Honeywell. This was selected due to its superior performance 

over the HG1700, providing a low-grade navigation 

capability within a small mass and volume with some flight 

heritage. This was used to capture a potential option in terms 

of performance capability, and provided adequate 

performance within a compact package. Elements such as 

environmental and operational qualification are discussed 

later in this section in discussion of path to flight. 

 

 

Figure 5: Comparable Volume of Potential IMUs 

 
Navigation Capability for Solid Vehicle  

In order to provide insight to the integrated performance of 

the system, Monte Carlo analysis was used to assess the 

vehicle’s integrated insertion capability in terms of altitudes 

of periapsis and apoapsis. These two metrics provide insight 

into the in-plane and orbital shape errors for the target orbit. 

Using the full simulation environment allows for inclusion of 

nonlinear sensitivities in the interaction of guidance, 

navigation, and control algorithms across the vehicle. The 

results here focus on the capability using the solid vehicle. 

While flying a slightly longer trajectory, similar trends were 

observed with the hybrid configuration and thus are not 

included in this documentation.  

 

The first set of cases focus on assessing the performance with 

the baseline navigation system for a notional orbital target. 

For this scenario, 1000 cases were assessed, each assuming 

perfect initialization knowledge with dispersed sensor error 

terms derived from the vendor specifications. Figure 6 shows 

the final insertion conditions of the vehicle. As seen, due to 

the short duration of the trajectory, with perfect initial 

knowledge the actual inserted states are very close to the 

result of the navigation system. In these plots, the blue dots 

represent the actual final state and the red captures the 

navigated states (onboard knowledge). The difference in 

slope between the navigated and truth states is likely due to 

integrated attitude errors (through gyro bias) interacting with 

the guidance algorithms. The small overall errors here though 

show minimal impact to performance. 

 

As initial state knowledge errors are included, these 

dispersions quickly grow to larger levels. This is shown in 

Figure 7. With this degradation in initial knowledge, the 



6 

 

vehicle’s navigation state errors continue to grow, and the 

actual inserted states show a much larger dispersions. For 

example, as seen in the plots, the variation in inserted altitude 

at apoapsis essentially doubles in breadth. The similar 

distribution of the navigated states in both scenarios show the 

guidance algorithms driving the vehicle to a similar expected 

insertion state. The dispersions here on the actual inserted 

conditions are due online to navigation effects. All other 

dispersions were disabled in this analysis.  

 

Figure 6: Effect of IMU Errors with                        

Perfect Initial State Knowledge 

 

Figure 7: Effect of IMU Errors and Uncertainty in 

Initial State Knowledge 

Impact of initial errors 

In order to provide more insight into the sensitivity to these 

initial errors on the final solution, a detailed analysis was 

performed to identify key drivers. This effect is clearly seen 

in Figure 8, which shows the effect of initial knowledge 

uncertainties only (assuming a perfect IMU). The 

relationship here shows that increases in initial errors cause 

growth in orbital insertion shape. The bimodal behavior seen 

here is a consequence of initial azimuth errors being 

amplified via their large effect on the final orbit shape. Not 

shown, but similarly, these uncertainties in initial conditions 

additional cause out-of-plane errors, affecting the vehicle’s 

inclination and right ascension of the ascending node. The 

IMU-induced errors blur the resulting shape since in this 

chart as they can effectively “counteract” initial attitude 

errors over flight in some scenarios. It is important for the 

MAV to limit both in- and out-of-plane dispersions in order 

to meet the capability of the orbital element that will 

rendezvous and capture the samples that are being placed into 

orbit.  

 

 

Figure 8: Effect of Initial Knowledge Errors Only 

 

A sensitivity analysis was used to capture the key drivers on 

insertion performance. A Monte Carlo-based variance 

technique was used to capture individual parameter 

sensitivities. In this analysis, a Monte Carlo was performed 

with all sensor terms dispersed to capture total output 

variance. Then individual terms (or group of terms) were 

enabled to capture variance on the output due to the variance 

on those input specific input parameters. The fraction of the 

variance due to a specific term over the total variance gives 

an approximate understanding of the sensitivity to that 

parameter.  This analysis focused on breaking down the 

sensitivity on insertion accuracy based on attitude, position, 

and velocity initial variance as well as IMU error dispersions.  

 

The results of the analysis are given in Figure 9 and Figure 

10 below. In each of these, it can be seen that the initial 

position and velocity dispersions (at the level analyzed, 100 

meters, and .1 meters/second one-sigma) were a minor 

contributor, their primary effect being in providing an 

inaccurate state for gravity calculations. 

 

The primary driver in both cases is shown to be the initial 

attitude errors. This pointing error directly reduces the 

accuracy of the open-loop first stage maneuver on launch 

from the lander. Due to the large amount of DV being 

imparted over this stage, the dispersions on the state at the 

end of the burn are increased. Similarly, this initial attitude 

error persists throughout the simulation, causing increased 

attitude errors, but also errors in translating sensor frame 

accelerations into the initial frame, causing an increase in 

translational errors. Additionally, this attitude error limits the 

accuracy of pointing maneuvers commanded from closed-

loop steering. IMU-errors are a secondary driver and have a 
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larger effect on periapsis than apoapsis. In terms of other 

orbital elements, semi-major axis, true anomaly, and 

argument of periapsis variation behaved similarly to that 

shown in Figure 9, while Eccentricity and Inclination are 

similar to Figure 10 with initial attitude error being an larger 

system driver. Note that the accuracy of sensitivity analysis 

is limited by the number of cases run and linear variance 

assumptions in the sensitivity analysis approach. 

 

 

Figure 9: HP Sensitivity to Navigation Errors 

 

Figure 10: HA Sensitivity to Navigation Errors 

 

Individual Sensor Error Sensitivities 

With this analysis, the next step is to understand individual 

sensor error terms in order to determine primary drivers in 

IMU selection. To start this analysis and identify the key 

variables, another variance-based sensitivity analysis was 

performed. In these simulations, individual sensor terms were 

enabled to capture primary drivers. Included in this study for 

the accelerometers and gyroscopes are terms such as turn-on 

bias, scale factor, non-orthogonality, internal misalignments, 

and random walk terms. For each error input term, a 500 case 

Monte Carlo was performed to get insight into sensitivities. 

 

The results of this analysis are given in Figure 11 and Figure 

12 to match the primary results shown in this paper, focused 

on altitude of periapsis and apoapsis. From this analysis, the 

accelerometer bias in the body-x axis is the most sensitive 

parameter to both of these terms. This is due to the term being 

in the thrust direction of the vehicle. Due to the orbital shape, 

this in-plane bias directly affects the final orbit shape 

achieved. Similarly, the second driving term is accelerometer 

scale factor in the body x direction. Again, the alignment of 

this error term with the thrust axis of the vehicle results in a 

scaling of the observed applied acceleration. Thus scaling 

results in integrating too much or too little thrust, and with 

the large thrusts imparted on the vehicle results in larger 

insertion errors. Tertiary effects include gyro biases and scale 

factor terms, and the effect of integrated attitude errors on the 

translational state is clear.  

 

 

Figure 11: HA Sensitivity to Individual IMU Errors 

 

Figure 12: HP Sensitivity to Individual IMU Errors 

To help define operational constraints on accelerometer and 

gyroscope performance (as well as driving potential 

gyrocompassing capability), a series of 1-d analysis trades 

were performed to assess insertion performance as a function 

sensor bias terms. For each, the values were dispersed across 

a linear range and a simulation for each was run with all other 

dispersions turned off. This allows insight into expected 
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simulation behavior and high level trends. 

 

For gyroscope bias errors, all axis primarily affected the 

phasing of the orbit and its out-of-plane characteristics (i.e. 

off-target inclination). The simulations showed minor effects 

on the final orbital shape and altitude, showing the tertiary 

effect of these terms as identified in the previous sensitivity 

analysis. Two of these plots are given in Figure 13. This 

identifies the strong correlation between uncertainties in bias 

about the body z-axis (equating to a vehicle roll).  

 

 

Figure 13: Out-of-plane Error Sensitivities in Inclination 

(deg) (L) and Right Ascension of the Ascending Node 

(deg) (R) to Gyro Bias in Body-Z (deg/hr) 

Similar analysis was performed to capture the 1 dimensional 

sensitivity to accelerometer bias uncertainty. As the primary 

IMU sensitivity to altitude of periapsis and apoapsis, this 

analysis can provide insight to sensor selection for required 

ascent performance. Again, the accelerometer bias in each 

body axis vas varied across a range of values and simulations 

were run with only that error dispersed. Some of the results 

of this analysis are provided in Figures 14 -16. Each of these 

plots shows insertion performance against magnitude of 

accelerometer bias in Earth-g’s. The displayed divergent 

behavior is due to the modeling of positive and negative 

biases.  

 

Some of the more interesting results are the sensitivity across 

each axis to the shape and phasing of the orbit. For example, 

off-axis accelerometer biases exhibit a large effect on the 

apoapsis errors for x-axis errors (typically pointing along the 

orbit plane and primarily affect the shape of the orbit. This is 

shown in Figure 14. In contrast, accelerometer bias in the 

other lateral direction (aligned out of the target plane), exhibit 

a larger effect on the orbital plane alignment, i.e. inclination 

and right ascension of the ascending node. Figure 15 shows 

this behavior. The largest driver to orbital shape though is the 

accelerometer bias along the body’s z-axis, aligned with 

thrust. Errors in this axis also contribute to in-plane errors, 

with a strong effect on energy attained, semi-major axis, and 

orbit eccentricity. This sensitivity shows that for 

accelerometer biases above .01 g’s, the insertion performance 

quickly degrades away from the requirement.  

 

Figure 14: HA (km) as a function of Accelerometer Bias 

in Body-X (log g) 

 

 

Figure 15: RAAN (deg) as a Function of Accelerometer 

bias in Body Y (log g) 

 

Figure 16: Orbit Shape (km) as Function of 

Accelerometer Bias in Body Z (log g) 

 

Integration of Star Tracker 

In order to reduce attitude errors prior to the second bun 

maneuver, which is critical to entering into the desired orbital 

shape), the team assessed the performance gained by 

including a star tracker on the ascent vehicle. For this 

analysis, the additional sensor was assumed to provide an 

inertial attitude solution with 100 arcseconds one-sigma 

accuracy with a mounting uncertainty of 1/8 degree. 

Operational constraints were implemented into the 

simulation to limit operation based on altitude, acceleration, 

and angular rate. Thus the sensor would only provide valid 

operations at high altitudes (ensuring a clear view of the sky) 

when the vehicle was coasting (low rates and applied 

acceleration). With an input measurement, the new attitude 

was taken as a direct update to the integrated attitude position 

due to its vastly increased accuracy over the inertial solution. 

Further performance could be gained through the 

implementation of a filter to smooth and integrate the 

measurements.  

The goal of this analysis was to assess the potential for 

inclusion of a lower grade, much lighter sensor (the 

STIM300) for inclusion on the vehicle. Figure 17 presents the 

nominal performance of the inertial only solid vehicle under 

navigation dispersions. As seen, while the vast majority of 
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the baseline sensor cases fall within the desired altitude band, 

the STIM exhibits a much larger dispersion. With the 

inclusion of the star tracker as seen in Figure 18, this is 

significantly reduced with 71% of cases (up from 17%) 

meeting the desired performance. This shows potential for 

inclusion if the insertion error requirements can be opened up 

at the architectural level. For the baseline, the star tracker is 

being removed due to the operational constraints imposed by 

the vehicle, including attitude maneuvering for a clear view 

of the sky and the potential for dust buildup on the lens.  

 

 
Figure 17: Inertial Only Results 

(0.1 Deg. Attitude Knowledge)  

(0.2 STIM: 17% HG5700: 99.5% Success) 

 

 
Figure 18: Star Tracker-enabled Improvements 

(0.1 Deg. Attitude Knowledge) 

(STIM: 71.3% HG5700: 99.8%) 

 

5. INTEGRATED VEHICLE PERFORMANCE 

In order to better understand off-nominal vehicle 

performance, 6DOF simulations were run across a range of 

dispersed parameters in both 1-dimensional sensitivities in 

which a single parameter was varied across a known range, 

and in Monte Carlo analysis, in which all parameters were 

varied randomly with each seed according to their respective, 

statistically-assumed bounds.  Table 1 summarizes the 

parameters varied in the Monte Carlo analysis of the solid 

motor vehicle. 

 
Solid motor variations were performed through scaling 

equations applied separately to each stage. Atmospheric 

dispersions were performed by both varying the inputs to 

Mars-GRAM, and utilizing the inherent dispersion capability 

within Mars-GRAM to disperse atmospheric values and 

winds. 

 

Table 1: Dispersed Parameters 

Parameter Unit 

Launch Elevation [deg] 

Launch Azimuth [deg] 

Launch Site Position: X,Y [m] 

Launch Site Position: Z [m] 

Vehicle Mass Variation [kg] 

ST1 Moments of Inertia [%] 

ST2 Moments of Inertia [%] 

ST1 CG Offset: X,Y,Z [m] 

ST2 CG Offset: X,Y,Z [m] 

Aerodynamic Coefficients [%] 

Atmospheric Conditions [dim] 

Sensor Position Knowledge Error: X,Y,Z [m] 

Sensor Initial Attitude Knowledge Error [deg] 

Sensor Orientation Error [deg] 

SRM 1 Impulse [%] 

SRM 1 Burn Rate [%] 

SRM 1 Trace Shape [%] 

SRM 2 Impulse [%] 

SRM 2 Burn Rate [%] 

SRM 2 Trace Shape [%] 

SRM 1 Thrust Misalignment [deg] 

SRM 2 Thrust Misalignment [deg] 

 

Monte Carlo Analysis Results 

Figures 19-23 below show the results of a 2000 seed Monte 

Carlo analysis dispersing the parameters outlined in Table 1 

above. For each run a random value with the bounds was 

selected for each dispersed parameter according to its 

predicted statistical distribution. The 6DOF simulation 

results were then compiled for all 2000 seeds.  

 

Figures 19-23 show that under the current dispersion bounds, 

the solid motor vehicle 6DOF final orbital states are within 

the current bounds of semi-major axis and eccentricity, and 

no points violate the minimum periapsis constraint. Variation 

in final orbit inclination is within the current bounds. It is 

worth noting that at the time of this publication, the bounds 

on acceptable final orbit dispersion in RAAN were in flux. 

Though these results and plots are part of ongoing work, they 

demonstrate the feasibility of the current solid motor design 

to respond to dispersions and approach target orbit accuracy 

goals. 
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Figure 19: Monte Carlo Orbit Results: SMA and 

Eccentricity  

 
Figure 20: Monte Carlo Orbit Results: Periapsis and 

Apoapsis   

 

 
Figure 21: Monte Carlo Orbit Results: RAAN and 

Inclination 

 

 

 

Figure 22: Monte Carlo Orbit Results: Periapsis 

Histogram 

 

Figure 23: Monte Carlo Orbit Results: Apoapsis 

Histogram 

 

 

Similar analysis for the hybrid motor vehicle is currently 

underway. 

 

1D Sensitivity Analysis 

In addition to Monte Carlo analysis, the individual effects of 

dispersing a single parameter on orbit insertion accuracy 

were assessed. A subset of the parameters selected for the 

Monte Carlo analysis were used, and the parameter was 

varied linearly across the range indicated in the first three 

columns of Table 2. This range is not the same range that was 

used for the Monte Carlo analysis. The 1D sensitivities 

intentionally varied each parameter beyond its anticipated 

bounds in order to capture any outlying edge behavior. For 

each run, a single parameter was varied. The table identifies 

mass as the total mass of the vehicle at launch independently 

of uncertainties in mass changes due to engine burn 

parameters. For example, one scenario can be additional mass 

on the payload outside of expectations (i.e. extra dust or mass 

of samples). The last two columns in Table 2 summarize the 
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results by showing the semi-major axis effects observed for 

the solid motor vehicle for both truth and navigation states.  

 

Table 2: 1-D Sensitivity Summary 

 
 

By examining Table 2, it can be seen that the primary drivers 

for semi-major axis orbit accuracy for the solid motor vehicle 

among those examined are known vehicle mass and second 

stage total impulse.  These two parameters both demonstrate 

a direct correlation to SMA deviation from nominal and a 

more significant magnitude of SMA deviation from nominal 

than the other parameters shown. Given the discussion on the 

implementation method of SXS and energy management 

above, this behavior is expected. Unknown variations in 

vehicle mass or second stage impulse both translate directly 

to variation in second stage delivered delta-v. As noted 

earlier, energy management is not capable of addressing 

dispersions in second stage delta-v. In terms of mass, while 

the vehicle mass itself will be known under assembly, limited 

capability is currently included to assess the actual weight of 

samples as loaded. The intention of the analysis is to identify 

the need to accurately understand vehicle mass at launch to 

inform mass estimation and guidance algorithms. 

 

Similar 1-dimensional analysis for the hybrid motor vehicle 

is currently underway. 

Sensitivity Analysis and Key System Drivers 

To provide insight into the primary sensitivities of the 

integrated vehicle systems, including all dispersion effects 

currently modeled, a variance based approach was used to 

assess contributions to insertion errors. Again, this approach 

used a Monte Carlo technique and processed the results of 

one-at-a-time dispersions to assess contributions to total 

variance of the system. For this analysis, the dispersions were 

broken down into several categories: Initial Conditions (truth 

location and orientation at launch), Mass (uncertainties in 

payload and vehicle mass), Initial Knowledge (uncertainties 

in onboard position and attitude), Thrust (capturing 

dispersions in ISP and thrust profile), Aerodynamics 

(uncertainty in aerodynamic properties and wind 

dispersions), and IMU (capturing the effect of sensor errors). 

For each case, 500 runs were performed to get a high-level 

view of these. For this analysis, the baseline assumptions for 

initial knowledge and IMU specification were used. The 

summary of the results are given in Table 3 below. 

 

Two of the more interesting results are in terms of the orbital 

shape sensitivities and inclination are given in Figure 24 and 

25. For the semi-major axis, a relative measurement of the 

total energy in the orbit, uncertainty in thrust and mass highly 

correlate to the ability to meet an inserted orbital energy. As 

the onboard knowledge of the mass is incorrect, the 

propagations of the state forward in time in assessing thrust 

applied to the stage are also incorrect, resulting in an wide 

dispersion of achieved orbits. Similarly, uncertainty in thrust 

directly affects the ability of closed-loop guidance to 

propagate the state forward and steer the vehicle. Similarly, 

increased dispersions in total impulse and thrust shaping on 

the second stage directly relate to excess (or loss) of energy 

put into the vehicle outside of expectations. While first stage 

guidance via energy management can correct for 

uncertainties in the first stage, this remaining dispersion 

directly correlates to orbital dispersions. 

 

Table 3: MC Sensitivity Results (variance/total variance) 

 HA HP Inclin. RAAN SMA 

Initial 
Conditions 

0.00 0.00 0.00 0.00 0.00 

Mass 0.35 0.20 0.11 0.04 0.36 

Initial 
Knowledge 

0.12 0.04 0.40 0.54 0.10 

Thrust 0.44 0.56 0.21 0.08 0.41 

Aerodynamics 0.06 0.32 0.14 0.05 0.00 

IMU 0.04 0.01 0.01 0.03 0.06 

      

Dispersed 

Parameter
Unit

True State 

SMA Range: 

Deviation 

from Nominal 

[km]

Navigation 

State SMA 

Range: 

Deviation from 

Nominal 

[km]

Axial X CG 

Offset
± 0.01 [m] 1.56 1.22

Lateral Y CG 

Offset
± 0.01 [m] 2.95 1.96

Lateral Z CG 

Offset
± 0.01 [m] 8.34 7.40

Mass ± 1 [kg] 91.04 91.03

Stage 1 Impulse ± 1 [%] 6.99 7.21

Stage 1 Burn 

Rate
± 10 [%] 3.07 2.42

Stage 1 Thrust 

Misalignment Y
± 1 [deg] 9.76 9.56

Stage 1 Thrust 

Misalignment Z
± 1 [deg] 1.71 1.91

Stage 2 Impulse ± 1 [%] 75.48 75.20

Stage 2 Burn 

Rate
± 10 [%] 8.80 8.54

Stage 2 Thrust 

Misalignment Y
± 1 [deg] 0.39 0.41

Stage 2 Thrust 

Misalignment Z
± 1 [deg] 0.20 0.62

Range
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Conversely, the primary effect on dispersed inclination 

comes from initial errors. This ties very closely to the initial 

attitude knowledge, particularly about the local azimuth 

direction at launch. Errors in this attitude correlate into out-

of-plane errors and drive the vehicle to an incorrect 

inclination. The other dispersions still contribute, but to a 

lesser degree, showing the impact of thrusting out of plane. 

 

 

Figure 24: Semi-Major Axis Sensitivity 

 

Figure 25: Inclination Sensitivity 

Impact of Navigation Grade IMU 

As mentioned the baseline IMU was selected as an aggressive 

option to meet performance and mass constraints. As part of 

the continuing analysis, the team is re-assessing initialization 

methods, considering gyrocompassing analysis as well as 

external measurements or transfers from the lander systems. 

In order to understand this impact, a variety of IMU platforms 

were assessed to provide into their insertion performance for 

the notional solid vehicle. For this analysis, all baseline 

dispersions were enabled, and the vehicles were all initialized 

with a 0.2 degree one-sigma total attitude error. Figures 26-

29 show the final insertion conditions for 4 IMU platforms: 

STIM300 (tactical MEMS), LN200S (low-grade navigation), 

HG5700 (low-grade navigation), and HQ (a MIMU 

navigation grade unit). In each plot axis, the major gridlines 

are set at 50 km intervals. 

 

Figure 26: STIM300 w/ .1 Degree Initial Attitude Error 

 

Figure 27: LN200 with .1 Degree Initial Attitude Error 

 

Figure 28: HG5700 with .1 Degree Initial Attitude Error 

 

Figure 29: HQ IMU with .1 Degree Initial Attitude 

Error 
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The primary takeaway from the results is the similarity 

between Figures 27, 28, and 29. As the IMU improves, the 

insertion capability essentially bottoms out. This does not 

mean that a high grade navigation unit is not needed. 

Conversely, it reflects the sensitivities shown previously: 

initial attitude errors and other vehicle dispersions have a 

larger effect on insertion capability than navigation errors 

accumulated over ascent.  It also reflects the need to be able 

to adequately maintain an onboard inertial attitude solution to 

a certain capability over flight to maintain pointing.  

 

The primary driver for a higher grade navigation system is 

the ability to grycompass the IMU prior to launch in 

obtaining the initial attitude. In this scenario, accelerometer 

bias, gyroscope bias, and gyroscope angular random walk are 

the primary contributors to the ability for the IMU to discern 

its attitude. In this case, the initial attitudes uncertainty would 

vary from that used in this analysis, and more differentiation 

would be identified between the results. As the vehicle design 

continues to mature, the initialization algorithms will be 

refined, implemented, and ground tested to verify insertion 

performance.  

  

6. CONCLUSIONS  

The inherent differences in functionality between the solid 

motor vehicle and the hybrid motor vehicle mandate 

independent guidance algorithms. Figures 1-3 demonstrate 

the need to address additional energy present in the solid 

motor vehicle and suggest that employing SXS in a 

generalized energy management architecture can be an 

effective way to reduce orbit insertion error caused by 

dispersions in environment or performance experienced 

during the first burn. 

 

The Monte Carlo results presented in Figures 19-23 suggest 

that employing the current GNC architecture, including 

energy management, provides a design that demonstrates 

feasibility in responding to dispersions and approaches target 

orbital accuracy goals. Additionally, the sensitivity analysis 

performed (both 1-D trades and Monte Carlo) provide a high 

level of insight into key system sensitivities and help to 

identify where reducing vehicle dispersions can help to 

improve insertion accuracy. 

 

7. FUTURE WORK  

The results of the integrated vehicle analysis identify the clear 

sensitivity to initial errors, but also the strong sensitivity to 

mass and thrust uncertainties. While thrust uncertainties are 

inherent in solid motor design, the future work of the vehicle 

is focusing on mitigation strategies for further refinement of 

this vehicle’s capability. One approach under development is 

the implementation of an RCS-based approach to final orbit 

correction. This helps to reduce the sensitivity to second stage 

thrust dispersions. Initial analysis shows the DV 

requirements to be within the capability of the system, but 

design trades are ongoing for additional thruster integration 

and placement. Another area of active refinement is the 

maturation of the ground alignment algorithms. The team is 

implementing gyrocompassing algorithms to provide a 

higher level into expected performance above first order 

estimates based on sensor bias and noise terms. Similarly, the 

team will be investigating the actual flight platforms, for their 

operation in the intended environment and performance in-

house calibration and operational activities to validate 

alignment capability.  
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