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Oxygen Transport Membrane Fundamentals

Function: OTM can separate oxygen from other gases,
because oxygen ions get electrochemically transported
through some oxide materials “infinitely selective”

Hot: Electrical resistance is essentially infinite at room
temperature, common process temps are 650-750 C.

Thin: Resistance across OTM is a function of membrane
thickness. Thin membranes use less power.

Brittle: The oxide materials that perform the best for
OTMs are brittle, especially when they are thin.




Oxygen Transport Membrane Fundamentals

Temperature T
DC Current C

DC Voltage V

Thickness X
Surface Area A

Air | ]]]]
\AAAA

Oxygen

@ The Electrochemical Society
Advancing solid state & electrochemical science & technology



Oxygen Transport Membrane Fundamentals

* One solution to the hot, thin, brittle problem: OTM is
embedded in a multi-layer wafer, that supports the
OTM structurally, and creates a reservoir for oxygen

Photo of cell stack Photo of cutaway

@ The Electrochemical Society
Advancing solid state & electrochemical science & technology



Oxygen Transport Membrane Fundamentals

e The current OTM has an internal reservoir in each
wafer. Oxygen puts the wafer in tension. The wafer can

hold 300 psi, but not 600 psi.
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Spacesuit O, Tank Recharge

High Pressure O, Gas Tanks

Pressure: No Issues: Pressurization is done prior to launch
Purity: No Issues: Purity can be validated prior to launch, risk of contamination after launch is low
Safety: Favorable: No energy is added to the system during the mission

Summary: Great for missions with few planned EVAs. Concerns about size and weight for exploration

Cryogenic Liquid O, (LOX)

Pressure: Pressurization occurs as heat is added to the system
Purity: No Issues: Purity can be validated prior to launch, risk of contamination after launch is low
Safety: Lots of stored energy. Apollo 13 mishap involved LOX

Summary: Best suited for short duration missions with many planned EVAs

Low Pressure Water Electrolysis + Drier + Mechanical Compressor

Pressure: Demonstrated with technology demonstrator systems
Purity: In-flight purity verification will likely be required; contamination risk is credible (compressor)
Safety: Adding energy to O, during mission — compressors that keep O, cool can be large

Summary: May trade well for exploration missions, especially if reliable purity verification is developed

Low Pressure Water Electrolysis + PSA O, Concentrator + Mechanical Compressor

Pressure: Demonstrated with technology demonstrator systems
Purity: In-flight purity verification will likely be required; severe concerns about PSA product purity
Safety: Adding energy to O, during mission — compressors that keep O, cool can be large

Summary:  PSA product purity concerns need to be addressed before this can be evaluated

High Pressure Water Electrolysis + O, Drier

Pressure: Demonstrated with technology demonstrator systems (thick end caps)
Purity: Must remove water, verification may be easier if only water needs to be measured
Safety: Fundamental safety issue: stack has hydrogen, high pressure O,, and ignition source

Summary:  Safety issues cannot be designed out of the system

PEM Electrolyte Electrochemical O, Compressor

Pressure: 14,000 kPa demonstrated with lab prototype

Purity: Must remove water, verification may be easier if only water needs to be measured
Safety: Fundamental, but less severe: solid fuel (not H,), high pressure O,, and ignition source
Summary: Kinetics needs to be demonstrated before this can be evaluated

Electrochemical Oxygen Generator & Compressor (eCOG-C)
Pressure: 14,000 kPa demonstrated with lab prototype
Purity: No in-flight purity verification needed
Safety: Adding energy to O, during mission - high temp hazards, but fire triangle ok (no fuel)
Summary:  Good potential for human exploration: solid state, high purity, no fuel near O,




Feasibility Assessment

* The current OTM wafer has an oxygen reservoir internal
to the wafer. Glass seals connect the wafers




Feasibility Assessment

 eCOG-C flows low pressure air internally, oxygen is
external to the wafer (contained inside a pressure

vessel)
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Feasibility Assessment
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Feasibility Assessment

e NYM-0492 sintered 870°C 15min
e NYM-0247 sintered 840°C 15min
e NYM-0521 sintered 830°C 15min
NYM-0526 sintered 850°C 15 min
e NYM-0529 sintered 840°C 15min
e NYM-0530 sintered 820°C 15min
NYM-0531 sintered 810°C 15min
NYM-0532 sintered 860°C 15min
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Feasibility Assessment
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Feasibility Assessment
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Summary

Wafers can be reconfigured to place the oxygen external to the
wafer. This puts the wafer in compression and makes >3000psi
oxygen delivery possible.

The #1 technical risk is developing a crystalline interconnecting seal
that is strong, adheres to the wafers, and has a coefficient of thermal
expansion that matches the wafer.

The #2 technical risk is developing a modified wafer that has internal
flow channels.

Preliminary assessment of seal and wafer is favorable

Thank You
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