Practical Aspects of Real-Time Modeling for the Learn-to-Fly Concept

Eugene A. Morelli

NASA Langley Research Center, Hampton, Virginia, 23681

Practical aspects of autonomous onboard real-time modeling for the NASA Learn-to-Fly concept are examined using flight data from two subscale test aircraft. A practical real-time global nonlinear aerodynamic modeling method is developed and explained, along with the multiple-input excitation needed for effective real-time modeling. Critical issues for integrating real-time global nonlinear aerodynamic modeling and local linear modeling with the real-time learning adaptive control and guidance elements of the Learn-to-Fly algorithm are identified and discussed. Real-time modeling results from NASA Learn-to-Fly flight demonstrations are presented and evaluated using model fit metrics and prediction tests.

Nomenclature

\[a_x, a_y, a_z\] = body-axis translational accelerometer measurements, g
\[b\] = wing span, ft
\[\bar{c}\] = wing mean aerodynamic chord, ft
\[C_X, C_Y, C_Z\] = body-axis nondimensional aerodynamic force coefficients
\[C_l, C_m, C_n\] = body-axis nondimensional aerodynamic moment coefficients
\[I_x, I_y, I_z, I_{xz}\] = inertia tensor elements, slug-ft²
\[m\] = mass, slug
\[max\] = maximum
\[min\] = minimum
\[N\] = number of data points
\[p, q, r\] = body-axis roll, pitch, and yaw rates, rad/s or deg/s
\[\bar{q}\] = dynamic pressure, lbf/ft²
\[rms\] = root mean square
\[S\] = wing reference area, ft²
\[V\] = true airspeed, ft/s
\[\alpha\] = angle of attack, rad or deg
\[\beta\] = sideslip angle, rad or deg
\[\delta_a, \delta_e, \delta_r, \delta_f\] = aileron, elevator, rudder, and flap deflections, rad or deg
\[\phi, \theta, \psi\] = Euler roll, pitch, and yaw angles, rad or deg
\[\omega_p\] = propeller rotational speed, rev/min

Subscripts
\[cg\] = center of gravity
\[l\] = left
\[i\] = inboard

1 Research Engineer, Dynamic Systems and Control Branch, MS 308, AIAA Associate Fellow
Advanced nonlinear modeling and aircraft prototyping and testing

The goal of the NASA Learn-to-Fly initiative is to develop a global aircraft model and full-envelope flight control and guidance autonomously onboard the aircraft in real time, without ground testing or human analyst efforts. This represents a new paradigm for developing and flight testing new or modified aircraft, as depicted in Fig. 1. Learn-to-Fly replaces conventional ground-based testing and analysis with real-time methods applied in flight. The main payoff is vastly improved efficiency in aircraft development and flight testing using rapid adaptive onboard processes for modeling, control, and guidance that are generally applicable and globally valid. The Learn-to-Fly concept is an enabling technology for rapid aircraft prototyping and testing, but also has applications in the areas of fault detection, self-learning vehicles, flight envelope protection, rapid and efficient flight testing, safe and reliable flight operations for unmanned air vehicles, and rapidly generating or updating aerodynamic models from flight data for high-fidelity flight simulation, among others.

A key component of the Learn-to-Fly concept is real-time global nonlinear aerodynamic modeling based on flight data alone. The conventional state-of-the-art for global aerodynamic modeling involves iterative ground-based testing and analysis, numerous flight test maneuvers, and significant efforts in post-flight analysis, as depicted in the upper part of Fig. 1. This approach is expensive and time-consuming, and the ground-based tools have inherent fidelity limitations arising from factors such as wind-tunnel model scale and geometry differences relative to the full-scale aircraft, wind-tunnel flow and sting interference, wind-tunnel flow angularity, Reynolds number differences, flow modeling deficiencies, and grid geometry approximations for both the aircraft and the flow field. Using flight test methods to generate a global aerodynamic model directly avoids all of these problems, although the typical problems associated with any flight test remain, e.g., sensor data quality, achieving adequate data information from the flight test maneuvers, flight test risk and expense, and practical constraints.

Recent flight research has demonstrated real-time global nonlinear aerodynamic modeling implemented on the ground using telemetered data from a subscale aircraft. In prior research, novel efficient flight test maneuvers (both automated and implemented by a pilot) were used in combination with advanced nonlinear modeling techniques to achieve accurate global nonlinear aerodynamic models in near real time for all six rigid-body degrees of freedom simultaneously, based on flight data alone.

One goal of the current research is to further develop these flight test and global aerodynamic modeling techniques to achieve autonomous onboard real-time operation, and to examine practical issues involved in the flight testing and real-time modeling envisioned for the Learn-to-Fly initiative. The investigations include explaining and demonstrating the real-time modeling approach, examining the data information content from Learn-to-Fly flight experiments, investigating timing and practical issues associated with real-time modeling, examining interaction effects between real-time modeling and other elements of the Learn-to-Fly algorithm, and evaluating the quality of the identified real-time models.

Superscripts

T = transpose
\cdot = estimate
\cdot = time derivative
-1 = matrix inverse
$-$ = mean

Acronyms

CFD = Computational Fluid Dynamics
INS = Inertial Navigation System
NASA = National Aeronautics and Space Administration
PTI = Programmed Test Inputs
SIDPAC = System IDentification Programs for AirCraft

I. Introduction

The key component of the Learn-to-Fly concept is real-time global nonlinear aerodynamic modeling based on flight data alone. The conventional state-of-the-art for global aerodynamic modeling involves iterative ground-based testing and analysis, numerous flight test maneuvers, and significant efforts in post-flight analysis, as depicted in Fig. 1. Learn-to-Fly replaces conventional ground-based testing and analysis with real-time methods applied in flight. The main payoff is vastly improved efficiency in aircraft development and flight testing using rapid adaptive onboard processes for modeling, control, and guidance that are generally applicable and globally valid. The Learn-to-Fly concept is an enabling technology for rapid aircraft prototyping and testing, but also has applications in the areas of fault detection, self-learning vehicles, flight envelope protection, rapid and efficient flight testing, safe and reliable flight operations for unmanned air vehicles, and rapidly generating or updating aerodynamic models from flight data for high-fidelity flight simulation, among others.

A key component of the Learn-to-Fly concept is real-time global nonlinear aerodynamic modeling based on flight data alone. The conventional state-of-the-art for global aerodynamic modeling involves iterative ground-based testing and analysis, numerous flight test maneuvers, and significant efforts in post-flight analysis, as depicted in the upper part of Fig. 1. This approach is expensive and time-consuming, and the ground-based tools have inherent fidelity limitations arising from factors such as wind-tunnel model scale and geometry differences relative to the full-scale aircraft, wind-tunnel flow and sting interference, wind-tunnel flow angularity, Reynolds number differences, flow modeling deficiencies, and grid geometry approximations for both the aircraft and the flow field. Using flight test methods to generate a global aerodynamic model directly avoids all of these problems, although the typical problems associated with any flight test remain, e.g., sensor data quality, achieving adequate data information from the flight test maneuvers, flight test risk and expense, and practical constraints.

Recent flight research has demonstrated real-time global nonlinear aerodynamic modeling implemented on the ground using telemetered data from a subscale aircraft. In prior research, novel efficient flight test maneuvers (both automated and implemented by a pilot) were used in combination with advanced nonlinear modeling techniques to achieve accurate global nonlinear aerodynamic models in near real time for all six rigid-body degrees of freedom simultaneously, based on flight data alone.

One goal of the current research is to further develop these flight test and global aerodynamic modeling techniques to achieve autonomous onboard real-time operation, and to examine practical issues involved in the flight testing and real-time modeling envisioned for the Learn-to-Fly initiative. The investigations include explaining and demonstrating the real-time modeling approach, examining the data information content from Learn-to-Fly flight experiments, investigating timing and practical issues associated with real-time modeling, examining interaction effects between real-time modeling and other elements of the Learn-to-Fly algorithm, and evaluating the quality of the identified real-time models.

American Institute of Aeronautics and Astronautics

2
Learn-to-Fly seeks to replace the current process ...

...with a new paradigm

Figure 1. Comparison of conventional aircraft development with the Learn-to-Fly concept

Figure 2 is a block diagram for the Learn-to-Fly concept showing the interdependencies of the components. Details of the Excitation Inputs and Modeling components are explained in this paper. Details of the other components of Learn-to-Fly shown in Fig. 2 can be found in Refs. [13]-[16].

The next section describes the test aircraft. Section III contains a description of the flight test data, including an explanation of the excitation input design, and some discussion and evaluation of the flight data. Section IV describes the real-time global aerodynamic modeling technique applied in flight, based on multivariate orthogonal function modeling[^6][^8][^10][^12][^17] and a recursive QR decomposition[^6][^12][^18][^19]. Practical aspects and results of the autonomous onboard real-time global nonlinear aerodynamic modeling from flight data are presented and discussed in Section V, followed by conclusions in Section VI.

Figure 2. Learn-to-Fly components and interdependencies
The real-time modeling software developed and applied in this work was written in MATLAB®, implemented in Simulink® using MATLAB® function blocks, integrated with the other components of the Learn-to-Fly algorithm implemented in Simulink®, then autocoder onto the flight computer. Some of the real-time modeling software came from the software toolbox called System IDentification Programs for AirCRAFT, or SIDPAC[1,20].

II. Aircraft

Two subscale aircraft, named Woodstock and E1, were used for Learn-to-Fly flight testing. Woodstock is an intentionally complex and unusual custom-designed glider, and E1 is a commercial off-the-shelf conventional low-wing propeller aircraft.

A. Woodstock

The Woodstock aircraft is a subscale, custom-designed, custom-built glider made from nylon using 3D printing technology and reinforced with carbon fiber rods. Figure 2 includes a drawing of the Woodstock aircraft, and Fig. 3 is a photo of Woodstock in flight, just after launch at altitude and before the initial pull up. Control surfaces are conventional ailerons on the outboard wing sections, two trailing-edge wing flaps on each of the four inboard diamond wing sections, and a gimballed tail section that can move the entire aircraft empennage with fixed vertical and horizontal tail surfaces over a variety of pitch and yaw rotational positions relative to the fuselage. Trailing-edge down is positive deflection for all control surfaces except rudder, for which trailing-edge left is positive deflection. Aircraft aerodynamics and control effectiveness were unknown and purposely made complex, to present a significant challenge to the Learn-to-Fly algorithm and concept. Woodstock has no landing gear, but is equipped with a ruggedized fuselage underside to accommodate the intended skid landings. Aircraft geometry and mass properties are given in Table 1. Two Woodstock aircraft were built. More information on the Woodstock aircraft can be found in Refs. [13]-[14].

Woodstock was equipped with a micro-INS, which provided 3-axis translational accelerometer measurements, angular rate measurements, Euler attitude angles, and GPS position and velocity. Air flow angle vanes attached to a boom mounted on the nose measured angle of attack and sideslip angle. Accelerometer and air flow angle data were corrected to the aircraft center of gravity in real time. A pitot tube mounted on the left wing was used to measure static and dynamic pressure. Onboard static pressure and ambient temperature measurements were used to compute air density and altitude. Mass properties were determined from ground-based mass and inertia measurements. Control surface deflections were measured with potentiometers mounted on each control surface servo shaft. Although the aircraft was intended to be fully autonomous, conventional radio-control stick and rudder commands from the safety pilot on the ground were also measured and recorded, in the event that the safety pilot needed to take control of the aircraft. Flight data were recorded onboard the aircraft and downloaded for analysis after each flight. Flight data sampling rate was 50 Hz.

Woodstock was dropped from a tethered balloon at altitudes between 2000 and 3000 feet above ground level and was flown autonomously using onboard sensor measurements and the Learn-to-Fly algorithm. Information on the balloon hardware and associated flight operations can be found in Refs. [13]-[14]. A safety pilot on the ground had the capability to take control of the airplane using conventional radio control, but was only tasked with range safety and otherwise instructed to allow the aircraft to fly autonomously.

![Figure 3. Woodstock aircraft](Credit: NASA Langley)
![Figure 4. E1 aircraft](Credit: NASA Langley)

After release from the balloon and allowing time for the aircraft to clear the balloon mounting rig and recover to a nominal flight condition, automated control surface perturbations were injected to excite the aircraft dynamic
response and generate informative flight data for efficient and accurate real-time modeling. These control surface perturbations, called Programmed Test Inputs (PTI), were applied to all control surfaces individually and simultaneously. The PTI were summed with feedback control commands in the flight control system, just before the limiting on actuator command rates and positions. PTI design is described in Section III.

B. E1

The E1 aircraft is a commercially-available 40-percent scale Edge 330 SC remotely-piloted fixed-wing airplane, shown in Fig. 4. E1 is powered by an electric motor driving a fixed-pitch tractor propeller. Cruising speed is approximately 50 kts. Control surfaces are conventional ailerons and trailing-edge flaps on the wings, along with a conventional rudder and a split elevator. Trailing-edge down is positive deflection for all control surfaces except rudder, for which trailing-edge left is positive deflection. Aircraft geometry and mass properties are given in Table 1. More information on the E1 aircraft can be found in Refs. [13]-[14].

E1 was equipped with a micro-INS, which provided 3-axis translational accelerometer measurements, angular rate measurements, Euler attitude angles, and GPS position and velocity. Air flow angle vanes attached to a boom mounted on the right wingtip (visible in Fig. 4) measured angle of attack and sideslip angle. Accelerometer and air flow angle data were corrected to the aircraft center of gravity in real time. A pitot tube mounted on the left wing was used to measure static and dynamic pressure. Onboard static pressure and ambient temperature measurements were used to compute air density and altitude. Propeller speed was measured using a Hall-effect sensor. Mass properties were determined from ground-based mass and inertia measurements. Control surface deflections were measured with potentiometers mounted on each control surface servo shaft. Pilot radio-control stick, rudder, and throttle commands were also measured and recorded. Flight data were recorded onboard the aircraft and downloaded for analysis after each flight. Flight data sampling rate was 50 Hz.

A research pilot executed take-offs and landings using conventional radio control. Flight test maneuvers were initiated by the pilot flying the aircraft to a desired initial flight condition, then activating components of the Learn-to-Fly algorithm for autonomous real-time modeling, learning adaptive control, and guidance, using switches on the radio control box. The maneuvers were terminated by the pilot switching back to conventional radio control and flying the airplane manually.

As with the Woodstock aircraft, the onboard Learn-to-Fly algorithm on the E1 aircraft had the capability to inject automated control surface perturbations (PTI), to excite the aircraft dynamic response and thereby generate informative flight data for real-time modeling. The PTI were applied to all control surfaces individually and simultaneously, by summing the PTI with control commands from the pilot and/or feedback control, just before the limiting on actuator command rates and positions.

III. Flight Test Data

To enable accurate identification of the aircraft global aerodynamics, flight data must cover a wide range of the explanatory variables, with sufficient information content and signal-to-noise ratios, as well as low correlations among the explanatory variables. For the Learn-to-Fly application, there is also a requirement to collect informative data for all rigid-body degrees of freedom very rapidly, because real-time models are needed quickly for autonomous control and guidance. Prior flight research[6-8,21,22] has demonstrated that applying automated orthogonal optimized multisine perturbation inputs to the control surfaces during transitions through a range of flight conditions is an excellent and efficient method for collecting global aerodynamic modeling data with good information content. Automated orthogonal optimized multisine perturbation inputs were applied to all control surfaces simultaneously for the Learn-to-Fly project. These inputs are the PTI used during all Learn-to-Fly flight tests. Detailed description of the design procedure for orthogonal optimized multisine perturbation inputs can be found in Refs. [6],[7],[12],[21],[22]. A brief summary is given here.

The general idea is to excite the aircraft using perturbation inputs with wideband frequency content encompassing the expected modal frequencies of the aircraft dynamic response. The excitations are implemented as perturbations to the control surface deflections by summing designed perturbation inputs with the actuator commands from the guidance and control systems, just before the actuator limiting on command rate and position. This implementation is important for achieving the required excitation and decorrelation in the explanatory variables.

Each designed perturbation input is a sum of sinusoids with unique harmonic frequencies, optimized phase shifts, and specified power distribution. Component frequencies are selected to cover a frequency band of interest. The wideband frequency content of the inputs is important because there is naturally some uncertainty as to what the
modal frequencies are for the aircraft in flight, and the wideband inputs provide robustness to that uncertainty. Phase shifts for the sinusoidal components of each input are optimized to achieve low peak-to-peak amplitude for the sum of sinusoids. Amplitudes of the individual sinusoidal components can be selected to achieve a specific power distribution.

Multiple inputs are designed to be mutually orthogonal in both the time domain and the frequency domain, and are designed for high data information content in all axes over a short time period, while minimizing excursions from the nominal flight condition. The mutual orthogonality of the inputs allows simultaneous application of multiple inputs, which reduces the required excitation time, but even more importantly for this work, provides continuous multi-axis excitation as the aircraft flies through various flight conditions.

Each perturbation input \(u_j \), which is to be applied to the \(j \)th individual control surface, is a sum of harmonic sinusoids with individual phase shifts \(\phi_k \),

\[
 u_j = \sum_{k \in [1,\ldots,M]} A_k \sin \left(\frac{2\pi k t}{T} + \phi_k \right) \quad j = 1,2,\ldots,n_i
\]

where \(M \) is the total number of available harmonically-related frequencies, \(T \) is the time length of the excitation, \(A_k \) is the amplitude for the \(k \)th sinusoidal component, and \(t \) is the time vector. Each of the \(n_i \) inputs is the sum of selected components from the pool of \(M \) harmonic sinusoids with frequencies \(\omega_k = 2\pi k/T, \ k = 1,2,\ldots,M \), where \(\omega_M = 2\pi M/T \) represents the upper limit of the frequency band for the excitation inputs. The interval \([\omega_1, \omega_M]\) \(\text{rad/s} \) specifies the range of frequencies where the aircraft dynamics are expected to lie.

The mutual orthogonality of the PTI in the time domain comes from the fact that all sinusoidal components of each input are harmonic sinusoids with the same base period \(T \), but unique harmonic frequencies. Orthogonality in the frequency domain comes from using unique frequencies for the component sinusoids included in each input.

If the phase angles \(\phi_k \) in Eq. (1) were chosen at random on the interval \((-\pi,\pi]\) \(\text{rad} \), then in general, the various harmonic components would add together at some points to produce an input \(u_j \) with relatively large amplitude excursions. This is undesirable, because it can result in the dynamic system being moved too far from the reference condition for the test. To prevent this, the phase angles \(\phi_k \) for each of the selected harmonic components are optimized to minimize the relative peak factor \(RPF \), defined by

\[
 RPF(u_j) = \frac{\left[\text{max}(u_j) - \text{min}(u_j) \right]_2/2}{\sqrt{2 \left[u_j^T u_j \right]/N}} = \frac{\left[\text{max}(u_j) - \text{min}(u_j) \right]}{2\sqrt{2} \text{rms}(u_j)} \quad j = 1,2,\ldots,n_i
\]

Relative peak factor is a measure of the efficiency of an input for dynamic modeling purposes, in terms of the amplitude of the input divided by a measure of the input energy. Low values of relative peak factors are desirable for highly efficient and effective aerodynamic modeling, because the objective is to excite the dynamic system with good input energy over a variety of frequencies while minimizing the input amplitudes in the time domain, to avoid driving the dynamic system too far away from the reference condition. For each input with more than one sinusoidal component, as in Eq. (1), minimum \(RPF \) is achieved by adjusting the phase angles \(\phi_k \) for each individual sinusoidal component of the input. The resulting optimization problem is non-convex; however, a simplex algorithm can be applied to find a solution\(^{12,21-23}\).

The integers \(k \) specifying the harmonic frequencies for the \(j \)th input \(u_j \) are selected to be unique to that input, but are not necessarily consecutive. A good approach for multiple inputs is to assign integers \(k \) to each input alternately. This is illustrated in Fig. 5 for flight test maneuver design on the E1 aircraft. There are 6 inputs in this case: elevator, rudder, and ailerons and flaps on the left and right wings. The harmonic frequencies were interleaved among these six inputs to achieve wideband frequency content in each input, for robustness in the excitation and to enable accurate individual control surface effectiveness estimates. Because each input has wideband frequency content, the same input design can be applied at various flight conditions, which simplifies the excitation strategy.
and reduces flight computer memory requirements. Figure 6 shows time series for the PTI designed using the frequency content depicted in Fig. 5.

![Figure 6. E1 multiple orthogonal optimized multisine input power spectra](image)

To achieve a uniform power distribution, the A_k are selected as

$$A_k = \frac{A}{\sqrt{n}} \quad \forall k$$

(3)

where n is the number of sinusoidal components included in the summation of Eq. (1), and A is the amplitude of the composite input u_j. Therefore, with uniform power distribution, selection of the A_k reduces to selecting a single value for the input amplitude A. Each input u_j can of course have arbitrary amplitude A, subject to practical flight test and modeling constraints. The different heights of the bars in Fig. 5 reflect the different amplitudes used for the PTI applied to each individual control surface.

![Figure 6. E1 multiple orthogonal optimized multisine inputs](image)
The PTI design shown in Figs. 5 and 6 was used throughout the E1 flight testing, with only input amplitude adjustments made after the first flight, to achieve acceptable signal-to-noise ratios for the measured aircraft responses. This adjustment was necessary because there was no prior information for either the measurement noise levels or the control surface effectiveness. Because the PTI are sums of harmonic sinusoids with a common base period \(T \), they are periodic for the excitation period \(T \), so that the PTI can be applied repeatedly without any discontinuities in magnitude or slope.

The PTI described here were used to provide multi-axis flight data with high information content and low correlations among the explanatory variables over a large range of flight conditions, as required for accurate and efficient global aerodynamic modeling. The multiple-input design with orthogonality was important for Learn-to-Fly because the aircraft dynamics could be excited rapidly and effectively in all axes simultaneously, so that informative data could be collected quickly to enable accurate real-modeling as soon as possible. The same approach was used for both Woodstock and E1, with the difference in the PTI design mainly the number of control surfaces: 12 for Woodstock, and 6 for E1.

Table 2 provides elevator PTI design information for E1 Learn-to-Fly flight tests. PTI design information for the other control surfaces was analogous. Table 3 contains descriptions of the research flight tests for E1, and Table 4 contains analogous information for Woodstock.

Figure 7 shows cross plots of selected explanatory variable data from E1 flight 3. These plots demonstrate that a wide range of the explanatory variables was swept through during the Learn-to-Fly flight tests with PTI active. Note that the cross plots generally do not resemble straight lines, which means that the explanatory variable data had low pairwise correlations. Low correlations mean that the dependencies of the aircraft aerodynamics on the explanatory variables can be identified accurately and without ambiguity. Cross plots for other aircraft states and controls used for global aerodynamic modeling were similar to Fig. 7 in that the plots indicated low correlations and wide ranges of coverage for the explanatory variables.

Because the PTI were composed of sinusoids with various frequencies and phase angles, and were optimized for small total amplitude, applying these inputs simultaneously to the aircraft produces a dynamic response similar to what might be seen in flight through light to moderate turbulence. Consequently, the aircraft stays near the reference condition, but exhibits rich dynamic response about that condition. In practice, guidance and feedback control act to spoil the perfect orthogonality (zero pairwise correlations) of the designed PTI. However, good modeling results require only low correlations, not zero correlations, so that the slightly correlated inputs that result from applying orthogonal PTI with guidance and feedback control acting still work very well.

![Figure 7. E1 flight data cross plots](image-url)
IV. Real-Time Global Aerodynamic Modeling

The modeling objective for Learn-to-Fly is to identify a global nonlinear model in real time for each nondimensional aerodynamic force and moment coefficient as a function of explanatory variables that can be measured, such as angle of attack, sideslip angle, body-axis angular rates, and control surface deflections. There are two main difficulties in doing this: 1) designing an experiment to collect informative dynamic data rapidly, which was addressed in Section III, and 2) identifying an accurate global nonlinear model in real time, which is the subject of this section.

Global aerodynamic modeling involves identifying complex connections between the explanatory variables (such as angle of attack and control surface deflections) and the quantities to be predicted (such as nondimensional pitching moment coefficient), often called the dependent variables. An effective approach to identifying such connections from the data is to evaluate candidate functions of the explanatory variables for effectiveness in accurately characterizing the dependent variable, using data transformations and statistical criteria.

In previous work\(^6\), a method for real-time global aerodynamic modeling was developed and demonstrated, with all calculations done on the ground using telemetered flight data. This method used recursive orthogonalization to isolate and quantify the modeling capability of individual candidate linear and nonlinear model terms, then applied statistical metrics computed from the data to select which of the orthogonalized model terms should be included in the model\(^6-8,10,12,17\). After this model structure determination step, model parameter values and uncertainties were calculated. The real-time modeling in Learn-to-Fly employs this general approach, with all computations done in real time by the onboard flight computer, to identify global nonlinear aerodynamic models valid over large ranges of the explanatory variables.

The next subsections describe the general nonlinear aerodynamic modeling problem using nondimensional aerodynamic coefficients, recursive real-time orthogonalization of the candidate model terms, modeling metrics, and the method used for real-time global aerodynamic modeling.

A. Nondimensional Aerodynamic Coefficient Modeling

For global aerodynamic modeling from flight data, nondimensional aerodynamic force and moment coefficients were used as the dependent variables for the modeling problem. A separate modeling problem was solved for each nondimensional force or moment coefficient, corresponding to minimizing the squared equation error in each individual equation of motion for the six rigid-body degrees of freedom of the aircraft\(^12\). Values for the nondimensional aerodynamic force and moment coefficients cannot be measured directly in flight, but instead must be computed from measured and known quantities using the following equations\(^12\)

\[
C_X = \frac{m a_x}{\dot{q} S} \quad C_Y = \frac{m a_y}{\dot{q} S} \quad C_Z = \frac{m a_z}{\dot{q} S} \quad (4)
\]

\[
C_I = \frac{I_{xx}}{\dot{q} S b} \left[\dot{p} - \frac{I_{zz}}{I_{xx}} (pq + i) + \frac{(I_{zz} - I_{yy})}{I_{xx}} qr \right] \quad (5a)
\]

\[
C_m = \frac{I_{yy}}{\dot{q} S c} \left[\dot{q} + \frac{(I_{xx} - I_{zz})}{I_{yy}} pr + \frac{I_{zz}}{I_{yy}} (p^2 - r^2) \right] \quad (5b)
\]

\[
C_n = \frac{I_{zz}}{\dot{q} S b} \left[\dot{r} - \frac{I_{zz}}{I_{zz}} (\dot{p} - qr) + \frac{(I_{yy} - I_{xx})}{I_{zz}} pq \right] \quad (5c)
\]

These expressions retain the full rigid-body nonlinear dynamics in the aircraft equations of motion. Note that Woodstock was a glider with no thrust, and E1 had no separate method for calculating thrust from the propeller. Consequently, for E1, the \(a_x\) measurement, and therefore \(C_X\) calculated from Eq. (4), included both thrust and aerodynamic effects.

Equations (4)-(5) were used to compute values of the nondimensional force and moment coefficients in real time. Such data are often called measured force and moment coefficient data, even though the data are not measured

American Institute of Aeronautics and Astronautics
directly, but rather computed from other measurements and known quantities. Data for explanatory variables such as air flow angles, body-axis angular rates, and control surface deflections came from sensor measurements.

Because angular accelerations $\dot{\dot{\theta}}$ were not measured, a smooth local differentiation method was applied to the measured angular rate data to compute angular accelerations in real time. The data smoothing required to keep noise levels low for the computed angular accelerations used both past and future samples of the angular rates relative to the data point being smoothed, causing a delay of two time samples in the real-time results. For 50 Hz data, this amounted to an 0.04 s delay. An analogous real-time data smoothing approach was applied to remove noise from the real-time explanatory variable data, incurring the same 0.04 s delay. This was done because low-noise explanatory variable data are known to produce accurate modeling results with small bias errors. As a result, the real-time data used for Learn-to-Fly modeling was delayed by 0.04 s because of the real-time data smoothing and real-time smooth differentiation. The same delay was applied uniformly to all of the real-time data used for real-time modeling. This small 0.04 s delay did not impact the real-time results in any significant way, because real-time model dependencies changed at a much slower rate, due to the relatively slow changes in flight condition and the gradual expansion of explanatory variable coverage as the flight test progressed.

The desired form of the global aerodynamic model is a mathematical model structure with estimated model parameter values and associated uncertainties, relating the nondimensional aerodynamic force and moment coefficients to aircraft states and controls that can be measured. All of the global modeling was based on equation-error least-squares modeling in the time domain. In this formulation, the dependent variable, which is one of the nondimensional force or moment coefficients, is modeled using an expansion of generally nonlinear model terms computed from the explanatory variables, which are nondimensional aircraft states and control surface deflections. This leads to a modeling problem based on an over-determined set of algebraic equations for the unknown model parameters, which can be solved using least-squares methods, as described next.

B. Real-Time Multivariate Orthogonal Function Modeling

The multivariate orthogonal function modeling approach used for Learn-to-Fly real-time modeling was based on previous work, with modifications to achieve real-time onboard operation. The technique begins by generating candidate multivariate functions of the explanatory variable data. Although any function of the explanatory variables could be used, multivariate polynomials and spline functions are preferred because of their similarity to a truncated Taylor series and their easy physical interpretation. These candidate functions are then orthogonalized in real time, so that each of the resulting orthogonal functions retains only the explanatory capability that is unique to that modeling function. With this data transformation, it is a straightforward process to select which of the orthogonal modeling functions are most effective in modeling the measured data for the dependent variable, and how many of these orthogonal functions should be included to identify a model that exhibits both a good fit to the modeling data and good prediction capability for other data. The final steps are computing estimates for model parameters that multiply the physically-meaningful functions of the explanatory variables associated with the orthogonal modeling functions selected for the model, and calculating uncertainties for those model parameter estimates.

1. Generating Orthogonal Modeling Functions Recursively

In previous work, multivariate orthogonal functions were generated from ordinary multivariate functions in the explanatory variables using a Gram-Schmidt orthogonalization procedure applied to all of the data at once. That approach is not efficient or practical for real-time operation. Instead, recursive orthogonalization can be implemented using a standard QR decomposition of the matrix of candidate modeling functions,

$$X = QR$$

where the columns of the $N \times n_c$ matrix contain the candidate modeling functions, N is the number of data points, and n_c is the number of candidate modeling functions. The matrix Q is orthonormal with the same dimensions as X, and R is an $n_c \times n_c$ square upper-triangular matrix. Implementations of QR decomposition algorithms are available in many numerical analysis software packages, including MATLAB, which was used for this work.

The model output is computed as a linear combination of the modeling functions,
\[y = X \theta \] \hspace{1cm} (7)

In general, only some of the candidate modeling functions will be selected for the model. For the sake of exposition, Eq. (7) will be used, with the understanding that the columns of \(X \) will generally be a subset of all candidate modeling functions. The model term selection process, also called model structure determination, will be described later.

The model output \(y \) is intended to match the measured dependent variable \(z \) as closely as possible,

\[z = y + \varepsilon = X \theta + \varepsilon \] \hspace{1cm} (8)

where \(\varepsilon \) is the modeling error. The best estimator of \(\theta \) in a least-squares sense comes from minimizing the sum of squared differences between the dependent variable measurements \(z \) and the model output,

\[J(\theta) = \frac{1}{2} (z - X\theta)^T (z - X\theta) \] \hspace{1cm} (9)

The least-squares solution for the unknown parameter vector \(\theta \) is found by taking the derivative of the cost function in Eq. (9) with respect to \(\theta \), setting the result equal to zero, and solving for \(\theta \),

\[\frac{\partial J}{\partial \theta} = -X^T z + X^T X \hat{\theta} = 0 \] \hspace{1cm} (10a)

\[X^T X \hat{\theta} = X^T z \] \hspace{1cm} (10b)

\[\hat{\theta} = (X^T X)^{-1} X^T z \] \hspace{1cm} (10c)

Substituting the \(QR \) decomposition from Eq. (6) into Eq. (10b),

\[R^T R \hat{\theta} = R^T Q^T z \] \hspace{1cm} (11)

where \(Q^T Q = I \) for the orthonormal matrix \(Q \). Assuming \(R^T \) is nonsingular,

\[R \hat{\theta} = Q^T z \] \hspace{1cm} (12)

From Eq. (12), the elements of \(\hat{\theta} \) can be found by back substitution, because \(R \) is an upper triangular matrix. Equation (12) is convenient for recursion, because the \(R \) matrix must be an upper triangular \(n_c \times n_c \) matrix, and only the inner products of the orthonormal columns of \(Q \) with the dependent variable vector \(z \) appear in the equation, and not the \(Q \) matrix itself. Consequently, the dimension of both sides of Eq. (12) is always \(n_c \times 1 \), regardless of the number of data points \(N \).

Re-writing Eq. (12) in component form,

\[
\begin{bmatrix}
\tilde{\eta}_1 & \tilde{\eta}_2 & \ldots & \tilde{\eta}_{n_c} \\
0 & \tilde{\eta}_2 & \ldots & \tilde{\eta}_{n_c} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \tilde{\eta}_{n_c}
\end{bmatrix}
\begin{bmatrix}
\hat{\theta}_1 \\
\hat{\theta}_2 \\
\vdots \\
\hat{\theta}_{n_c}
\end{bmatrix}
=
\begin{bmatrix}
q_1^T z \\
q_2^T z \\
\vdots \\
q_{n_c}^T z
\end{bmatrix}
\] \hspace{1cm} (13)
where \(q_j \) is the \(j \)th column of the \(Q \) matrix. The right side of Eq. \((13)\) is a vector of projections of the dependent variable vector \(z \) onto the orthonormal functions in the columns of \(Q \). These quantities indicate the degree of correlation of the orthonormal functions in the columns of \(Q \) with \(z \), and consequently, the effectiveness of each orthonormal function in modeling the dependent variable data. In fact, dividing \(q_j^T z \) by the Euclidean norm of \(z \) gives the pairwise correlation coefficient for \(q_j \) and \(z \).

The recursive QR decomposition process is initialized by applying a QR decomposition algorithm to the \(X \) matrix built from the first \(n_c \) data points, to obtain Eq. \((13)\). When new data arrive, Eq. \((13)\) is augmented by appending the new data in the bottom row,

\[
\begin{bmatrix}
\eta_1' & \eta_2' & \cdots & \eta_{n_c'} \\
0 & \eta_2' & \cdots & \eta_{n_c'} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \eta_{n_c'} \\
\xi_1 & \xi_2 & \cdots & \xi_{n_c'}
\end{bmatrix}
\begin{bmatrix}
\hat{\theta}_1 \\
\hat{\theta}_2 \\
\vdots \\
\hat{\theta}_{n_c'} \\
\hat{\theta}_n
\end{bmatrix}
=
\begin{bmatrix}
q_1^T z \\
q_2^T z \\
\vdots \\
q_{n_c'}^T z \\
\xi
\end{bmatrix}
\]

(14)

where \(\begin{bmatrix} \xi_1 & \xi_2 & \cdots & \xi_{n_c'} \end{bmatrix} \) is the new row of data for the \(X \) matrix, and \(\xi \) is the new dependent variable data. To maintain the QR decomposition including the appended data, the matrix multiplying the parameter vector must be transformed so that the last row contains all zeros. This can be done by applying \(n_c \) Givens rotation matrices\(^{6,12,18,19}\), or by simply re-computing the QR decomposition using the MATLAB® qr.m function. The latter approach was used in this work, because the associated autocode executed faster than implementing Givens rotations in MATLAB®. The updated QR decomposition is

\[
\begin{bmatrix}
\eta_1' & \eta_2' & \cdots & \eta_{n_c'} \\
0 & \eta_2' & \cdots & \eta_{n_c'} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & \eta_{n_c'} \\
0 & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
\hat{\theta}_1 \\
\hat{\theta}_2 \\
\vdots \\
\hat{\theta}_{n_c'} \\
\hat{\theta}_n
\end{bmatrix}
=
\begin{bmatrix}
q_1^T z \\
q_2^T z \\
\vdots \\
q_{n_c'}^T z \\
\epsilon
\end{bmatrix}
\]

(15)

where the primed notation indicates the updated QR decomposition, including the appended data. The value \(\epsilon \) remaining in the bottom row on the right side of Eq. \((15)\) is the residual for the appended data point, assuming a model that includes all the \(q_j \), \(j = 1,2,\ldots,n_c \). If this quantity is retained and included in subsequent QR decompositions as more data arrive, by appending the new data below the row of zeros on the left and the residual value on the right, then after subsequent recursive updates, that value becomes the square root of the summed squared residuals for all of the data, assuming all columns of \(X \) are included in the model.

The process is repeated as each new data sample arrives. The result is a recursive algorithm that efficiently updates the orthonormalization of the \(n_c \) candidate modeling functions after each new data point is appended to the result from the previous time step. Note that the model parameters \(\hat{\theta}_j \), \(j = 1,2,\ldots,n_c \), are associated with the original candidate modeling functions in the columns of \(X \), and not with the orthonormal functions in the columns of \(Q \). The columns of \(R \) specify the linear combination of orthonormal functions in the columns of \(Q \) required to generate the associated column of \(X \), cf. Eq. \((6)\).
2. Least Squares Parameter Estimation using Orthonormal Functions

The form of a model using orthonormal modeling functions is

\[z = a_1 q_1 + a_2 q_2 + \ldots + a_n q_n + \varepsilon \] \hspace{1cm} (16)

where \(z \) is an \(N \)-dimensional vector of dependent variable data (e.g., nondimensional force or moment coefficient data), \(z = [z_1, z_2, \ldots, z_N]^T \), modeled in terms of a linear combination of \(n \) mutually orthonormal modeling functions \(q_j, j = 1, 2, \ldots, n \). Each \(q_j \) is an \(N \)-dimensional vector that in general depends on the explanatory variables. The \(a_j, j = 1, 2, \ldots, n \) are unknown constant model parameters to be determined, and \(\varepsilon \) denotes the modeling error vector.

Assembling the \(n \) orthonormal modeling functions from Eq. (16) in the columns of an \(N \times n \) matrix \(Q \),

\[Q = [q_1, q_2, \ldots, q_n] \] \hspace{1cm} (17)

and defining the unknown parameter vector \(a = [a_1, a_2, \ldots, a_n]^T \), Eq. (16) can be written as

\[z = Qa + \varepsilon \] \hspace{1cm} (18)

which is the same equation discussed earlier in Eq. (8), except that the modeling functions are now orthonormal functions. In this case, it is easier to determine an appropriate model structure, because the explanatory capability of each of the modeling functions in the columns of \(Q \) is completely distinct from all of the others, due to the mutual orthogonality. This decouples the least squares modeling problem, as will be shown now.

For mutually orthonormal functions,

\[q_i^T q_j = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases} \quad i, j = 1, 2, \ldots, n \] \hspace{1cm} (19)

and \(Q^T Q \) is the identity matrix. Using Eq. (19) in the least-squares solution from Eq.(10c) for the model in Eq. (18), the \(j \)th element of the estimated parameter vector \(\hat{a} \) is

\[\hat{a}_j = q_j^T z \] \hspace{1cm} (20)

The least-squares cost function using orthonormal functions is then

\[J(\hat{a}) = \frac{1}{2} \left[z^T z - \hat{a}^T \hat{a} \right] = \frac{1}{2} \left[z^T z - \sum_{j=1}^{n} (q_j^T z)^2 \right] \] \hspace{1cm} (21)

Equation (21) shows that when the modeling functions are orthonormal, the reduction in the least-squares cost function resulting from including the term \(a_j q_j \) in the model depends only on the dependent variable data \(z \) and the added orthonormal modeling function \(q_j \). The least-squares modeling problem is therefore decoupled, which means each orthonormal modeling function can be evaluated independently in terms of its ability to reduce the least-squares model fit to the data, regardless of which other orthonormal modeling functions are already selected for the model. If the modeling functions were instead polynomials in the explanatory variables (or any other non-orthogonal function set), then the least-squares problem would be coupled and iterative analysis would be required to find a
subset of the candidate modeling functions for an adequate model structure. The orthogonalization removes the need for this iteration, and therefore makes the model structure determination feasible in real time.

The vector on the right side of Eq. (15) from the recursive QR decomposition contains exactly the quantities \(q_j^T z \) appearing in Eqs. (20) and (21). These quantities are calculated for all \(n_c \) candidate modeling functions, and are used to identify the model structure, which involves selecting the functions to be included in the model from the pool of \(n_c \) candidate modeling functions.

C. Modeling Metrics

Statistical modeling metrics were used to select which of the orthonormal candidate modeling functions should be included in the model for each nondimensional aerodynamic force or moment coefficient. The modeling metrics were:

1. Coefficient of determination \(R^2 \)

\[
R^2 = \frac{\sum_{i=1}^{N} [\hat{z}(i) - \bar{z}]^2}{\sum_{i=1}^{N} [z(i) - \bar{z}]^2} = 1 - \frac{\sum_{i=1}^{N} [z(i) - \hat{z}(i)]^2}{\sum_{i=1}^{N} [z(i) - \bar{z}]^2} = 1 - \frac{(z - \hat{z})^T (z - \hat{z})}{z^T z - N \bar{z}^2}
\]

The \(R^2 \) metric\(^{12} \) quantifies the fraction of the variation in the dependent variable about its mean that is explained by the model, so that \(0 \leq R^2 \leq 1 \). Often, \(R^2 \) is given as a percentage. \(R^2 \) is a model fit quality measure.

2. Predicted Squared Error PSE

\[
PSE = \frac{1}{N} (z - X\hat{\theta})^T (z - X\hat{\theta}) + \sigma_{\text{max}}^2 \frac{n}{N}
\]

or

\[
PSE = \frac{2}{N} J(\hat{\theta}) + \sigma_{\text{max}}^2 \frac{n}{N}
\]

The \(PSE \) metric\(^{12,25} \) quantifies the expected squared prediction error for an identified model when applied to data not used in the model identification process. The constant \(\sigma_{\text{max}}^2 \) is an upper-bound estimate of the dependent variable noise variance. The \(PSE \) metric is a combination of a model fit quality measure (the first term on the right side of Eq. (24), the mean squared fit error, proportional to the least-squares cost function) and a model complexity penalty (the second term on the right side of Eq. (24), proportional to the number of terms in the model, \(n \)). Reference [25] contains statistical arguments and analysis for the \(PSE \) metric, including justification for its use in modeling problems.

To compute the preceding model metrics, each orthonormal candidate modeling function being evaluated for inclusion in the model must be tentatively included, or tried out, in the model. The recursive QR decomposition for all orthonormal candidate modeling functions does this automatically, in a way that facilitates evaluation and selection of modeling functions in real time.

D. Real-Time Model Structure Determination using Orthonormal Functions

The orthonormal modeling functions to be included in the model were chosen to minimize the predicted squared error metric \(PSE \) defined in Eq. (23),

\[
PSE = \frac{1}{N} (z - Q\hat{a})^T (z - Q\hat{a}) + \sigma_{\text{max}}^2 \frac{n}{N}
\]

\[14\]

American Institute of Aeronautics and Astronautics
Combining Eq. (25) with Eqs. (24) and (21),

\[
PSE = \frac{1}{N} \left[z^T z - \sum_{j=1}^{n} (q_j^T z)^2 \right] + \frac{\sigma_{max}^2}{N} \tag{26}
\]

An estimate of \(\sigma_{max}^2 \) that is independent of the model structure can be obtained in real time by computing a running average of squared values from a high-pass filter applied to the dependent variable data. This real-time estimate of the noise variance for the dependent variable can then be multiplied by a factor to implement a conservative estimate for the upper bound \(\sigma_{max}^2 \). In the Learn-to-Fly work, a second-order Butterworth high-pass filter with break frequency set at 3 Hz was applied to the real-time dependent variable data, and the result was squared and averaged in real time. This mean square value was then multiplied by a factor of 25 to obtain a conservative estimate of \(\sigma_{max}^2 \) (corresponding to 5 times the estimated standard deviation),

\[
\hat{\sigma}_i^2 = \left[(i-1)\hat{\sigma}_{i-1}^2 + \nu_i^2 \right]/i \tag{27a}
\]

\[
\hat{\sigma}_{max}^2 = 25\hat{\sigma}^2 \quad \text{or} \quad \hat{\sigma}_{max} = 5\hat{\sigma} \tag{27b}
\]

where \(\nu_i \) is the high-pass filtered dependent variable data at the \(i \)th time step.

Using a conservative upper bound estimate for \(\sigma_{max}^2 \) means the PSE metric will tend to overestimate actual squared prediction errors for new data. Therefore, the PSE metric conservatively estimates the squared error for prediction cases. Other high-pass filter designs and break frequencies could be used as well. The purpose of the high-pass filter design is to isolate the components of the dependent variable data that characterize the magnitude of the noise for model structure determination purposes.

The last term on the right in Eq. (26) prevents overfitting the data with too many model terms, which is detrimental to model prediction accuracy\(^{12,25}\). The mean squared fit error must decrease with the addition of each orthonormal modeling function to the model (because \(-\left(q_j^T z \right)^2 \) is always negative, and \(z^T z \) is unaffected by the model), whereas the overfit penalty term \(\sigma_{max}^2 n/N \) must increase with each added model term \(n \) increases. The recursive QR decomposition described earlier computes \(q_j^T z \) for each of the orthonormal candidate modeling functions \(q_j, j = 1, 2,...,n_c \) at each time step.

Because the quantities \(z^T z, \sigma_{max}^2, \) and \(N \) depend only on the dependent variable data, and therefore cannot be altered by the model, Eq. (26) shows that the criterion for including each \(q_j \) in the model based on minimizing PSE can be reduced to

\[
\left(q_j^T z \right)^2 > \sigma_{max}^2 \tag{28}
\]

The criterion in Eq. (28) is a mathematical statement of the simple physical idea that only orthonormal modeling functions that reduce the squared fit error by an amount that exceeds the maximum expected noise variance should be included in the model. This is the condition necessary for PSE to decrease when \(q_j \) is added to the model.

Using orthonormal functions to model the dependent variable data makes it possible to evaluate the merit of including each modeling function individually, based on the PSE metric. The goal is to select a model structure with minimum PSE, and the PSE will always have a single global minimum for the model that includes only the
orthonormal modeling functions that satisfy Eq. (28). Model structure determination based on the PSE metric is therefore a well-defined and straightforward process that can be (and was) automated.

In addition to the PSE criterion, each selected orthonormal function q_j was required to model at least a selected fraction of the total variation about the mean for the dependent variable, quantified by the change in the R^2 metric resulting from adding q_j to the model,

$$\left(\frac{q_j^T z}{z^T z - N \bar{z}}\right)^2 \geq \Delta R^2_{\text{min}}$$

This can be computed from the results of the recursive QR decomposition and simple real-time calculations using the dependent variable data,

$$\bar{z}_i = \left[\frac{(i-1)\bar{z}_{i-1} + z_i}{i}\right]$$

$$\left(\frac{z^T z}{z^T z - N \bar{z}}\right)_i = \left(\frac{z^T z}{z^T z - N \bar{z}}\right)_{i-1} + \bar{z}_i^2$$

For the Learn-to-Fly work, ΔR^2_{min} was selected as 0.005, which corresponds to requiring each selected orthonormal function to model at least 0.5 percent of the total variation in the dependent variable about the mean.

Finally, a check for data information deficiency in the columns of X was done, by ensuring that the sum of the values in each column of R was greater than a numerical zero tolerance, set at 10^{-5}. This ensured that each of the original candidate modeling functions in X could be expressed in terms of the orthonormal modeling functions being evaluated for inclusion in the model. For any column of R that did not meet this criteria, the associated column of X was unnecessary (redundant), and that model term was excluded from the model by setting the associated model parameter estimate to zero.

Model parameters associated with the original candidate modeling functions in the columns of the X matrix were determined from Eq. (12), using all rows and columns of the R matrix up to and including the index associated with the last element of vector $Q^T z$ selected for the model. Because the orthonormalization of the multivariate functions in the X matrix is done in the order of the columns in X, all prior rows and columns of $R\hat{\theta}$ must be included in the calculation of the model parameter estimates for each selected q_j. Accordingly, if the last element of vector $Q^T z$ selected for the model is element m, only the elements $\hat{\theta}_j$, $j = 1, 2, \ldots, m$ are estimated – the remaining elements of $\hat{\theta}$ are associated with candidate modeling functions that were not selected for the model, and were not involved in the orthonormalization of the selected orthonormal functions, so those parameters are zero.

The identified model output can be computed from

$$y = X_m \hat{\theta}_m$$

where X_m and $\hat{\theta}_m$ include only the first m columns of X and elements of $\hat{\theta}$, respectively, and m is highest value of j for the orthonormal modeling functions selected for the model, or equivalently, the number of the last $Q^T z$ vector element selected for the model. Note that

$$n \leq m \leq n_c$$

16

American Institute of Aeronautics and Astronautics
because the number of orthonormal functions selected for the model, \(n \), can be less than the highest index for selected orthonormal modeling functions, \(m \), and both of these values can be (and usually are) less than the total number of candidate modeling functions, \(n_c \).

1. Model Parameter Uncertainty

Model parameter uncertainty can be found from

\[
\Sigma(\theta_m) = \sigma^2 (R_m^T R_m)^{-1}
\]

where \(R_m \) includes only the first \(m \) rows and columns of \(R \), and \(m \) is the index associated with the last selected model term from vector \(Q^T z \). The fit error variance assuming all \(n_c \) candidate modeling functions are included in the model comes from the square of the lower right value in Eq. (15) after each recursive QR decomposition update. When \(n < n_c \) modeling functions are selected for the model (the usual case), the squared residual estimate must be augmented with the squared residual associated with the modeling functions that were not selected for the model. This is easy to compute, because the fit error variance reduction associated with each omitted \(q_j \) function is simply \((q_j^T z)^2 \), from Eq. (26). The fit error variance computed from the lower right element in Eq. (15) is simply augmented by adding \((q_j^T z)^2 \) for each \(q_j \) not selected for the model. Finally, corrections for colored residuals can be made post-flight or using real-time estimates of the residual autocorrelation function.

2. Practical Issues

The orthonormalization of candidate modeling functions has a sequence dependence, in that the orthonormalization changes if the order of the candidate modeling functions in the columns of \(X \) is changed. This can reduce the number of terms in the final model, because each orthonormal function in general depends on original candidate modeling functions in prior columns of \(X \), because the \(R \) matrix is upper triangular. Consequently, a model with the smallest number of model terms will be identified when all of the selected orthonormal functions were first in line for orthonormalization.

It is possible to re-order the orthonormal modeling functions by exchanging rows and columns of the \(R \) matrix, then updating the QR factorization. Moving the candidate modeling functions that are identified as important to the front of the orthogonalization sequence means that interim unselected candidate model terms do not need to be included in the final model. This results in a reduced number of functions in the model, because the number of rows of \(R \) needed for the selected orthonormal modeling functions is reduced. However, this feature was not implemented for Learn-to-Fly real-time modeling, because it required too much computation and bookkeeping for real-time operation. Instead, the order of the columns in the \(X \) matrix, and therefore also the order of the rows and columns in the \(R \) matrix, remained fixed and determined by an initial prescribed ordering of the candidate modeling functions in the \(X \) matrix.

The recursive orthonormalization and automated model structure determination identifies which model terms from the candidate pool are necessary to characterize the functional dependencies, and estimates the associated model parameters and uncertainties. Because the approach is based on time-domain equation-error modeling, if data points are missed because of instrumentation or telemetry malfunctions, the modeling algorithm is unaffected (except for any loss of information in the missed data points), because the equation-error approach in the time-domain does not depend on the time sequence of the data. Therefore, gaps in the real-time data stream can be tolerated without modification to the algorithm. However, large data values associated with dropouts will adversely affect the modeling, as is the case for all time-domain modeling methods. The real-time data smoothing described earlier effectively removes isolated data dropouts, but the Learn-to-Fly modeling algorithm also monitored magnitudes of the explanatory and dependent variable data, and skipped any data points where reasonable practical limits were exceeded. Skipping bad data points has a small effect on real-time data smoothing, filtering, and smooth numerical differentiation, but no detrimental effects on the modeling algorithm calculations. This is a significant advantage for real-time operation, and was one reason that Learn-to-Fly real-time global aerodynamic modeling was based on the time-domain equation-error approach.
In general, there are no restrictions regarding the form of the candidate modeling functions - they can be multivariate polynomials, multivariate spline functions, or any other linear or nonlinear function that can be computed from the explanatory variable data. Inputs required from the analyst relate only to the limits of what should be considered, such as which explanatory variables to consider, the maximum order of multivariate polynomial functions to consider, spline knot locations, and so on. Obviously, the accuracy and prediction capability of each identified model depends on the pool of candidate modeling functions available for selection. The number of candidate modeling functions that were available for the real-time global modeling implemented in Learn-to-Fly was constrained by computational limitations of the onboard flight computer. These limitations were affected by the other real-time Learn-to-Fly tasks running concurrently on the onboard flight computer, such as real-time control and real-time guidance. Real-time global modeling for the six nondimensional force and moment coefficients employed a unique and separate pool of candidate modeling functions for each model, with associated separate recursive orthonormalizations. Additional onboard computation capability would enable more accurate and complete global modeling results, because a larger and more diverse pool of candidate modeling functions could be considered.

For any pool of candidate modeling functions, the real-time modeling algorithm uses the same approach to automatically sort out which of the candidate modeling functions are important, based on the data, and selects only those for the model. The result is a global parsimonious model that characterizes the functional dependencies accurately and predicts well.

V. Learn-to-Fly Real-Time Modeling Flight Test Results

Flight testing was conducted at Fort A.P. Hill Army base near Bowling Green, VA, using the instrumented Woodstock and E1 aircraft shown in Figs. 3 and 4 and described in Section II. References [13] and [14] provide an overview of the Learn-to-Fly project and associated flight testing. Details of the real-time control and real-time guidance algorithms used in Learn-to-Fly flight testing can be found in Refs. [15] and [16], respectively.

A. Flight Test Implementation

The data conditioning for real-time modeling, including real-time smoothing for the explanatory variables, real-time smooth differentiation, high-pass filtering to obtain real-time estimates of the noise variance for the nondimensional force and moment coefficients, and recursive orthogonalization of the candidate modeling functions, was done onboard the aircraft at 50 Hz. Model structure determination, model parameter estimation, and model parameter uncertainty calculations were done at a slower 5 Hz rate using a separate computational thread in the onboard flight computer. This arrangement was necessary because other real-time operations such as real-time guidance and control, data acquisition, and data logging were done at 50 Hz, and the onboard computational capability was not sufficient to do everything in a 50 Hz time frame without frame overflows. Separating the modeling structure determination, model parameter estimation, and model parameter uncertainty calculations from the other real-time modeling calculations was fairly straightforward, and the penalty incurred was that the global model updates would be done at a slower 5 Hz rate. However, this was not a significant penalty, because global aerodynamic functional dependencies for rigid-body aircraft rarely change faster than about 2 Hz, except for sudden failures, highly nonlinear flight regimes, and/or rapid maneuvering. Arranging the onboard calculations in this way allowed all of the necessary real-time modeling calculations to be made within the 50 Hz and 5 Hz time frames, while the other Learn-to-Fly components operated at 50 Hz.

Even with the separation of real-time modeling calculations into two computational threads, achieving real-time global modeling onboard the aircraft was a computational challenge, wherein the true nonlinear functional dependencies were approximated by a necessarily finite set of linear and nonlinear functions of the explanatory variables. The result was a compromise of global modeling capability in terms of the number and variety of candidate modeling functions that could be considered for each model. This issue impacted the robustness needed in the control law, requiring a complex balance between desired control law performance, changing real-time modeling accuracy that depended on time-varying data information, and the degree of modeling fidelity possible with a finite number of relatively simple functions of the explanatory variables and noisy flight data.

A characteristic of real-time modeling that was particularly important for Learn-to-Fly is the fact that real-time modeling is an analytic process, and not a predictive process. Aerodynamic dependencies must first be sufficiently exhibited in the data before real-time modeling can accurately characterize those dependencies. Practically, this means that real-time modeling results always have a slight time lag because of the need to collect enough data to make accurate judgments about the dependencies. This issue does not arise for conventional modeling based on data.
from entire maneuvers. Consequently, part of the flight testing for Learn-to-Fly involved the timing for data collection, PTI excitation, real-time modeling results, and learning adaptive control initiation.

When each Learn-to-Fly flight test run was initiated, a period of time was allowed for the aircraft to recover from the initial condition and stabilize at a nominal flight condition, using a simple and robust recovery control law. Then modeling data collection started, followed by PTI excitations on all control surfaces individually and simultaneously. After a short period of time, the real-time modeling algorithm began producing real-time modeling results for use by other components of the Learn-to-Fly algorithm. A short time after real-time modeling outputs began, learning adaptive control was initiated. A typical flight test time line is shown in Fig. 8. Both the excitation and the real-time modeling continued until the safety pilot manually shut them off, or until the aircraft flew below a specified altitude to set up for approach and landing.

![Figure 8. Learn-to-Fly flight test timeline](image)

B. Real-Time Local Linear Models

Local linear model parameters were computed in real time from the identified global aerodynamic models, using analytic derivatives evaluated at the current aircraft measured states and controls. Analytic derivatives were computed automatically, because the mathematical forms of the candidate modeling functions were known. Real-time linear aerodynamic model parameters, which are nondimensional stability and control derivatives, were evaluated using 50 Hz real-time data for aircraft states and controls, although the global models that were analytically differentiated were updated at 5 Hz. The higher 50 Hz rate for real-time stability and control derivatives was implemented for better accuracy and more effective real-time learning adaptive control.

All real-time modeling results have an inherent variability that arises from time-varying data information, measurement noise, and model structure errors. To mitigate this variability, and to provide smoother local linear modeling information to the real-time learning adaptive control, simple real-time low-pass filtering was applied to the real-time local modeling results produced at 50 Hz. The low-pass filtering was implemented using a weighted average of the current estimate and the most recent filtered value for local modeling results. The resulting filtered values were broadcast to the other components of the Learn-to-Fly algorithm and recorded. For example, the current filtered estimate of the pitching moment static stability derivative \(\bar{C}_{m_\alpha} (i) \) was computed from

\[
\bar{C}_{m_\alpha} (i) = w_1 \bar{C}_{m_\alpha} (i-1) + w_2 \hat{C}_{m_\alpha} (i)
\]

where \(\hat{C}_{m_\alpha} (i) \) was the local derivative of the current global \(C_{m_\alpha} \) model with respect to \(\alpha \), evaluated at current conditions, \(\bar{C}_{m_\alpha} (i) \) was the filtered value broadcast to other parts of the Learn-to-Fly algorithm as the current estimate of \(C_{m_\alpha} \), and \(\bar{C}_{m_\alpha} (i-1) \) was the most recent past value of \(\bar{C}_{m_\alpha} \). The weightings were chosen as

\[
w_1 = 0.5 \quad w_2 = 0.5
\]

American Institute of Aeronautics and Astronautics
Higher values of w_1 would produce smoother results with more time lag, whereas higher values of w_2 would produce more variable results with less time lag. To implement a weighted average, the weightings must satisfy

$$w_1 + w_2 = 1.0$$ \hspace{1cm} (36b)

Note that the immediate past value of a local linear real-time estimate (such as $\overline{C_{m_{\alpha}}}(i-1)$ in Eq. (35)) includes data information from a stretch of time into the past. This real-time low-pass filtering was applied only to the local linear model parameters (stability and control derivatives), and not to the global model parameters. The filtered linear model results were used to compute local linear dynamic model matrices at 50 Hz, which were also broadcast to the other components of the Learn-to-Fly algorithm.

At the start of a Learn-to-Fly test run, there was no information about the aircraft aerodynamics, but rough guesses for the stability and control derivatives, based on a conventional aircraft with similar size, were implemented as initial linear aerodynamic model parameters. This was done so that other components of the Learn-to-Fly algorithm would have something to use initially, before sufficient data were collected for real-time modeling results, and also to make the transition from no information to real-time modeling information less abrupt. Because of the low-pass filtering described earlier, the real-time modeling results for stability and control derivatives transitioned smoothly and quickly from the initial guesses to real-time estimates computed from the data. Linear terms in the global model were initialized in the same way for similar reasons, but did not have low-pass filtering.

C. Data Information Content

Accurate modeling based on experimental data requires uncorrelated excitation of the explanatory variables, with sufficient amplitude so that the deterministic aircraft response is significantly larger than the noise levels. To that end, Learn-to-Fly flight tests involved excitations on all control surfaces simultaneously, to collect comprehensive and informative data quickly. Such excitations intentionally cause dynamic responses from the aircraft, which are required to produce informative data for real-time modeling. Unfortunately, this is at odds with one goal of feedback control laws, which is disturbance rejection. During Learn-to-Fly flights, this can cause a conflict, because control surface excitations must be allowed so that real-time modeling has good data information quickly, but the control law sees the resulting dynamic responses as disturbances that must be squelched. The irony is that the more successful the control law is in squelching the dynamic response in the short term, the worse the control law will be in the longer term, because the control law depends on an accurate model, and the model will only be accurate if the dynamic response of the aircraft from control surface excitations is allowed, so that real-time modeling has the data information required to work properly.

Any degradation of the excitation inputs adversely impacts data information content and therefore also degrades real-time modeling effectiveness and accuracy. Learning adaptive control used a sophisticated algorithm to achieve real-time control, based on both global and local real-time modeling results. Figure 9 shows typical distortion of the PTI excitations in the frequency domain, for the E1 aircraft with learning adaptive control active. The differences shown include both PTI distortion by the learning adaptive control, as well as control surface deflections resulting from real-time guidance commands. The learning adaptive control law had a significant impact on the rudder excitation, as well as the low-frequency elevator and aileron excitations. This degraded the data information content for real-time modeling, but the input design was robust to these distortions, and the resulting flight data still had sufficient data information content for good real-time modeling results. The real-time learning adaptive control implemented in Learn-to-Fly was operating with relatively high gain in parts of the same frequency range as the excitation inputs, and therefore squelched a portion of the excitations.

Remediation for this problem might be allocating specific frequencies for the PTI and keeping those frequencies separate from the frequencies allowed for the learning adaptive control, or reducing the feedback gains while the PTI and real-time modeling are active, or simply applying the PTI with a simpler low-gain control law until the real-time model is identified to a desired accuracy, then switching to learning adaptive control for precision guidance and maneuvering.

For any modeling, the signal-to-noise ratio for the dependent variable is critically important. The E1 aircraft had a propeller and a relatively lightweight structure, which resulted in significantly degraded signal-to-noise ratios for the nondimensional aerodynamic coefficients at some propeller rotational speeds. Figure 10 shows an example from E1 flight 6, where the measured translational accelerations (directly related to the nondimensional aerodynamic force coefficients, cf. Eq. (4)), were much noisier when the propeller rotational speed fell within a moderate range commonly used throughout the flight testing. Propeller rotational speeds either substantially higher or lower than
this moderate range resulted in lower noise levels, suggesting that some aircraft structural dynamic response was excited.

![Graphs showing excitation input distortion for learning adaptive control](image1)

Figure 9. E1 excitation input distortion for learning adaptive control

![Graphs showing flight 6 noise levels for varying propeller rotational speeds](image2)

Figure 10. E1 flight 6 noise levels for varying propeller rotational speeds
The practical result was that when the propeller rotational speed was in a moderate range (which was most of the time), the signal-to-noise ratio for \(C_Y \) was degraded to less than 1, which is below the minimum threshold of 3 required for adequate modeling\(^{12}\).

D. Real-Time Model Structure Determination

Global models were identified for all six nondimensional aerodynamic coefficients in real time. Linear and nonlinear candidate modeling functions were assembled from the explanatory variables:

\[
\beta, \alpha, \frac{pb}{2V}, \frac{qC}{2V}, \frac{rb}{2V}, \delta, 1
\]

where \(\delta \) represents all individual control surface deflections (12 for Woodstock, 6 for E1), and 1 indicates a constant bias term. In general, the candidate modeling functions were multivariate polynomials of up to 3\(^{rd} \) order in the explanatory variables listed in Eq. (37), with candidate model term selection based on experience and nonlinear aerodynamic modeling for other aircraft\(^{27} \). Most of the candidate model terms were linear (order 1) or nonlinear terms such as \(\alpha^2 \) and \(\alpha \delta \) (order 2). For each nondimensional aerodynamic force or moment coefficient model, terms that were considered unlikely to be selected for the model were omitted from the candidate pool, to save onboard computation time. Some of the candidate model terms for \(C_X \) and \(C_m \) used the absolute value of control surface deflections, because the effects of positive and negative deflections for some control surfaces had the same effect on those nondimensional coefficients. The number of candidate modeling functions for each global nondimensional aerodynamic coefficient model ranged from 12 to 25. Note that these decisions only applied to the candidate pool of model terms. Identifying which terms from the candidate pool should be included in the global aerodynamic models was done autonomously based on the data, using the method described earlier.

The pool of candidate modeling functions could be made larger and more diverse for each individual nondimensional force or moment coefficient to achieve more accurate modeling, at the cost of more onboard computations for the recursive orthonormalization and model structure determination.

1. **Real-Time Data Smoothing**

 Noise in the model terms constructed from real-time explanatory data is known to cause bias errors in the estimated model parameters\(^{12,24} \). To eliminate these errors, noise was removed from explanatory variable data in real time using data smoothing with a delay of two 50 Hz time steps, or 0.04 s. This time delay enabled the use of future data (relative to the data point being smoothed) as well as current and past data (as a filter would use), which resulted in better noise rejection. Local smoothing was done using the technique implemented in SIDPAC program \texttt{lsmoo.m} and described in Ref. [12].

 The 0.04 s delay had negligible impact on the real-time modeling results, because the global aerodynamic model structure and associated model parameters and uncertainties were updated at 5 Hz, and only data from two sample times were available but not yet used in the real-time modeling at any time. All data used in the onboard Learn-to-Fly real-time modeling algorithm were time lagged by two 50 Hz time steps, to keep the modeling data in time synchronization, which is necessary for accurate modeling\(^{13} \). Smoothed angular accelerations \(p, q, r \), which are required in Eqs. (5a)-(5c), were also computed in real time by applying a smoothing differentiator with a two-step time lag to the angular rate data \(p, q, r \), using the algorithm in SIDPAC program \texttt{deriv.m}. This approach gave smoothed data for the explanatory variables and angular accelerations in real time.

2. **Model Structure Determination Constraints**

 Several practical constraints on the real-time model structure determination were implemented for the Learn-to-Fly flight tests. The limit on the number and diversity of candidate modeling functions considered for each global aerodynamic model was the most important of these, but other practical constraints were implemented as well, as follows:

 1. All linear model terms (stability and control derivative terms) were included in the global model by default. This was done to regularize the model structure determination near the start, when very sparse data could cause deselection of some linear terms, which could lead to zero values for the stability and control derivatives computed using analytic derivatives of the global models. The global model complexity was always at least linear in the important explanatory variables for each aerodynamic force or moment coefficient model.

\[\text{American Institute of Aeronautics and Astronautics} \]
2. Model terms involving control surfaces that appeared in pairs on the aircraft (such as left and right aileron) were only chosen for global models when the terms for both control surfaces passed the statistical tests for inclusion in the model. This avoided transient selections of only one of the terms associated with a pair of control surfaces for any global model, which caused problems for the control allocation in the real-time control law.

3. Selected model terms were latched, so that once a particular model term passed the statistical tests for inclusion in the global model, that model term stayed in the global model. This prevented transient selection and deselecting of model terms, which could cause discontinuities in the real-time stability and control derivative estimates.

The E1 aircraft has a propeller driven by an electric motor, which means that the applied force in the body-axis x direction, F_X, included both thrust and aerodynamic forces. A global model for F_X would require additional candidate model terms to characterize the thrust, such as linear and nonlinear terms involving the propeller advance ratio. Unfortunately, the development schedule for the E1 aircraft was highly compressed, and there was not enough time to implement and validate the necessary modifications to the real-time modeling algorithm to change C_X global aerodynamic modeling (developed for the Woodstock glider) to F_X global modeling for combined aerodynamics and thrust. In addition, data from the sensor for propeller rotational speed on the E1 aircraft was not calibrated and produced questionable data. Therefore, the real-time global modeling for C_X on the E1 aircraft was invalid. The real-time modeling still attempted to model C_X with the model terms available, but because the available model terms did not include terms involving the propeller advance ratio, and the C_X nondimensionalization was not correct for the thrust, the global models identified for C_X from E1 flight data were poor.

Apart from the thrust modeling issue, real-time modeling for Learn-to-Fly can be converted from one aircraft to another by simply changing the number of controls and adjusting the candidate modeling function pools accordingly. This was successfully demonstrated when transitioning the Learn-to-Fly real-time modeling from Woodstock to E1, except for C_X modeling.

E. Real-Time Global Modeling

Figures 11 and 12 show real-time global aerodynamic modeling results from E1 flight 3 with PTI active, but no learning adaptive control. The safety pilot was flying the aircraft using conventional radio-control commands, with PTI excitations added autonomously to all individual control surface commands simultaneously. Modeling results for C_X and C_Y are not shown, because the C_X model was invalid from not incorporating thrust modeling terms, and the C_Y signal-to-noise ratio was very low, because of high noise levels induced at moderate propeller rotational speeds. However, the onboard real-time modeling still attempted to identify global models for C_X and C_Y, and those results were broadcast to other components of the Learn-to-Fly algorithm, along with the results for the other nondimensional force and moment coefficient models shown in Figs. 11 and 12. Fortunately, the C_X and C_Y models have relatively minor importance for aircraft stability and control.

The plots in Fig. 11 show the longitudinal global model fits to flight data in real time. The top plot is the global model fit for C_Z, and the plot below that shows the residual or difference between the data and the model. The third and fourth plots in Fig. 11 are analogous plots for C_m. Because the identified global models were updated continually and recorded, model prediction capability can be examined post-flight. The traces to the left of the vertical lines in the plots represent model fit to the data collected up to that point, using the real-time global models identified at the time marked by the vertical lines. The traces to the right of the vertical lines represent a 20-second prediction using the real-time global models identified at the time marked by the vertical lines. The prediction residuals to the right of the vertical lines have approximately the same magnitude and character as the modeling residuals to the left of the vertical lines. This indicates accurate global model identification with good prediction capability.
Figure 11. E1 flight 3 real-time longitudinal global modeling and prediction

Figure 12 shows analogous plots for the lateral global models for \(C_l \) and \(C_n \). The signal-to-noise ratio for \(C_l \) is low, but the global model is still identified well under these circumstances, and both lateral global models demonstrate good prediction capability.

To investigate the learning aspect of real-time global modeling, models identified at times earlier than the time marked by the vertical lines in Figs. 11 and 12 were used to predict the same 20 seconds of data at the end of the data record. Figure 13 shows the root-mean-square prediction error using real-time global models for \(C_m \) that were identified at various times in the data record. The steady decrease in prediction error demonstrates that the real-time global model is learning over time, as additional informative data are supplied to the algorithm and incorporated compactly in memory via the recursive orthonormalization described earlier. Similar results were found using the real-time global models for the other nondimensional aerodynamic coefficients. Slightly degraded real-time global modeling results were obtained when learning adaptive control was operating concurrently with PTI excitations and real-time modeling, probably due to the control law squelching the PTI, as described earlier, which lowers signal-to-noise ratios for the nondimensional aerodynamic coefficient data and raises explanatory variable correlation levels.
Figure 12. E1 flight 3 real-time lateral global modeling and prediction

Figure 13. E1 flight 3 real-time global C_m model learning based on 20-second prediction error
For the real-time global modeling implemented in Learn-to-Fly, conventional model parameter uncertainties were computed, as described earlier. However, these uncertainty calculations are based on asymptotic properties and the implicit assumption that data from an entire maneuver are available for both the modeling and the model fit error variance estimation. In the Learn-to-Fly context, modeling results and model parameter uncertainty measures are of interest early in the data collection process and at interim times thereafter, which is a very different requirement compared to conventional modeling. Using prediction error rather than conventional statistical uncertainty measures could be more practical and accurate for real-time modeling, but this will require further study.

Traditional control law design is based on an assumed model that does not change with time. In a Learn-to-Fly flight, the model is changing continually, as real-time global modeling improves as a result of informative data being collected over time. Consequently, the control law cannot be static, but rather must adapt to a model that is improving with time, while also being robust to inaccuracies in the model early in the flight. This can be done by relaxing controller performance requirements early in the Learn-to-Fly flight, when the real-time modeling is still has much to learn, then tightening the performance requirements as the flight progresses and the real-time modeling improves based on additional informative data. As the Learn-to-Fly flight progresses, the real-time modeling becomes more comprehensive and accurate, and ultimately the real-time guidance and control must be able to successfully execute the approach and landing tasks. Learning adaptive control and real-time guidance must be able to use modeling results that not only change and improve in accuracy sequentially with time, but can also have local stochastic variations in time, as a result of using noisy flight data.

Conventional aerodynamic modeling from flight data is typically done by executing a flight test maneuver, then analyzing the data from the entire maneuver. This makes sense for practical reasons, and also because a full maneuver allows time for the dynamic response of the aircraft to be exhibited clearly and completely in the data. For real-time modeling, interim modeling results are of interest, which means that modeling results are desired when the data collection is incomplete, consisting of only partial periods of the dominant dynamic modes, or data confined to a very limited region of the explanatory variable space, or sparse data over a relatively large portion of the explanatory variable space.

When the data coverage in the explanatory variable space is insufficient to clearly and accurately identify model terms for a global aerodynamic model, a phenomena that might be called “functional aliasing” can occur. A very simple example is shown in one dimension in Fig. 14, where only 2 data points, shown by X symbols, cannot adequately define the model form. Obviously, more data points would make it possible to distinguish among the three possible models shown in Fig. 14, and other possible models as well. The same effect occurs for real-time global modeling in the Learn-to-Fly algorithm when the initial trajectory goes through large regions of the explanatory variable space rapidly, except that the problem is much more complicated, because of higher dimensionality from more explanatory variables and dependent variables.

![Figure 14. Functional aliasing example](image)

The Learn-to-Fly algorithm was tested starting from various unusual initial conditions with the E1 aircraft, in preparation for flying the Woodstock aircraft, which was to be launched by dropping the aircraft from a balloon, and therefore was expected to experience an unusual and unknown initial trajectory. Figure 15 shows angle of attack and sideslip angle flight data for the first 10 seconds of 3 different initial trajectories flown using the E1 aircraft.
When the aircraft trajectory is such that important explanatory variables such as angle of attack and sideslip angle cover a large range of values in a short time, the real-time global modeling algorithm makes relatively rapid changes in the modeling functions selected for the model. This is the result of the data being supplied to the algorithm, particularly the explanatory variable space coverage, and has been seen in other investigations involving global aerodynamic modeling using post-flight batch calculations. As might be expected, the most accurate and least varying real-time models for the initial portion of a Learn-to-Fly flight come from using initial trajectories that fill in a relatively small region of important explanatory variable space, such as run 4 in Fig. 15. Initial trajectories that traverse large regions of explanatory variable space quickly and sparsely, such as runs 1 and 7 in Fig. 15, induce nonlinear terms in the initial real-time models, which generally results in models with poorer prediction capability initially, until more data are collected.

F. Real-Time Local Modeling

As explained earlier, real-time stability and control derivatives were computed as local analytic derivatives of the identified global aerodynamic models, evaluated at the current flight condition using flight measurements. This calculation was done at 50 Hz, at any time when the Learn-to-Fly real-time modeling was active. The real-time global models were only updated when PTI were active, so that only data with high information content was used for real-time global modeling. If the PTI were stopped, but real-time modeling was still active, then the global model parameters and model structures were held fixed, but the stability and control derivatives were still updated at 50 Hz using analytic derivatives and current flight measurements. Note that the global models and recursive orthonormalization retained information from past data in a very compact form onboard the aircraft, so that real-time global modeling could be stopped and started repeatedly, or continued from one flight to another.

Figure 16 shows examples of real-time lateral stability and control estimates from E1 flight 6, with PTI active at the start of the traces. Real-time modeling collects data for 4 seconds before broadcasting results, to ensure that valid results are produced and to reduce variations at the start when data volume is very low. The values for the first 4 seconds are prior guesses, installed so that there is some value for real-time control to use before real-time modeling produces valid results. Real-time modeling quickly corrected these prior guesses, within 1 second of starting to produce results. Part of that delay came from the real-time low-pass filtering applied to the calculated stability and control derivatives, described earlier. Real-time modeling did not use the prior guesses, and therefore had no information about the aircraft when initiated at the start of the traces in Fig. 16. However, the prior guesses were used in real-time low-pass filtering applied to the real-time stability and control derivative estimates, so that a smooth and gradual transition (rather than a jump) would be implemented at the start. For the time period shown, the flight condition was relatively constant, so the derivatives would be expected to converge to relatively constant values, as seen in Fig. 16. Note that the individual left and right aileron derivatives converged to roughly equal magnitudes with opposite sign, as would be expected. The results shown in Fig. 16 demonstrate that local stability and control derivatives can be obtained in real time using analytic derivatives of the identified global models, evaluated at the current flight condition. Repeated testing at approximately the same flight condition with real-time modeling re-initialized each time to zero information resulted in consistent real-time estimates for the stability and
control derivatives, as expected. Results for real-time estimates of longitudinal stability and control derivatives were similar in quality.

The E1 aircraft was configured to simulate different static pitch stability levels in flight by commanding the right elevator control surface in proportion to the angle of attack measurement. The flight data for elevator deflection provided to real-time modeling was from the remaining right elevator control surface, so that the flight data represented an aircraft with static pitch stability that could be adjusted by changing the gain for the left elevator surface command. In addition, elevator effectiveness would be roughly cut in half compared to the nominal airplane.

Figure 17 shows real-time estimates for pitching moment static stability and elevator effectiveness derivatives, for the E1 aircraft in nominal configuration, and with moderate and large static instabilities. The safety pilot had difficulty flying the aircraft with the simulated static instabilities, especially in maneuvering flight, which verified that some level of static pitch instability was implemented effectively. Real-time modeling in Learn-to-Fly is based on time-domain equation-error modeling, which works well without modification for stable or unstable aircraft. The plots in Fig. 17 show that the real-time modeling quickly and effectively estimated the static pitch instability, and also correctly estimated that the elevator control effectiveness for the simulated static instability cases was reduced by roughly half. These real-time modeling results were used by the real-time control and guidance to successfully and autonomously stabilize the aircraft and fly to waypoints. The E1 aircraft was also destabilized in roll by commanding differential flaps in proportion to measured roll rate. The Learn-to-Fly real-time modeling, control, and guidance handled that flight test with similar success.

Figure 16. E1 real-time lateral stability and control derivative estimates
There were two flights of the Woodstock aircraft, each starting from a balloon drop at altitude13,14. On the first flight, the aircraft was damaged by a collision of the empennage with part of the balloon release structure at the time of release, and the aircraft was lost.

On the second flight, the aircraft came off the balloon successfully, then recovered using simple and robust rate-stabilization, attitude-command recovery control to a wings-level descending flight condition at 11.7 deg angle of attack. The PTI and modeling data collection started on time at 2 seconds into the flight, and operated properly. Learning adaptive control activated on time at 4 seconds into the flight. Unfortunately, at that time, normal acceleration was 2.25 g and dynamic pressure was 9.4 lbf/ft2, which were close to the maximum values of those quantities for the first 30 seconds of the flight. When learning adaptive control activated at 4 seconds, information from real-time modeling was good, with all main control derivatives showing conventional signs, left and right aileron effectiveness values matched well in magnitude with opposite and conventional signs as expected, real-time longitudinal stability derivative estimates showed good static and dynamic pitch stability, and elevator pitch effectiveness was good with conventional sign. However, both roll and yaw static stability were indicated as marginally stable, trending toward unstable, as can be seen from the plots on the right side of Fig. 18. Roll damping $C_{\rho r}$ was stable and relatively steady, but yaw damping $C_{n_{r}}$ was marginally stable, trending toward unstable, as shown in the lower left plot of Fig. 18. Real-time modeling indicated that $C_{n_{p}}$ was unstable (negative) at 5.1 seconds, and $C_{n_{r}}$ was unstable (positive) at 5.44 seconds, as shown in Fig. 18. After learning adaptive control activation at 4 seconds, an immediate hard turn to the right was commanded using the ailerons, presumably to head toward the first waypoint. This happened almost exactly at peak dynamic pressure of 9.84 lbf/ft2. After the turn was initiated, sideslip angle increased rapidly, peaking at 32.4 deg at 5 seconds into the flight. Real-time modeling

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure17}
\caption{Real-time stability and control derivative estimates for nominal stable and destabilized E1}
\end{figure}
indicated that rudder was effective with conventional negative sign, but it appeared that learning adaptive control was slow to respond to the rapid sideslip angle buildup in the turn. This was followed by an increase in angle of attack and load factor at high dynamic pressure, and the aircraft appears to stall near 22 deg angle of attack at 5.2 seconds. The stall was followed by a partial recovery and another abrupt increase in angle of attack leading to an apparent stall at 5.8 seconds that dropped the aircraft out of the turn and into a right spin from which it did not recover.

In this Learn-to-Fly flight test, the balloon release, recovery control, PTI excitation, and real-time modeling operated as designed and expected. However, the inherent time lag in real-time modeling results and the rapid sideslip angle increase from the yaw instability of the novel Woodstock aircraft configuration were not overcome by the real-time learning adaptive control in time to save the aircraft. Another problem was poor accuracy for flap effectiveness estimates at high angle of attack and sideslip angle, because the candidate modeling functions used in real-time modeling did not include nonlinear terms that could account for changes in flap effectiveness with angle of attack and sideslip angle, although these nonlinear terms were available for the primary controls (ailerons, elevator, and rudder). Because there were eight wing flaps on the aircraft, checking for nonlinear dependencies on flap effectiveness required too much computation, and the likelihood of those dependencies was considered low. This led to the control allocator using the outboard flaps for rolling moment control at a very bad time (high values of sideslip angle, angle of attack, dynamic pressure, and roll angle, with inaccurate flap effectiveness estimates), which likely put the aircraft into a spin. The real-time modeling had nonlinear candidate modeling functions capable of characterizing variations in the effectiveness of the primary controls with angle of attack and sideslip angle, and did that successfully.

Woodstock Flight 2

\[C_{n_{\delta_e}}(\alpha, r) \]

\[\beta(\text{deg}) \]

\[\alpha(\text{deg}) \]

\[r(\text{deg/s}) \]

\[\phi(\text{deg}) \]

\[\dot{C}_{n_{\delta_e}}(\text{time (s)}) \]

\[\dot{C}_{n_{\delta_e}}(\text{time (s)}) \]

\[\dot{C}_{n_{\delta_e}}(\text{time (s)}) \]

\[\dot{C}_{n_{\delta_e}}(\text{time (s)}) \]

Figure 18. Real-time stability and control derivative estimates for Woodstock flight 2

G. Interaction With Other Learn-to-Fly Components

The Learn-to-Fly algorithm required three relatively complex components to operate simultaneously, namely real-time modeling, real-time learning adaptive control, and real-time guidance. This practical requirement was the basis for many of the important lessons learned. A list of some of the lessons learned is given in the Conclusions. This section examines a few of the important interaction effects between real-time modeling and other components of the Learn-to-Fly algorithm.

American Institute of Aeronautics and Astronautics
The real-time learning adaptive control used for Learn-to-Fly was based on nonlinear dynamic inversion, which has a relatively high requirement for model accuracy. But real-time modeling results are stochastic with inherent time delay and time-varying accuracy that depends on how much data have been collected at any time point, and the information content in that data. Consequently, the control law has to be not only adaptive and learning, but also has to adapt the control objectives. These control objectives must be in harmony with the necessarily time-varying fidelity of the real-time modeling results. For example, in the initial stages of a Learn-to-Fly flight test, the control law objectives might be simply stabilizing the aircraft at a nominal flight condition, to provide time for the real-time modeling to get an accurate characterization of the aircraft. With a real-time assessment of the modeling success, perhaps from prediction error tests, the objectives of the control law could be changed to include improved tracking accuracy, more precise maneuvering capability, and/or flight envelope expansion. This approach would also help to alleviate the problems associated with the control law squelching PTI excitations, because initially, when good modeling data is most important, the control law activity would be subdued and therefore should not impact the PTI significantly.

A similar interaction effect involves the real-time modeling and the control allocator in the control law. Because real-time modeling results necessarily have a time-varying and stochastic character, the control allocation should be simple and robust initially. After the real-time modeling results become more accurate and stable over time, the control allocator could change to achieve practical objectives that are sensitive to model accuracy, such as optimizing control allocation for minimum drag.

The real-time guidance component of Learn-to-Fly interacted with real-time modeling by using real-time estimates of lift/drag ratio as a function of nominal angle of attack, for glide calculations. For the E1 aircraft, the C_X real-time modeling was not valid, as described earlier, so a fixed lift/drag estimate obtained from E1 flight data with the engine at idle power was used instead of a real-time estimate of lift/drag. This practical work-around was successful, but using a real-time lift/drag estimate should result in better performance.

Other interactions that were considered, but not implement in Learn-to-Fly, include the use of real-time stability and control derivative estimates and their trends with time to estimate open-loop stability and control boundaries, and monitoring data density in explanatory variable space to help real-time guidance direct the nominal flight condition for effective and efficient flight test envelope expansion.

VI. Conclusions

The traditional approach to flying new or modified aircraft is to conduct a series of ground tests to determine the aircraft characteristics, then design a control law and flight procedures based on that information. The Learn-to-Fly approach proposes to design and implement onboard automated algorithms for real-time modeling, real-time learning adaptive control, and real-time guidance that will reduce or eliminate the need for ground testing, saving large amounts of time and money, and providing new opportunities for rapid and effective aircraft development and testing.

The real-time global aerodynamic modeling technique developed for Learn-to-Fly identified global nonlinear aerodynamic models in real time from flight data alone, and achieved good fits to the modeling data and good prediction capability for flight data that were not used in the modeling process. Related issues important for the success of the Learn-to-Fly concept were studied, including onboard implementation, real-time flight data information content, quality of identified global aerodynamic models as a function of time, speed and accuracy of the real-time modeling results, accurate real-time stability and control derivative estimates, and integration of multi-input excitation and real-time global modeling with simultaneous real-time learning adaptive control and real-time guidance.

The real-time modeling developed and demonstrated for Learn-to-Fly used a time-domain equation-error modeling approach that combined multivariate orthogonal function modeling based on statistical modeling metrics with real-time recursive modeling function orthonormalization and the QR decomposition. The method was successfully applied in flight onboard two subscale aircraft, executing autonomously in real time with reasonable computational requirements. Accurate global aerodynamic models were identified in real time, based on flight data alone. The real-time global aerodynamic models exhibited good prediction capability for flight data that were not used in the modeling process, and developed improved prediction accuracy (learning) over time, as additional informative data were collected and processed. Furthermore, analytic derivatives of the global models evaluated at various flight conditions produced good estimates of the aircraft stability and control, indicating that the local topology of the identified global model was reasonable.
Automated orthogonal optimized excitation inputs were applied to all control surfaces simultaneously at varying flight conditions, resulting in data with rich information content for global nonlinear aerodynamic modeling. Flight data generated in this way exhibits low correlations among explanatory variables, multi-axis excitation, and rapid coverage of large portions of the explanatory variable subspace. These characteristics make the inputs very effective and efficient for real-time global aerodynamic modeling.

The Learn-to-Fly concept was a significant technical stretch, and was intended to be that from the start. Many important lessons were learned, through both success and failure in attempting to make the Learn-to-Fly concept a reality. Some of the most important lessons learned were:

1. Real-time modeling results are time-varying and stochastic, because of time-varying data information, noisy data, and model structure errors. Consequently, real-time control must be robust to model variations with time, which is not the same as conventional model uncertainty.
2. Real-time modeling and real-time control have opposing objectives, because modeling needs data information content from dynamic responses, but control is designed to suppress disturbances, among other tasks.
3. Real-time modeling results based on flight data will always have a slight time delay, currently about one cycle of the dominant dynamic mode frequency, because dependencies must be exhibited in the data before they can be modeled accurately.
4. More computational capability in the onboard flight computer would enable more accurate global modeling by allowing larger pools of more diverse candidate modeling functions to be evaluated in real time. The enhanced pool of candidate modeling functions should include functions with local support, so that modeling a complex and significant nonlinearity in one region of the explanatory variable space (e.g., at high angle of attack) would not impact the global model in other regions.
5. For aircraft with thrust acting along the x body axis, the real-time C_X nondimensional aerodynamic coefficient modeling should be changed to real-time F_X force modeling with additional candidate modeling functions included to characterize propulsion effects.
6. Conventional methods for estimating fit error variance from modeling results for model uncertainty calculations cannot be applied to real-time modeling, because the fit error variance estimates must be available at interim times, not just at the end of a maneuver.
7. Programmed Test Input (PTI) excitation amplitudes should be selected automatically based on a real-time estimate of the signal-to-noise ratio of the dependent variables (nondimensional aerodynamic force and moment coefficients for Learn-to-Fly). The PTI waveforms are designed with wideband frequency content, so there is no need to change the waveforms. Only the amplitudes need adjustment, which involves changing a single value for each control surface excitation input.
8. Learn-to-Fly flights should start with 5-10 seconds of wings-level flight at moderate nominal angle of attack with control surface excitations active, which can be achieved using simple rate-stabilized, attitude-command feedback control, similar to the recovery mode control developed and used successfully in this work. This would allow time for baseline learning, after which maneuvering and flight envelope expansion could proceed using more sophisticated real-time control and guidance. Consequently, Learn-to-Fly requires a relatively large flight test area.
9. Real-time guidance and control for Learn-to-Fly should adjust objectives from simple stabilization and nominal wings-level flight at the start to progressively more precise maneuvering and tracking as more informative data are collected and the real-time models become more accurate and comprehensive. Control law objectives could adapt to real-time modeling fidelity, quantified by real-time metrics for current modeling accuracy or approximated as flight time spent in regions of the explanatory variable space with control surface excitation active.
10. An intelligent executive component is needed in the Learn-to-Fly algorithm, for monitoring and directing the real-time modeling, control, and guidance so that learning and maneuvering objectives can be accomplished while avoiding limits related to the flight envelope, control authority, test range, and flight safety.

Addressing these considerations will bring the Learn-to-Fly concept closer to becoming a practical and useful technique. Learn-to-Fly technology will enable self-learning aircraft, resulting in reduced development cost for new aircraft, as well as more robust and safe flight operations. The flight testing and modeling techniques described in
this work can also be applied to build high-fidelity, full-envelope nonlinear aircraft simulations from flight data, thus reducing or eliminating the need for extensive wind tunnel testing or aerodynamic calculations.

Acknowledgments

The efforts of the flight test team at NASA Langley Research Center in building and testing the Woodstock and E1 aircraft and associated systems, carefully calibrating the instrumentation, and carrying out the flight operations to collect the flight data used in this study, are gratefully acknowledged. This research was funded by the NASA Aeronautics Research Mission Directorate (ARM) Convergent Aeronautics Solution (CAS) Learn-to-Fly project.

References

20. https://software.nasa.gov/software/LAR-16100-1

33

American Institute of Aeronautics and Astronautics
Table 1. Aircraft geometry and mass properties

<table>
<thead>
<tr>
<th></th>
<th>Woodstock</th>
<th>E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{c}), ft</td>
<td>1.671</td>
<td>1.966</td>
</tr>
<tr>
<td>(h), ft</td>
<td>7.600</td>
<td>10.167</td>
</tr>
<tr>
<td>(S), ft(^2)</td>
<td>6.944</td>
<td>19.264</td>
</tr>
<tr>
<td>(x_{cg}), in</td>
<td>-1.750</td>
<td>-3.022</td>
</tr>
<tr>
<td>(y_{cg}), in</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>(z_{cg}), in</td>
<td>0.063</td>
<td>0.000</td>
</tr>
<tr>
<td>(x_{ref}), in</td>
<td>-1.750</td>
<td>-3.012</td>
</tr>
<tr>
<td>(y_{ref}), in</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>(z_{ref}), in</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>(m), slugs</td>
<td>0.881</td>
<td>1.856</td>
</tr>
<tr>
<td>(I_c), slugs-ft(^2)</td>
<td>0.797</td>
<td>2.639</td>
</tr>
<tr>
<td>(I_y), slugs-ft(^2)</td>
<td>0.965</td>
<td>6.081</td>
</tr>
<tr>
<td>(I_z), slugs-ft(^2)</td>
<td>1.811</td>
<td>8.166</td>
</tr>
<tr>
<td>(I_{xz}), slugs-ft(^2)</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 2. E1 Elevator Programmed Test Input (PTI) Design

<table>
<thead>
<tr>
<th>Input</th>
<th>(T) (s)</th>
<th>(\Delta) (deg)</th>
<th>(k)</th>
<th>(\Delta_k) (deg)</th>
<th>(\phi_k) (rad)</th>
<th>RPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_e)</td>
<td>40</td>
<td>3.0</td>
<td>6</td>
<td>0.866</td>
<td>2.2272</td>
<td>1.037</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>0.866</td>
<td>1.1783</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>0.866</td>
<td>-2.2747</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>0.866</td>
<td>-2.1205</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>0.866</td>
<td>-1.5285</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>0.866</td>
<td>2.8381</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>0.866</td>
<td>2.8768</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>0.866</td>
<td>-3.1406</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>0.866</td>
<td>0.2472</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>0.866</td>
<td>-2.4717</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>66</td>
<td>0.866</td>
<td>-0.2847</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>0.866</td>
<td>1.6715</td>
<td></td>
</tr>
</tbody>
</table>

American Institute of Aeronautics and Astronautics
<table>
<thead>
<tr>
<th>Flight Number</th>
<th>Flight Description and Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Learn-to-Fly flight test, structural failure from vertical tail impacting a support upon release from the balloon</td>
</tr>
<tr>
<td>2</td>
<td>Learn-to-Fly flight test, unrecovered spin departure in the first turn toward the first waypoint due to control mode switch failure</td>
</tr>
</tbody>
</table>