
Verification of Unstructured Grid Adaptation Components

Michael A. Park,∗Aravind Balan,† and W. Kyle Anderson‡

NASA Langley Research Center, Hampton, VA 23681, USA

Marshall C. Galbraith,§ Philip C. Caplan,¶ and Hugh A. Carson¶

Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Todd Michal‖ and Joshua A. Krakos||
Boeing Research & Technology, St. Louis, MO, USA

Dmitry S. Kamenetskiy||
Boeing Research & Technology, Seattle, WA, USA

Adrien Loseille∗∗ and Frédéric Alauzet∗∗

INRIA Paris-Saclay, Alan Turing Building, 91120 Palaiseau, France

Loïc Frazza††

Sorbonne Universités, UPMC Paris 06, 4 place Jussieu 75252 Paris cedex 05, France

Nicolas Barral‡‡

Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Adaptive unstructured grid techniques have made limited impact on production analysis
workflows where the control of discretization error is critical to obtaining reliable simulation
results. Recent progress hasmatured a number of independent implementations of flow solvers,
error estimation methods, and anisotropic grid adaptation mechanics. Known differences and
previously unknown differences in grid adaptation components and their integrated processes
are identified here for study. Unstructured grid adaptation tools are verified using analytic
functions and the Code Comparison Principle. Three analytic functions with different smooth-
ness properties are adapted to show the impact of smoothness on implementation differences.
A scalar advection-diffusion problem with an analytic solution that models a boundary layer
is adapted to test individual grid adaptation components. Laminar flow over a delta wing
and turbulent flow over an ONERA M6 wing are verified with multiple, independent grid
adaptation procedures to show consistent convergence to fine-grid forces and a moment. The
scalar problems illustrate known differences in a grid adaptation component implementation
and a previously unknown interaction between components. The wing adaptation cases in the
current study document a clear improvement to existing grid adaptation procedures. The stage
is set for the infusion of verified grid adaptation into production fluid flow simulations.

I. Introduction
The use of Reynolds-averaged Navier–Stokes (RANS) equations with a turbulence model has become a critical tool

for the design of aerospace vehicles. However, the issues that affect the grid convergence of three dimensional (3D)
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configurations are not completely understood, as documented in the AIAA Drag Prediction Workshop series [1–3]. This
led to an effort to verify the turbulence models with the Turbulence Modeling Resource (TMR) website [4]. Morrison,
Kleb, and Vassberg [5] identified that “the DPW series does not have the systematic build up and definition on both
the computational and experimental side that is required for detailed verification and validation.” This has led to a
focus on benchmark problems of increasing difficulty by Diskin et al. [6–9]. These benchmark problems provide ideal
examples to evaluate unstructured grid adaptation methods because well-resolved solutions are available from a number
of independent flow solvers on a series of carefully constructed, uniformly-refined grids. The International Workshop on
High-Order CFD Methods [10] also provides a range of cases that are suitable to computing highly accurate solutions.

Alauzet and Loseille [11] documented the dramatic progress made in the last decade for solution-adaptive methods
that includes the anisotropy to resolve simulations with shocks and boundary layers, and identify where improvements
are needed for complex simulations. Park et al. [12] documented the current state of solution-based anisotropic grid
adaptation and motivated further development with the impacts that improved capability would have on aerospace
analysis and design in the broader context of the CFD Vision 2030 Study by Slotnick et al. [13].

Park et al. [14] separated the solution-adaptive process into a number of components that can be independently
evaluated and improved. Refining and documenting the evaluation methods is equally important as the test case
descriptions to encourage old and new entrants in the grid adaptation development community to benchmark and
compare implementation choices in a uniform and repeatable manner. An informal Unstructured Grid Adaptation
Working Group (UGAWG) has been formed to continue this process as described in their first benchmark article
[15], which focused on evaluating adaptive grid mechanics for analytic metric fields on planar and simple curved
domains. The first benchmark contains a list of future directions, which includes the focus of this paper: separating the
solution-adaptive process into components (e.g., flow solver, error estimate, mesh adaptation mechanics) that can be
examined by modifying or replacing one component with the remaining components fixed.

The UGAWG evaluated the hemisphere cylinder and ONERA M6 wing cases of the Three Dimensional Benchmark
Turbulent Flows [9] as documented by Park et al. [16]. Michal et al. [17] also made an application of multiple anisotropic
error estimation techniques to the ONERA M6 wing. Both of these references compared the results of integrated
adaptation processes composed of different flow solvers, error estimation techniques, and adaptive grid mechanics. The
convergence of forces, moments, and grid properties were compared. Grids resulting from one integrated adaptation
process were examined with different flow solvers. This comparison has yielded an understanding of the properties of
the integrated adaptation components and has allowed some best practices to be identified. However, to gain a deeper
understanding of implementation choices and details, individual components of the process must be verified.

The verification and validation process is described in detail by Oberkampf and Roy [18]. Verification and validation
is part of the AIAA Engineering Standards for CFD and Complex Aerospace Systems [19]. Oberkampf and Trucano
specialize the discussion to CFD in [20]. The primary focus of this article is verification, where the question is asked,
“has the model been implemented correctly?” The other question of validation, “is this the right model to use for this
prediction?” has less emphasis in the current investigation. Trucano, Pilch, and Oberkampf [21] caution the use of the
code-to-code comparisons in the context of rigorous verification exercises, but also indicate that there are benefits when
the Code Comparison Principle (CCP) is used appropriately, i.e., comparison of two or more distinct and substantively
different codes with the same algorithms. “Even given the philosophical limitations that we have stressed, benefits
achieved from the use of the CCP for verification of complex problem numerical accuracy would likely increase if a
rational methodology was consistently applied.” [21] The current work targets a rational application of code-to-code
comparisons, where the reproducibility aspect of the scientific method is supported by documenting the outputs of
multiple codes for a specified set of inputs [22, 23].

Verifying methods by comparison to a known set of inputs and outputs or independent implementations sets the
stage for the further development of existing error estimation techniques and the creation of new methods. Oberkampf
and Trucano [24] detail the desired properties of verification and validation benchmarks. The TMR website provides
a successful model for the value of these benchmarks when they are provided in a manner that reduces the barriers
to verification and validation exercises. A repository has been initiated for unstructured grid adaptation verification
(https://ugawg.github.io/) that can be further refined and improved by the results of this effort.

The remainder of this paper is organized as follows. Section II provides the nomenclature used to describe the
components of the integrated grid adaptation procedure. Descriptions of the various flow solvers used to compute the
flow field, and the grid mechanics packages used as metric-conforming mesh adaptation tools are given in Sections III
and IV. Section V introduces the multiscale metric formulation, and describes the various implementations used to
evaluate the multiscale metric. Section VI describes different output-based metric fields that are formulated to target
specific output functionals. The error estimation and grid mechanics components are evaluated with scalar analytic
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functions in Section VII and scalar advection-diffusion partial differential equation (PDE) in Section VIII to verify
the convergence order properties of interpolation and output error. Two wing examples are examined with laminar
and RANS flow models in Sections IX and X. The force and moment trajectories of fixed grid refinement and the
solution-adaptive processes illustrate the convergence and efficiency of the adaptive processes.

II. Integrated Grid Adaptation Method
The components of metric-based anisotropic unstructured grid adaptation are shown on Fig. 1. Starting with

an initial grid, a flow solution (and optionally, an adjoint solution) is computed. The information from these flow
solutions are used to estimate error and specify a new grid resolution request via an anisotropic metric fieldM. If
the estimated errors are larger than limits specified by the practitioner, the current grid system is modified by grid
mechanics to conform to the anisotropic metricM. Once the adapted grid is available, the previous flow solution is
optionally interpolated to the new grid to provide an initial condition for the flow solver that approximates the converged
solution. This improved initial condition can decrease the execution time and improve the robustness of the flow solution
calculation, but standard initialization is also possible. The process is repeated until exit criteria are met (e.g., accuracy
requirement, resource limit). There are potential interactions between each of these elements that impact the overall
convergence and efficiency of the adaptation process. Details of the specific implementations of these components is
detailed in the following sections.

Initial grid Flow
solution

Adjoint
solution

Error
estimation
& metric

construction

Continue?Grid
mechanics

Interpolate
solution

Stop
yes no

Fig. 1 Solution-based grid adaptation process with optional components indicated by dashed outlines.

There are several ways a metric field,M, can be constructed that encodes anisotropic information. Loseille and
Alauzet [25] provide a thorough introduction to the metric tensor field. Here we consider two kinds of metric fields:
multiscale and output-based metric fields. The multiscale metric controls the Lp norm of the interpolation error of a
solution scalar field and forms the foundation of some output-based metrics [25, 26]. Output-based metric formulations
include the adjoint solution, which allows the targeting of a goal or functional output (e.g., lift, drag). The complexity,
C, of a continuous metric field,M, is defined as the integral,

C(M) =
∫
Ω

√
det(M(x)) dx, (1)

and is evaluated on the discrete grid and metric. The relationship between C and the number of vertices and elements in
the adapted grid is shown theoretically by [25] experimentally by [14, 27].

Grid adaptation is an inherently nonlinear process. The robustness of the adaptive procedure is enhanced by
optimizing the grid at a fixed-complexity, which allows for control of Degrees of Freedom (DOF). An adaptive series of
grids is created by optimizing the metric at a fixed complexity and then increasing the target complexity in a series of
steps. The progression of forces and moments during these steps is referred to as a trajectory in the result sections.
Typically, 5 to 10 fixed-complexity adaptation iterations are performed before increasing the complexity to the next
target. These fixed-complexity adaptations are referred to as subiterations in Michal et al. [17], where only the final force
or moment value is plotted for the fixed-complexity target. Alternatively, an average of a number of fixed-complexity
adaptations can be used to reduce the scatter in trajectories.
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III. Flow Solvers
The description of the solution-based grid adaptation process begins with the flow solver component. Multiple flow

solvers are employed to compute the flow field. The details of the discretization and nonlinear solution scheme can
impact the performance of the flow solver component on the integrated grid adaptation process, in particular, on highly
anisotropic grids. A strong nonlinear update scheme can positively impact the overall robustness of the process and a
low-diffusion discretization can approximate numerical solutions on coarser grids better than higher-diffusion schemes.

A. SANS
Solution Adaptive Numerical Simulator (SANS) [28], currently under development at the Massachusetts Institute of

Technology, is a general framework for solving discrete finite-element approximations to advection-diffusion-reaction
type PDEs, such as scalar advection-diffusion, Navier-Stokes, and RANS equations. A range of finite-element methods
are currently implemented in SANS, including high-order discontinuous (DG), hybridized discontinuous (HDG), and
continuous (CG) Galerkin finite-element methods.

The nonlinear system of equations is solved using pseudotime continuation (PTC) damped Newton’s method with a
line search to ensure residuals decrease. The complete linearization of the residual is computed via operator overloaded
automatic differentiation [29]. The PTC algorithm computes an element local time step based on the characteristic
speed, element size, and a Courant-Friedrichs-Lewy (CFL) number. The inverse CFL is driven toward zero such that
a Newton-like convergence rate is recovered. The Portable, Extensible Toolkit for Scientific Computation (PETSc)
[30–32] framework is used to solve the linear system for each PTC iteration with restarted generalized minimal residual
(GMRES) [33] preconditioned with an Incomplete Lower Upper (ILU) factorization. Parallel computations use the
restricted additive Schwarz preconditioner with a single layer of overlap. The ILU preconditioner is applied to each
subdomain, and restarted GMRES is applied to the global system. Adjoint systems are solved using the same linear
solver as the primal. All discrete solutions are converged to near machine-zero residuals.

B. FUN3D-FV
FUN3D-FV (Fully-Unstructured Navier-Stokes 3D) [34, 35] is a finite-volume Navier-Stokes solver in which the

flow variables are stored at the vertices of the grid. FUN3D-FV solves the equations on mixed-element grids, including
tetrahedra, pyramids, prisms and hexahedra. The adaptive grids in this study contain only tetrahedra. At interfaces
between neighboring control volumes, the inviscid fluxes are computed using the Roe [36] approximate Riemann solver
based on the values on either side of the interface. For 2nd-order accuracy, interface values are extrapolated from the
gradients computed at the grid vertices. These gradients are reconstructed with an unweighted least-squares technique
[34].

For the discretization of the full viscous fluxes, the required velocity gradients on the dual faces are computed using
the Green-Gauss theorem. On tetrahedral grids this is equivalent to a CG-type approximation. The solution at each time
step is updated with a backward Euler time-integration scheme. At each time step, the linear system of equations is
approximately solved with a multicolor point-implicit procedure [37]. Local time-step scaling is employed to accelerate
convergence to steady state. The negative Spalart-Allmaras (SA-neg) turbulence model [38] is loosely-coupled to the
meanflow equations, where the meanflow and turbulence model equations are relaxed in an alternating sequence.

The SA-neg turbulence model requires the distance from every vertex to the nearest noslip boundary condition. The
standard wall distance calculation in FUN3D-FV finds the nearest surface vertex and then searches adjacent triangles to
see if they are closer than the closest surface vertex. The standard wall distance method overestimates the distance to
the noslip boundary if the closest triangle is not adjacent to the closest surface vertex, which is a common case for
adapted grids. Parfait (https://github.com/T-infinity/parfait) is used to provide an accurate wall distance
on adapted grids. The Parfait wall distance calculator encloses each surface triangle in a bounding box and stores these
boxes in an octree for fast searches.

C. FUN3D-SFE
FUN3D-SFE is a continuous Stabilized Finite-Element discretization within FUN3D [39]. The discretization

options include the Streamlined Upwind Petrov-Galerkin (SUPG) scheme [40, 41], Galerkin Least-Squares (GLS) [42],
and variational multiscale methods [43]. In the results shown here, only the SUPG scheme is considered.

In the current implementation, the SA-neg turbulence model is tightly coupled with the flow equations, yielding a
nonlinear algebraic system of equations with six variables at each vertex. The Parfait wall distance calculation method,
described in the previous FUN3D-FV section, is used with FUN3D-SFE. A linear nodal basis is used in this study, which

4

https://github.com/T-infinity/parfait


is designed to be 2nd-order accurate in space. The current implementation includes the capability for computing on
tetrahedra, hexahedra, pyramids, and prisms, although all the results shown in the present paper are for purely-tetrahedral
grids.

To advance the solution toward a steady state, the density, velocities, temperature, and the turbulence working
variable are updated in a tightly-coupled Newton-type solver described by Anderson, Newman, and Karman [39]. Here,
an initial update to the flow variables is computed using a locally varying time-step parameter that is later multiplied by
the current CFL number, which is adjusted during the iterative process as described in the next paragraph. At each
iteration, a linearized residual matrix is formed and solved using the GMRES algorithm with a preconditioner based on
an ILU decomposition with two levels of fill [44] and a Krylov subspace dimension of 300.

Using the full update of the variables, the L2 norm of the unsteady residual is compared to its value at the beginning
of the iteration. If the L2 norm after the update is less than one half of the original value, the CFL number is doubled
and the iterative process continues to the next iterative cycle. If the L2 reduction target for the residual is not met, a line
search is conducted to determine an appropriate relaxation factor. Here, the L2 norm of the residual is determined at
four locations along the search direction and the optimal relaxation factor is determined by locating the minimum of a
cubic polynomial curve fit through the samples. After the line search, the solution is updated using the relaxation factor
and the CFL number is neither increased nor decreased.

For the ONERAM6 case with strong, noslip boundary conditions, the finite element solution variables are transferred
to the FUN3D-FV solver, which subsequently computes the forces by using previously developed routines. The Laminar
Delta Wing uses weak boundary conditions, so the forces are computed directly from the residual routines within
FUN3D-SFE.

D. Wolf
Wolf is a vertex-centered (flow variables are stored at vertices of the mesh), hybrid finite-volume and finite-element

Navier-Stokes solver on unstructured meshes composed of triangles in 2D and tetrahedra in 3D. The convective terms
are formed by the finite-volume method on the dual mesh composed of median cells. The HLLC approximate Riemann
solver [45] computes the flux at the cell interface. Piecewise linear interpolation is based on the Monotonic Upwind
Scheme for Conservation Law (MUSCL) procedure, which uses a particular edge-based formulation with upwind
elements to achieve 2nd-order accuracy in space. A low dissipation scheme uses the combination of centered (edge) and
upwind (element) gradients. A dedicated slope limiter is employed to dampen or eliminate spurious oscillations that
may occur in the vicinity of discontinuities. The viscous terms are formed by the CG method, which also provides
2nd-order accuracy.

The implicit temporal discretization considers the backward Euler time-integration scheme. At each time step, the
linear system of equations is approximately solved using a Symmetric Gauss-Seidel (SGS) implicit solver and local time
stepping to accelerate the convergence to steady state. A Newton method based on the SGS relaxation is very attractive,
because it uses an edge-based data structure that can be efficiently parallelized.

Empirically, the following crucial choices to solve the compressible Navier-Stokes equations have been made. The
residual of the linear system is reduced by two orders of magnitude by SGS relaxation. Breadth-first search renumbering
improves the convergence rate of the implicit method and increases overall efficiency. Fully differentiating the HLLC
approximate Riemann solver and the CG viscous terms is very advantageous. Automatically adjusting the time step is
required to achieve high efficiency, automation, and robustness in the solution of the nonlinear system of algebraic
equations to steady-state. The SA-neg turbulence model is loosely-coupled to the mean-flow equations, where the
mean-flow and turbulence model equations are relaxed in an alternating sequence. Complete details of the Wolf flow
solver are provided in [26, 46].

The adjoint state is needed for goal-oriented error estimates. The adjoint equations are the transposed flow solver
implicit matrix and the chosen functional (e.g., drag, lift) exactly differentiated with respect to the solution. For viscous
flows, viscosity and the stress tensor are exactly differentiated. To solve the adjoint system, we use a restarted GMRES
preconditioned with LUSGS relaxation. Mesh adaptation requires a machine precision solution of the adjoint linear
system to obtain a sufficiently accurate adjoint state.

E. GGNS
GGNS (General Geometry Navier-Stokes) is a Boeing-developed flow solver built upon the SUPG finite-element

discretization. The code uses piecewise linear finite elements resulting in a 2nd-order accurate discretization. Additional
1st-order artificial viscosity built upon the DG discretization is added for shock capturing. The indicator triggering
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this additional stabilization is based on the oscillation of the Mach number across a cell. The solver uses unstructured
grids of mixed-element type (tetrahedrons, prisms, and pyramids) as well as purely-tetrahedral grids. The number of
DOF for the 2nd-order SUPG scheme is equal to the number of vertices in the computational grid. The discretization
is vertex-based in the sense that it is conservative over the dual volumes of an unstructured grid. More details on
discretization used in the GGNS solver, including the particular choices of discretization variables and special treatment
of the essential boundary conditions via the Lagrange-multiplier based technique [47], can be found in Kamenetskiy et
al. [48].

The discrete nonlinear solver in the GGNS code implements a variant of the Newton-Krylov-Schwarz algorithm. On
the code level, this is accomplished using PETSc. Time stepping is employed to drive to the steady state solution. On
each time step, an exact Jacobian matrix for the discretization is formed by an automatic differentiation technique. The
linear system arising from the Newton’s method is approximately solved using GMRES with a drop-tolerance-based
block-ILU preconditioner (locally on subdomains) implemented in the context of the additive Schwarz method with
minimal overlap [44]. Right preconditioning is employed to maintain consistency between the nonlinear and linear
residuals. The compact stencil property of the SUPG scheme helps to reduce the fill-in levels in the approximate
factorization, thereby reducing the memory footprint.

A line search is applied along the direction provided by the approximate solution of the linear system. Residual
decrease and physical realizability of the updated state are tracked during the line search. A heuristic feedback algorithm
is implemented to communicate failure of the line search back to the time-stepping algorithm, so that the CFL number
can be increased or decreased as necessary. There is no upper preset limit for the CFL number in the time-marching
algorithm; so Newton-type quadratic convergence (or, at least, superlinear, due to inexact linear solves) is routinely
achieved at steady state.

IV. Grid Mechanics
The following anisotropic grid mechanics packages are used to modify the grid to conform to a prescribed metric

fieldM. The goal is to create a unit grid [25], where the edges are unit-length and the elements are unit-volume with
respect to the given metric. These tools adopt a local modification approach, where a valid input grid is transformed into
a more metric conforming valid output grid through a series of local operators. These tools differ in the local operations
that are considered (e.g., element split, element collapse, element reconnection, vertex relocation) and the criteria used
to apply these local operations.

A. avro
avro is a dimension-independent anisotropic mesh adaptation package under development at the Massachusetts

Institute of Technology and has been demonstrated on up to 4D mesh generation problems [49]. It is based on local
cavity operators inspired by the work of Coupez [50] and Loseille [51] and uses a combination of edge split, edge
collapse, edge swaps, facet ((D − 1)-simplex) swaps and vertex smoothing to conform to a prescribed metric. The
emphasis in avro is to construct edge lengths that conform to a requsted metric field for an input mesh with reasonable
edge length bounds, which are often satisfied in an adaptive framework. In particular, it is designed to accept input edge
lengths that are within [1/α, α] for α = 2, but also works well for α = 4. avro associates each mesh vertex with an
EGADS [52] geometry entity in order to check the topological validity of each mesh operator and for projecting vertices
to the geometry. Operators are sequenced by collapsing short edges followed by splitting long edges such that splits do
not create short edges. Swaps are interleaved within splits and collapses to improve the quality of the mesh and escape
topological configurations that restrict the ability to split or collapse. These operators are also scheduled such that the
target metric complexity is also recovered.

B. refine
The refine open source anisotropic grid adaptation mechanics package was developed at NASA. It is available via

github.com/NASA/refine under the Apache License, Version 2.0. The current version under development uses the
combination of edge split and collapse operations proposed by Michal and Krakos [53]. Vertex relocation is performed
to improve adjacent element shape. A new ideal vertex location of the vertex is created for each adjacent element. A
convex combination of these ideal vertex locations is chosen to yield a new vertex location update that improves the
element shape measure in the anisotropic metric [54]. The vertices of elements with poor shape measures are also
relocated with the nonsmooth optimization of Frietag and Ollivier-Gooch [55]. Geometry is accessed through the
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EGADS application program interface, and parallel execution is facilitated by EGADSlite [56].

C. PRAgMaTIc
PRAgMaTIc (Parallel anisotRopic Adaptive Mesh ToolkIt) is an open source 2D and 3D anisotropic adaptation

package developed as a C++ library at Imperial College London, https://meshadaptation.github.io. PRAg-
MaTIc modifies the input grid through a series of local edge-based grid manipulations [15]. First, iterative applications
of coarsening (edge collapse), edge/face swapping, and refinement (edge splitting) is used to optimize the resolution
and the quality of the grid. Then, an element-shape-constrained Laplacian smoothing step fine-tunes the grid element
shape measure. PRAgMaTIc aims at generating quality grids for a wide range of numerical simulations, notably for
geophysics applications, and it has been integrated with the PETSc and the Firedrake solver suite [57, 58].

D. EPIC
The EPIC anisotropic grid adaptation package developed at Boeing provides a modular framework for anisotropic

grid adaptation that can be linked with external flow solvers [53]. EPIC relies on repeated application of edge break,
edge collapse, element reconnection and vertex movement operations to modify a grid such that element edge lengths
match a given anisotropic metric tensor field. The EPIC-ICS variant includes only edge insertion, edge collapse, and
element swaps. The EPIC-ICSM variant adds vertex movement. The metric field on the adapted grid is continuously
interpolated from the initial metric field. Several methods are available to preprocess the metric so as to limit minimum
and maximum local metric sizes, control stretching rates of metric size and/or anisotropy, and ensure smoothness of the
resulting distribution. In addition, the metric distribution can be limited relative to the initial grid and/or to the local
geometry surface curvature. The surface grid is maintained on an IGES geometry definition with geometric projections
and a local regridding procedure.

E. FEFLO.A
FEFLO.A is a 2D, 3D, and surface mesh adaptation tool. It uses a combination of generalized standard operators

(e.g., insertion, collapse, swap of edges and faces). The generalized operators are based on recasting the standard
operators in a cavity framework [51, 59]. The cavity operator allows a simultaneous application of multiple standard
operator combinations. Quality improvements are attained with the cavity operator that are not possible through
a sequential application of standard operators. To increase robustness, the surface and volume mesh are modified
simultaneously and each local modification is checked to verify that a valid mesh is maintained. For the volume, validity
consists of checking that each newly created element has a strictly positive volume. For the surface, validity is checked
by ensuring that the deviation of the geometric approximation with respect to a reference surface mesh remains within a
given tolerance. During surface remeshing, new vertex locations are either evaluated with a cubic surface representation
or an EGADS geometry query.

V. Multiscale Metric
The multiscale metric controls the Lp-norm of the interpolation error of a solution scalar field [60]. The

(reconstructed) Hessian, H , of a scalar field, is locally scaled by the Hessian determinant and globally scaled to a
specified target to get the metric field,

MLp = DLpdet(H)
−1

2p+d |H |, (2)

where the global scaling DLp ,

DLp =
©«

Ct

C
(
det(H)

−1
2p+d |H |

) ª®®¬
2/d

, (3)

corrects the complexity of the locally scaled Hessian to produce MLp with specified target complexity Ct . Both
scaling operations depend on the dimensionality of the domain, which is d = 3 in this case. A grid conforming to
MLp provides optimal control of the scalar field interpolation error in the p-norm. A lower p-norm targets weaker
variations of the scalar field and a larger p-norm targets rapid variations of the scalar field. A number of multiscale
metric calculation methods are described below that have subtle differences in how the multiscale metric is formed (e.g.,
Hessian reconstruction, limits on metric gradation).
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A. refineMultiscale Metric
To form the metric, a Hessian of the scalar field can be reconstructed by a k-exact quadratic reconstruction [61] or

recursive application of L2-projection [26]. The k-exact reconstruction is formed over vertices that are neighbors of
neighbors of the vertex having its Hessian reconstructed. The least-squares system is solved with QR factorization,
where the linear system is decomposed into an orthogonal matrix Q and an upper triangular matrix R [34]. If the
least-squares system is underdetermined or poorly conditioned, the reconstruction stencil is iteratively grown one
additional layer until a well-conditioned least-squares system is formed. No special boundary treatment is employed, but
the one-sided stencil created on boundaries can contribute to poor conditioning that is mitigated with reconstruction
stencil growth.

The Hessian can also be reconstructed by recursive application of the L2-projection gradient reconstruction scheme.
The gradient is computed in each element and a volume-weighted average is collected at each vertex [26]. The
2nd-derivative Hessian terms are formed by computing the reconstructed gradients of these gradients formed in the
first pass. The mixed derivative terms of the Hessian are averaged. A special boundary treatment is employed. The
reconstructed Hessian on the boundary is replaced with an extrapolation from neighboring interior vertices, which have
a well-formed stencil.

The reconstructed Hessian is then diagonalized into eigenvalues and eigenvectors. The absolute value of the Hessian
is formed by recombining the absolute value of the eigenvalues with eigenvectors to ensure the Hessian is symmetric
positive definite. The Hessian at each vertex is scaled to control the Lp norm [26] with Eq. (2). The gradation of the
metric field is limited isotropically in the metric space with the “metric-space-gradation” of [62]. The complexity
is computed, and the metric is globally scaled to set its complexity to a specified value. The complexity Eq. (1) is
evaluated discretely by assuming it is piece-wise constant in each median dual.

B. Wolf+FEFLO.A Multiscale Metric

Recursive L2-projection [26] is used for Hessian reconstruction, as described in Section V.A. This recursive
L2-projection method is preferred over other reconstruction methods for improved robustness, efficiency, and accuracy.
Alternate methods are available to compute the Hessian (i.e., double weighted least-square and k-exact weighted least
square), but are not used in this study.

In the presented results, the local Mach number is the scalar field and the multiscale metric [26] controls the
interpolation error in the L2-norm. A metric gradation process is applied to smooth the metric field following the
“mixed-space-gradation” approach of [62], which is the most significant difference between the Wolf+FEFLO.A
multiscale metric and the refine multiscale metric implementations.

C. Firedrake+PRAgMaTIc Multiscale Metric
The PRAgMaTIc remeshing library was integrated with the Firedrake solver suite [57, 58]. In this study, PRAgMaTIc

is called via its Firedrake interface, and the metric computation is done with Firedrake. A weak finite-element formulation
for the HessianH of the scalar field u is written:

H = ∇2u ,

hence ∫
Ω

(
σ · H − σ · ∇2u

)
dV = 0 , ∀σ ∈ Σ ,

where σ ∈ Σ are test functions. This is then integrated by parts into:∫
Ω

(σ · H + div(σ) · ∇u) dV =
∫
∂Ω

n · (σ · ∇u)dS ,

where n is the outward normal. The problem is specified using Firedrake’s high-level Unified Form Language (UFL)
and discretized automatically. The numerical problem is then solved using the PETSc library. There is currently no
additional treatment of the Hessian on the boundary.

The Hessian is then symmetrized by taking the average value of opposite nondiagonal elements, and made positive
by taking the absolute value of the eigenvalues. Then the multiscale metric described in Section V is computed, and
the eigenvalues of the metric are truncated to a specified minimal size. Gradation of the metric sizes can be limited
following the isotropic method from [62]; however, no gradation was performed in this study.
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D. GGNS+EPIC Multiscale Metric
The Mach Hessian for each element is evaluated from the flow solution by using a least-squares approach on an

extended stencil in GGNS. GGNS then passes the Hessian at each element to EPIC, which converts it to adaptation
metrics via an element-centered modification of Alauzet and Loseille [26], which minimizes the Lp norm of interpolation
error of the scalar field for a given grid complexity. In this modification, each elemental Hessian is scaled to control the
Lp norm with Eq. (2). The global scaling factor, DLP , is initialized as Eq. (3). When enabled, the metric gradation is
limited as detailed in the EPIC description, Section IV.D. The complexity, Eq. (1), of the resulting elemental adaptive
metric is computed and the global scale factor, DLP , is modified to better match the requested value. The metric is
then iteratively recomputed until the computed complexity is within a specified tolerance of the requested value. A
continuous metric field is generated by Log-Euclidean [63] interpolation of the elemental metrics to the grid vertices.

VI. Output-based Metric
The metric field can be formulated to target a specific goal or output of the simulation by using information from the

dual or adjoint problem. Output-based grid adaptation approaches are reviewed by Fidkowski and Darmofal [64] and a
number of optimal-goal or output-based metric construction methods are examined here.

A. MOESS Output-based Metric
The Metric Optimization via Error Sampling and Synthesis (MOESS) [65, 66] adaptation algorithm is based on the

continuous mesh framework developed by Loseille and Alauzet [25, 27]. Galbraith, Allmaras, and Darmofal [28] detail
the implementation of MOESS in SANS. The output error estimation method used within MOESS is the Dual Weighted
Residual (DWR) method, as originally devised by Becker and Rannacher [67]. DWR consists of computing an adjoint
solution for an output functional in an enriched solution space, and weighting it against the residual to give an estimate of
J(u) − J(uh,p) for some output functional J(u). Originally devised for the CG discretization, this approach was then
extended by Carson et al. [68] for the DG Bassi-Rebay (BR2) discretization wherein an additional adjoint for the BR2
lifting operator was developed to account for errors in the lifting operator residual. The SANS CG local error estimate is
based on the work of Richter and Wick [69], where a nodal partition of unity localizes the DWR error estimate.

The MOESS algorithm [66] constructs a set of elemental local models that approximate the change in a localized
error estimate for an output of interest as a function of a step matrix change to the implied metric of the grid. These local
models are fit from local solves where an element κ is locally refined, either isotropically or by splitting an edge, and an
approximate solve is performed. A local solve consists of fixing the DOF outside of a patch, ωκ ⊇ κ whilst allowing
those in the patch to vary. For a DG local solve, ωκ ≡ κ but for a CG local solve, ωκ consists of the elements attached to
the vertices of κ. The localized error estimate is then reevaluated using the result of this local solve, which produces
a change in the error estimate as a function of the step matrix change to the element. The local solve is repeated for
multiple different refinements of the element and the results for all the local refinements are synthesized into a local
model for that element. This is repeated for all the elements of the mesh and the sum of these local models is optimized
subject to a maximum DOF constraint as well as constraints on the magnitude of the step matrices. The optimized step
matrices are applied to the implied metric to create the new metric request that is supplied to a mesh adaptation tool.

B. GGNS+EPIC Output-based Metric
The GGNS output metric was introduced by Michal et al. [17]. For the evaluation of the local error estimate,

piecewise linear reconstruction is used to represent the adjoint solution and to obtain its gradient. For the 2nd-order
derivatives, Zienkiewicz-Zhu type patch recovery reconstruction for the gradients [70] is first obtained at the vertices of
the grid and then these are linearly interpolated inside the elements. The interpolation error for the primal solution
is not evaluated directly, instead, we rely on a semiheuristic approach when the Hessian of the Mach number field is
provided to the adaptation module. The Mach field is the only source of metric anisotropy in the present approach; in
particular, any information about the adjoint solution enters the error indicator through the isotropic weight. To evaluate
the Hessian of the primal solution, the k-exact least-square approach based on an extended stencil reconstruction is
involved resulting in the quadratic reconstruction. The local error indicator along with the described implementation
has strong similarities to the well known Venditti–Darmofal [71] approach but is not exactly equivalent to the latter.
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C. Wolf+FEFLO.A Output-based Metric
Belme, Dervieux, and Alauzet [72] propose a goal-oriented error estimate for the laminar Navier-Stokes equations,

which is an extension of the inviscid Euler equation goal-oriented error estimate [73]. The main advantage of these
estimates in comparison to other goal-oriented error estimates is that the anisotropy of the mesh appears naturally
using the continuous mesh framework [25, 27]. From the comparison [17] of the inviscid Euler goal-oriented error
estimate and the one of Section VI.B, the new error estimate for the laminar Navier-Stokes equations is constructed using
integration by parts and linearization. The error estimate is a weighted sum of L1 interpolation error on the conservative
variables where the weights depend on the gradient and the Hessian of the adjoint state and on the convective and
viscous fluxes.

VII. Verification of Adaptation to Scalar Fields
Three analytic functions are provided to verify implementation of the multiscale metric and the MOESS algorithm,

which stress the mesh mechanics to match both isotropic and anisotropic metric fields. The three functions sinfun3,
tanh3, and sinatan3, progress in anisotropy to challenge the algorithms of each tool in different ways. For each
analytic scalar field, s, a discrete approximation, sh,p , is computed via an L2 approximation,

0 =
∫
Ω

φ
(
s − sh,p

) ∀φ ∈ Vh,p, (4)

where p signifies the polynomial degree of the discrete approximation. Sequences of successively refined grids are used
to verify that the L2-error

η =

√∫
Ω

(
s − sh,p

)2
, (5)

asymptotically decays at a rate of p + 1. All functions are evaluated on a unit cube domain Ω ≡ [0, 1] × [0, 1] × [0, 1].
The multiscale metric approximates linear interpolation error via a Hessian reconstruction. Therefore, all results in

this section use a continuous linear, p = 1, polynomial approximation of the scalar functions to compute multiscale
metric fields. The refine multiscale metrics are computed in the 2-norm with gradation limited to 5 based on either
k-exact or L2-projection Hessian reconstruction.

Rather than targeting interpolation error, the MOESS algorithm seeks to minimize an error functional. Typically,
the DWR is used as the error functional, but this only provides an approximate error estimate. To eliminate the
approximation in the error functional for this verification exercise, the MOESS algorithm is modified to minimize the
square L2-error directly. The local solves requires the error functional to be localized to each element, and the square
L2-error localized to the element κ is simply,

ηκ =

∫
κ

(
s − sh,p

)2
. (6)

The MOESS algorithm is exercised for both continuous and discontinuous finite-element solution spaces. For a
discontinuous solution space, the L2 approximation is decoupled between elements and thus, the local solves are exact
(up to quadrature error). However, for a continuous solution space, L2 approximation is a global operation, and there
remains some approximation in the local solve. As the MOESS algorithm does not make any assumption about the
polynomial degree, all sequences of grids for each scalar function are produced with polynomial degrees of p = 1,
p = 2, and p = 3.

A series of target complexities is used to demonstrate the asymptotic p + 1 convergence rate for both the multiscale-
andMOESS-generated metric fields. There are no specific requirements on how this series of complexities is constructed,
but the meshes must be fine enough to capture the asymptotic convergence rate. Here, the sequence of element counts
are derived using a discontinuous space from a sequence of DOF counts. As shown in Table 1, the number of elements
for a given DOF count decreases with increasing p. The target complexity is set by multiplying an element count by the
volume of a unit-length tetrahedron, i.e.,

√
2/12. Ideally, if the adapted meshes have perfect unit-length tetrahedron as

measured under the metric, the resulting grid should match the target number of elements. However, because unit-length
tetrahedron do not tile or fill space, the observed ratio of complexity to elements in practice is typically 1/12 – 1.1/12
as demonstrated in Refs. [27] and [14]. Thus, the element count of the adapted meshes is not expected to perfectly
match the target element count, but it should be close.
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Table 1 DG element counts for given DOF counts.

DG Elements
DOF p = 1 p = 2 p = 3
4,000 1,000 400 200
8,000 2,000 800 400
16,000 4,000 1,600 800

...
...

...
...

2,048,000 512,000 204,800 102,400

Nearly all the results in the following sections use SANS to compute the L2 projections. The exceptions are the
meshes adapted with PRAgMaTIc, where the L2 projection is computed with Firedrake. Thus, some differences
between PRAgMaTIc and other mesh adaptation tools can be attributed to differences between SANS and Firedrake.
The multiscale metrics are all generated using the algorithm implemented with refine or Firedrake, and MOESS
metrics are generated using the algorithm implemented in SANS. All adaptation sequences for a given complexity start
with a uniform mesh with 750 elements (uniform 5 × 5 × 5 hexes divided into tetrahedron). The adaptation process is
repeated 30 times with the target complexity.

(a) Element count as reference length. (b) DOF count as reference length.

Fig. 2 DOF vs. Elements as reference length.

Two reasonable choices as the representative length scale to measure the error convergence rate are DOF−1/3 and
|Elements|−1/3. For a finite-element discretization, the DOF count represents the cost to solve the linear system of
an implicit discretization, and the element count is proportional to the residual or Jacobian evaluation cost. Since
the purpose of this section is verification of the metric calculation and mesh adaptation tools, the convergence rate
is illustrated using the number of elements. The element count clusters the data when comparing continuous and
discontinuous solution spaces, as illustrated in Fig. 2. In addition, the target element count is exactly represented with
the dashed vertical lines in Fig. 2(a), whereas the target DOF count for the continuous space can only be approximated.

The figures in this section that include multiple mesh adaptation tools show the averages of last five L2-error
values in the adaptation sequence. The figures that only include one mesh adaptation tool show the last five L2-error
values in the adaptation sequence as demonstrated in Fig. 2. The lines in these figures also connect the average error
values between target complexities. All figures with L2-errors include reference lines that illustrate the expected p + 1
convergence rates.

11



A. sinfun3
The sinfun3 function,

xyz = (x − 0.4)(y − 0.4)(z − 0.4)

s =


0.1 sin(50.0 xyz) if xyz ≤ −1.0π/50.0

sin(50.0 xyz) if xyz ≤ 2.0π/50.0
0.1 sin(50.0 xyz) else ,

(7)

shown in Fig. 3, has a smooth variation that is mostly isotropic. The convergence of the L2-errors for all the mesh

Fig. 3 sinfun3 scalar function.

adaptation tools and the multiscale algorithms are shown in Fig. 4. The multiscale algorithms differ mostly in the way
the Hessian is evaluated. As discussed in Section V, the Hessian can be calculated by recursive L2-projection, k-exact
reconstruction or by a finite element formulation as implemented in Firedrake. The L2-errors are all converging at the
expected 2nd-order rate. Small differences can be observed between the mesh adaptation tools or the two multiscale
algorithms implemented with refine and the multiscale metric computed with Firedrake, as is expected on this smooth
problem. Similar results are observed for the MOESS algorithm as shown in Fig. 5. All L2-errors are converging at the
expected rate of p + 1. Separate convergence rates and grids adapted with the respective tools are shown in Appendix A.

While the expected convergence rates are achieved, the grids adapted to the sinfun3 created neighbor of neighbor k-
exact Hessian reconstruction stencils that were ill-conditioned. This prompted an extension of the k-exact reconstruction
algorithm to improve the conditioning by growing the stencil to include additional layers in the refine multiscale
metric implementation.

(a) Convergence: reference line slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 4 sinfun3 L2-error multiscale metric convergence. Example meshes adapted with refine.
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(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 5 sinfun3 L2-error MOESS convergence. Example meshes adapted with FEFLO.A.

B. tanh3
The tanh3 function,

s = tanh((x + 1.3)20(y − 0.3)9z), (8)

shown in Fig. 6, has strong anisotropic regions including a boundary layer feature on the z = 0 face. The convergence

Fig. 6 tanh3 scalar function.

of the L2-error for all the mesh adaptation tools with the multiscale algorithms are shown in Fig. 7. Due to the
anisotropy in the tanh3 function, larger grid sizes are required to reach the 2nd-order asymptotic rate. The outliers
are the meshes adapted with PRAgMaTIc and the Firedrake multiscale algorithm. From inspection of the grids
shown in Fig. 8, PRAgMaTIc with the Firedrake multiscale metric produces lower anisotropy on the boundary than
PRAgMaTIc with refine L2-projection or refine k-exact multiscale metrics. Since Hessian recovery degrades on
the boundary, interpolation error may be higher on the boundary without a specialized treatment of the recovered
Hessian on the boundary. Metric gradation helps to create an anisotropic boundary mesh, but at the cost of an increased
DOF count. Despite this deficiency, the L2-error using the Firedrake multiscale metric converges at a 2nd-order rate,
but at significantly higher errors than using the refine multiscale metrics, which extrapolate the interior Hessian
recovered with L2-projection to the boundary or use k-exact reconstruction. This demonstrates the value of code-to-code
comparisons to aid in identifying deficiencies.

The L2-errors using the MOESS algorithm are shown in Fig. 9. The L2-errors cluster reasonably well around the
2nd-order reference line. The clustering is not as clear around the 3rd- and 4th-order lines, but average convergence rates
match expectations. The convergence rates for each mesh adaptation tool for both multiscale and MOESS metrics are
shown in Appendix B.
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The errors from refine in the CG space are significantly higher relative to the other mesh adaptation tools. As an
example, the convergence rates obtained with refine compared with those obtained with EPIC-ICSM are shown in
Fig. 10. Aside from the last point, the error rates computed with EPIC-ICSM agree well with the expected p + 1 rates.
The refine results using the CG solution space are the only ones that exhibit a degraded rate and increased errors.

These higher error values appear to be due to isotropic elements in grids adapted with refine near the z = 0
boundary as shown in Fig. 10. Notably, the elements in this region are anisotropic using refine with the multiscale
metric as shown in Fig. 7. The other mesh adaptation tools do give the expected anisotropy using the MOESS metrics,
e.g., the grid adapted by EPIC-ICSM in Fig. 10. Thus, the issue here is likely due to the mesh adaption algorithm in
refine rather than an issue with the MOESS algorithm.

One possible cause for this differing behavior with refinemight be attributed to how the metric fields are generated
with the multiscale algorithm relative to the MOESS algorithm. The multiscale metric is roughly a fixed target metric,
as the multiscale algorithm uses Hessians from the given scalar field that is mostly influenced by the accuracy of the
scalar approximation. The MOESS algorithm always computes a metric that is a perturbation from its interpretation of
the implied metric of the background grid. Possible causes of refine failing to create the grid specified by the MOESS
algorithm are differences in interpretations of metric edge lengths or that the MOESS requests are within a deadband of
the refine metric-conforming tolerance.

(a) Convergence: reference line slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 7 tanh3 L2-error multiscale metric convergence. Example meshes adapted with refine.

(a) Firedrake. (b) refine L2. (c) refine k-exact.

Fig. 8 Pragmatic adapted meshes using multiscale metrics with target 128,000 elements.

14



(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 9 tanh3 L2-error MOESS convergence. Example meshes adapted with FEFLO.A.

(a) refine. (b) refine p = 1 CG target 128,000
elements.

(c) EPIC-ICSM. (d) EPIC-ICSM p = 1 CG target
128,000 elements.

Fig. 10 tanh3 L2-error MOESS convergence rates using refine vs. EPIC-ICSM.
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C. sinatan3
The sinatan3 function,

s = 0.1 sin(50xz) + tan−1(0.1/(sin(5y) − 2xz)), (9)

shown in Fig. 11 has a strong curved anisotropic region with a smooth, low amplitude background variation. The

Fig. 11 sinatan3 scalar function.

L2-error convergence using the multiscale metric is shown in Fig. 12. The scale of the vertical axis differs from the
previous figure as the L2-error is larger for the sinatan3 function. The strong anisotropy in the sinatan3 function
again requires larger grid sizes to observe the asymptotic 2nd-order rate. For the grids shown in Fig. 12, the k-exact
multiscale metric does not appear to detect the smooth background variation. However, previous calculations with finer
grids show that the k-exact metric does eventually capture the background variation. The L2-projection multiscale
metric does detect the background variation, which is likely why the L2-error values for the L2-projection metric is
slightly smaller relative to the k-exact L2-error.

As shown in Fig. 13, this function is likely not regular enough for the higher-order solution spaces to converge at the
expected p + 1 rate. As a result, the L2-error converges at approximately 2nd-order rate independent of p. Like the
tanh3 function, the results from refine are outliers. As shown in Fig. 14, refine is not creating meshes with the
expected anisotropy with the MOESS metric. This again appears to be an issue with combining MOESS with refine as
the grids adapted with EPIC-ICSM using MOESS metrics exhibit the expected anisotropy as shown in Fig. 14, and the
grids adapted with refine using multiscale metrics have the expected anisotropy as shown in Fig. 12. The convergence
rates for each mesh adaptation tool using both multiscale and MOESS metrics are shown in Appendix C.

(a) Convergence: reference line slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 12 sinatan3 L2-error multiscale metric convergence. Example meshes adapted with refine.
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(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 13 sinatan3 L2-error MOESS convergence. Example meshes adapted with FEFLO.A.

(a) refine. (b) refine p = 1 CG target 128,000
elements.

(c) EPIC-ICSM. (d) EPIC-ICSM p = 1 CG target
128,000 elements.

Fig. 14 sinatan3 L2-error MOESS convergence rates using refine vs. EPIC-ICSM.
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VIII. Verification of Adaptation to Triple Boundary Layer (TripleBL) Scalar PDE
The previous three scalar cases allow isolated tests of the metric construction and mesh adaptation mechanics

components on an analytic function. In this section, a scalar PDE is used to model the discretization error of a fluid flow
solver and show how this form of error may impact error convergence rates. The triple boundary layer (TripleBL)
solution, u, represents a simplified version of a boundary layer, which often occurs in fluid flow simulations. The u
anisotropic features are ideal tests for anisotropic metric-based adaptation, where a correctly implemented metric-based
grid adaptation scheme should to be able to accurately resolve u.

The (TripleBL) solution (shown in Fig. 15) is given by the expression,

u(x, y, z) = 1 −
1 − exp

(
−a(x−1)

ν

)
1 − exp

(
−a
ν

) 1 − exp
(
−b(x−1)

ν

)
1 − exp

(
−b
ν

) 1 − exp
(
−c(x−1)

ν

)
1 − exp

(
−c
ν

) , (10)

where ν = 1
30 and a = b = c = 1. Unlike the previous scalar functions, the TripleBL is an analytic solution to the

linear 3D advection-diffusion PDE,

∇ ·

(
®Vu − ν∇u

)
= 0, ®V =

©«
a
b
c

ª®®¬ , (11)

with Dirichlet boundary conditions on all boundaries of the unit cube Ω ≡ [0, 1] × [0, 1] × [0, 1]. This corresponds to
u(1, y, z) = u(x, 1, z) = u(x, y, 1) = 1 on three faces of the unit cube with u ≈ 0 at the origin. A rapid variation in u
occurs close to the boundary x = y = z = 1 boundaries and the solution is smoothly varying elsewhere.

The discrete TripleBL scalar field, uh,p, is computed by solving the advection-diffusion PDE using SANS with
either an unstabilized CG discretization or a DG discretization with the BR2 viscous stabilization. The boundary
conditions are enforced weakly, which means they are very poorly resolved on the initial coarse grid (uniform 5 × 5 × 5
hexes divided into 750 tetrahedra).

The MOESS algorithm minimizes the DWR output functional error estimate. Two output functionals are considered
here for the DWR. The first functional, Ju , is a volume integral of the solution,

Ju(w) =

∫
Ω

w, (12)

which for the analytic solution is

Ju(u) = 1 −
1

abc

(
ea/ν(a − ν) + ν

)(
ea/ν − 1

) (
eb/ν(b − ν) + ν

)(
eb/ν − 1

) (
ec/ν(c − ν) + ν

)(
ec/ν − 1

) . (13)

The second output functional, Jb , is an integral of the flux on the x = 1 boundary of the domain, i.e.,

Jb(w) =

∬
∂Ω

(
®Vw(1, y, z) − ν∇w(1, y, z)

)
· ®n dydz, (14)

which for the analytic solution is

Jb(u) = a

(
1 −

ea/ν
(
eb/ν(b − ν) + ν

) (
ec/ν(c − ν) + ν

)
bc

(
ea/ν − 1

) (
eb/ν − 1

) (
ec/ν − 1

) )
. (15)

For adjoint consistent discretizations, a convergence rate of 2p is expected for output functionals [74].
To verify convergence rates, multiscale metrics are computed from the discrete p = 1 unstabilized CG solutions at a

series of target complexities. Both L2-error as well as errors in Ju , i.e., |Ju(u) − Ju(uh,p)|, are expected to converge at a
2nd-order rate. The convergence rates of the errors computed from grids adapted with avro, EPIC-ISCM, FEFLO.A, and
refine using the refine L2-projection and k-exact multiscale metrics are shown in Fig. 16. The L2-error converges
for all mesh adaptation tools at a 2nd-order rate. The convergence rate for the Ju-error is a bit more noisy, but the trend
is generally 2nd-order. The meshes adapted with refine shown in Fig. 16 are representative of the meshes created with
the other mesh adaptation tools. Convergence rates for the individual mesh adaptation tools as well as figures of the
adapted meshes are shown in Appendix D.
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Fig. 15 TripleBL scalar solution.

Convergence rates of L2- and Ju-error computed using Ju as the functional for the DWR error estimate in the
MOESS algorithm for each mesh adaptation tool are shown in Fig. 17. The reference lines for the L2-error have slopes
of p + 1, and the reference lines for Ju-error have slopes of 2p. Unfortunately, the errors are too noisy to decipher the
trends of all mesh adaptation tools at once. Focusing on the errors computed with the EPIC-ICSM mesh adaptation
tool in Fig. 18, the slopes in the Ju-error roughly follow the expected rates of 2p. The L2-error also converges at the
expected rate of p + 1, because Ju is a volume functional and MOESS is minimizing the error in this functional. Error
convergence figures for each mesh adaptation tools are shown in Appendix D.

Errors in L2 and Jb using Jb as the functional for the DWR error estimate in the MOESS algorithm for each
mesh adaptation tool are shown in Fig. 19. Again focusing on results with the EPIC-ICSM in Fig. 20, the Jb-error
converges approximately at the expected rate of 2p. However, unlike the volume functional Ju , minimizing the error in
the boundary functional Jb results in grids clustered near the x = 1 domain boundary as shown in Figs. 19 and 20. As a
result, the L2-error that includes the entire volume is not expected to converge.

(a) Convergence: reference line slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 16 L2-error and Ju-error multiscale metric convergence. Example meshes adapted with refine.
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(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 17 TripleBL L2-error and Ju-error MOESS convergence. Example meshes adapted with FEFLO.A.

(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 18 TripleBL L2-error and Ju-error MOESS convergence and grids using EPIC-ICSM.

(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 19 TripleBL L2-error and Jb-error MOESS convergence. Example meshes adapted with FEFLO.A.
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(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 20 TripleBL L2-error and Jb-error MOESS convergence and grids using EPIC-ICSM.
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IX. Laminar Delta Wing
The 3D Laminar Delta Wing case was described by Wang et al. [10] and was used in the first three International

Workshops on High-Order CFD Methods (HIOCFD). This case was denoted BTC3 in the ADIGMA (Adaptive
Higher-order Variational Methods for Aerodynamic Applications in Industry) project [75, 76] where adaptive results are
detailed in Hartmann et al. [77]. Adaptive results were presented by Leicht and Hartmann [78]. Yano [65] published
grid adapted results with the MOESS metric. The geometry was modified from the original description in Klaij, van der
Vegt, and van der Ven [79] based on the experiment of Riley and Lowson [80] to match the HIOCFD and ADIGMA
cases.

The dimensions of the Delta Wing are provided in Table 2. The domain is constructed from planar facets, which
eliminates the need for curved boundary recovery from the adaptive grid mechanics and curved elements for higher-order
solution representations. The freestream conditions are 0.3 Mach, 4,000 Reynolds number based on the root chord
length, and 12.5◦ angle of attack. Isothermal noslip boundary conditions are set to freestream temperature. The Prandtl
number is 0.72. The viscosity is assumed to be constant to match the workshop case. An example adapted solution
is shown in Fig. 21 computed by FUN3D-SFE. The symmetry plane is colored with Mach number, the delta wing is
colored with coefficient of pressure. The footprint of the leading edge vortex can be seen in the upper surface pressure
coefficient. A transparent Mach=0.2 isosurface shows the vortex roll up downstream of the configuration.

Table 2 Reference geometry for the Delta Wing.

Root Chord 1.0
Span 0.267949223
Thickness 0.0244161374
Reference Area 0.133974596

Fig. 21 Laminar Delta Wing, Symmetry plane colored with Mach, Surface colored with pressure coefficient,
transparent Mach=0.2 isosurface.

The drag and lift coefficient trajectories are shown in Fig. 22 with a vertical range that shows all adapted-grid
trajectories. The spacing h is estimated h = DOF−1/3. The descriptions in the legend are the flow solver, grid mechanics,
and metric construction method joined with the + symbol. The SANS adaptive trajectories show an average force
coefficient value for a number of fixed-complexity adaptations, but the other methods show the last grid at a given
complexity. The SANS-GLS cases use the refine multiscale metric with L2-projection Hessian reconstruction. The
trajectories that extend to h < 0.01 appear to be converging toward the same fine grid values. The trends of some of the
trajectories that end with h > 0.01 are less consistent. The reference values of the drag and lift coefficients computed
for the ADIGMA project are 0.16608 and 0.34865 in [77] and 0.1658 and 0.347 in [78]. The trajectories here indicate a
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slightly lower drag and and a higher lift than the two sets of reference values. Finer grids are used for the adaptive
results here than the previously published results from HIOCFD or ADIGMA.

h = DOF
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(a) Drag coefficient.
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(b) Lift coefficient.

Fig. 22 Laminar Delta Wing, lift and drag coefficient, wide scale.

A zoom of the finer adapted grid solutions is shown in Fig. 23. The SANS-GLS-P1+EPIC-ICSM+refine-L2 and
SANS-GLS-P1+refine+refine-L2 trajectories have been omitted, because they do not terminate in the narrow drag
and lift coefficient axis range. The addition of vertex movement to GGNS+EPIC drag adaptation allows it to reach
fine-grid force values earlier. There are no consistent trends when varying the norm exponent of the multiscale metric
shown by GGNS+EPIC and FUN3D-SFE+refine. At h = 0.0048 (about 5,000,000 complexity or about 11,000,000
vertices), the drag coefficient is in the range 0.16561–0.16566 (half a drag count variation) and the lift coefficient is in
the range 0.34722–0.34745 (0.07% variation).
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(b) Lift coefficient.

Fig. 23 Laminar Delta Wing, lift and drag coefficient, narrow scale.

All the subiterations for the finer adapted grid solutions are shown in Fig. 24. The SANS-GLS-P1+EPIC-
ICSM+refine-L2 and SANS-GLS-P1+refine+refine-L2 trajectories have been omitted, because they do not
terminate in the narrow drag and lift coefficient axis range. The multiscale metric trajectories have more scatter at a
fixed complexity and a steeper slope than the lift and drag adaptation trajectories. The addition of vertex movement to
GGNS+EPIC drag adaptation reduces scatter on coarser grids. The larger scatter shown by FUN3D-SFE+refine may
be due to inadequate metric conformity at these low error levels. SANS-GLS with refine grid mechanics and refine
multiscale metric has the largest scatter at a fixed-complexity iteration.
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Fig. 24 Laminar Delta Wing, lift and drag coefficient, narrow scale, with subiterations.

The convergence of Mach interpolation error is shown in Fig. 25 for the FUN3D-SFE Laminar Delta Wing cases.
The “truth” solution used to measure interpolation error is from the final mesh in the series. To compute the error,
the Mach field on a candidate grid is linearly interpolated to the truth grid. The 2-norm and 4-norm (as shown in
parenthesis of the figure legend) of the difference is computed for the series of multiscale metric adapted grids with 2
and 4 exponents. All trajectories show the expected 2nd-order convergence.
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Fig. 25 Laminar Delta Wing, Mach interpolation error, with subiterations.

The Laminar Delta Wing case provides a number of resources that may be helpful for the development of integrated
grid adaptation components. All the flow solvers presented for the Laminar Delta Wing have a Newton solution update
scheme. Previous adapted results by Park et al. [14] required the Hierarchical Adaptive Nonlinear Method (HANIM)
[81] solution scheme to obtain a converged, steady-state solution. This may indicate that continued investment in
nonlinear solution schemes could be an important element of grid adaptation development.

To support the development and evaluation of grid adaptation and generation tools, a 50,000 complexity metric field
was extracted from the Laminar Delta Wing. The Chrisochoides et al. [82] parallel execution study globally scaled the
50,000 complexity metric field to larger complexities. These scaled metric fields provide target grid sizes to establish
strong and weak scaling trends.

24



X. ONERA M6
The ONERA M6 wing is originally described in an AGARD report [83]. The geometry is modified from this

original description to have a sharp trailing edge and a well-defined wing tip shape by Mayeur et al. [84, 85]. Test Case
2308 is simulated at 0.84 freestream Mach number, 14.6 million Reynolds number based on root chord, 3.06◦ angle of
attack, and 540 ◦R freestream static temperature. The root chord is unity, the reference area is 1.15315084119231, and
the reference pitching moment length is 0.801672958512342 with pitching moment computed about the leading edge of
the root chord.

Uniformly-refined, fixed-grid results obtained from the TMR indicate the expected force values for well-resolved
grids as solid lines in the following figures, beginning with Fig. 26. Details of the fixed-grid calculations are provided
by Diskin et al. [9]. These grids are described by Nishikawa and Diskin [86], which includes images of the surface grids
of the uniformly-refined series. These ONERA M6 grids have a well-resolved leading edge, trailing edge, wing tip, and
boundary layer with an O-grid construction. The chordwise resolution on the adapted grids is higher than the chordwise
resolution of the fixed grids. The finest fixed grids have 61 million vertices, h = 0.00254.
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(a) Pressure component of drag coefficient.
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(b) Viscous component of drag coefficient.
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(c) Total lift coefficient.
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(d) Total pitching moment coefficient.

Fig. 26 ONERA M6 force and moment convergence, last at complexity, all trajectories.

All the adapted and fixed-grid force and moment trajectories are shown in Fig. 26. The descriptions in the legend are
the flow solver, grid mechanics, and metric construction method joined with the + symbol. This figure is complex due
to the large number of different adaptive procedures presented, and is intended to provide a general impression of how
adaptive methods are performing versus hand-tailored uniformly-refined grids. Subsequent figures will focus on subsets
of these results to present the relative performance of the adaptive methods. The last grid at each fixed-complexity step
is shown. All the grids in each of these fixed-complexity steps are shown in Appendix E. 2nd-order convergence in h is
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not observed by the fixed-grid series [9]. Diskin et al. [9] tabulate differences in the force and moment coefficients on
the finest fixed grid to be less than one percent. The pressure and viscous drag coefficient components shown in Fig. 26
(a and b) are in good agreement between the fixed-grid series and the adapted-grid trajectories. The adapted-grid lift
and pitching moment trajectories are clustered near the FUN3D-SFE fixed grid series. The finite-volume methods
also approach the FUN3D-SFE fixed grid series but at a slower rate than the adapted grids. The vertical scales of
the adaptive-grid force and moment plots are narrower than Park et al. [16] or Michal et al. [17], which illustrates the
consistency and accuracy of the group has improved in a year’s time.

The impact of multiscale norm exponent is shown in Fig. 27 for FUN3D-FV+refine, FUN3D-SFE+refine,
GGNS+EPIC, and Wolf+FEFLO.A. The last grid at each fixed-complexity step is shown. All trajectories are trending
to the fine fixed-grid values. The viscous drag coefficient converges faster for the 4-norm than the 2-norm. The
finite-volume solvers with 2-norm multiscale metrics are the slowest to converge for lift and pitching moment coefficients,
and the 4-norm multiscale metrics approach fine-grid values on coarser grids. Discretization error may be too large
at these grid sizes, and a lower discretization error may be required to see clear trends between 2-norm and 4-norm
multiscale metrics for the pressure drag coefficient. Otherwise, known and unknown differences in implementations
may prevent the indication of clearer trends.
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(b) Viscous component of drag coefficient.
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(c) Total lift coefficient.
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(d) Total pitching moment coefficient.

Fig. 27 ONERA M6 force and moment convergence, last at complexity, multiscale norm order.

Metric formulations that target estimated error in an output functional (lift or drag) are shown in Fig. 28. The last
grid at each fixed-complexity step is shown. In this case, total drag and lift coefficients are shown because they are the
targets of the adaptive procedure. The pressure and viscous components of these forces are not targeted independently,
only the total. A norm-oriented [87] metric could be formulated to target these individual components simultaneously.

26



The lift and drag coefficients converge faster for these output metrics than for the multiscale metric. The multiscale
metric controls interpolation error of the solution, not error in forces directly. The output methods agree within 1 drag
count and 0.0005 lift coefficient, which is a much smaller range than the fixed grids at a comparable size.

h = DOF
1/3

C
D

0 0.005 0.01 0.015 0.02 0.025
0.0165

0.0170

0.0175

0.0180

0.0185

0.0190

FUN3DFV, Fixed Tet
FUN3DFV, Fixed Mixed

FUN3DSFE, Fixed Tet
CFL3D, Fixed Structured

GGNS+EPICICS+Drag
GGNS+EPICICSM+Drag
GGNS+EPICICSM+Lift

Wolf+FEFLO.A+Drag

(a) Total drag coefficient.

h = DOF
1/3

C
L

0 0.005 0.01 0.015 0.02 0.025
0.250

0.255

0.260

0.265

0.270

0.275

0.280

FUN3DFV, Fixed Tet
FUN3DFV, Fixed Mixed

FUN3DSFE, Fixed Tet
CFL3D, Fixed Structured

GGNS+EPICICS+Drag
GGNS+EPICICSM+Drag
GGNS+EPICICSM+Lift

Wolf+FEFLO.A+Drag

(b) Total lift coefficient.

Fig. 28 ONERA M6 force and moment convergence, last at complexity, output error.

XI. Conclusions
The verification of individual tools and integrated grid adaptation processes is critical to establishing the confidence

in these tools, which encourages their use in production fluid simulation workflows. Where possible, these tools are
evaluated on analytic solutions to demonstrate design-order convergence. Where analytic solutions are not available, the
Code Comparison Principle is exercised on a Laminar Delta Wing and the ONERA M6. These wing cases have been
examined in past studies, and improvements to these tools and integrated grid adaptation processes are shown in the
current study.

The interpolation error of grids adapted to three scalar functions is examined. The first field, sinfun3, shows design
convergence order for the three implementations of the multiscale metric and the MOESS algorithm on this smooth
function. The multiscale metric is tested with five grid mechanics tools and MOESS is tested with four grid mechanics
tools.

The tanh3 function has mild shock and boundary layer features. The Firedrake multiscale metric exhibited
a degradation at the boundary that allows design-order convergence of error, but at a higher error level than
other implementations. MOESS with refine adapting the continuous approximation space has errors that are
significantly higher than other mesh modification tools and fails to resolve the tanh3 boundary layer feature. These
situations demonstrate the value of the Code Comparison Principle in identifying differences between implementations.
Appendices A–C contain the convergence plots of all tools and example surface meshes to illustrate potential causes of
design-order behavior degradation for these scalar fields.

The sinatan3 function has a strong, curved anisotropic region combined with a smooth, low amplitude background
variation. At these complexity levels, the refine multiscale metric with k-exact Hessian reconstruction misses the low
amplitude variation that the L2-projection Hessian reconstruction resolves. The unresolved low amplitude variation
due to an implementation difference results in a consistently higher L2-error for all five grid mechanics tools with
k-exact Hessian reconstruction. The function is not regular enough for MOESS to converge at the expected p + 1 rate;
a p-independent 2nd-order rate is observed for avro, FEFLO.A, and EPIC-ICSM. The combination of refine with
MOESS fails to resolve the curved anisotropic feature, which results in a nonconverging L2-error.

A linear 3D advection-diffusion PDE with an analytical solution is used for testing the multiscale and MOESS
metrics. Four grid mechanics tools give 2nd-order convergence and very similar grids with the multiscale metric.
MOESS with four grid mechanics tools converges at design-order for the volume and boundary output functionals
targeted by MOESS.
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The Laminar Delta Wing and turbulent RANS ONERA M6 are evaluated with multiple integrated adaptation
processes. The adaptive approaches show very good agreement on the finest adapted grids. Less than half a drag count
and 0.07% variation in lift is shown for five methods on the Laminar Delta Wing. The ONERA M6 adaptive-grid study
includes comparisons to carefully hand-crafted fixed grids. The variation between 15 adaptive methods is lower than
the variation between four flow solvers on the fixed grids. A clear improvement in consistency and accuracy is shown
beyond previous published reports.

FUN3D-SFE and the refine implementation of the multiscale metric is shown to produce Mach fields with
interpolation errors that converge at 2nd-order for the Laminar Delta Wing. Output-based metrics that control error
estimates of lift and drag converged faster to fine-grid forces and moments than the multiscale metric for the ONERA
M6 Wing and Laminar Delta Wing. The output methods agree within 1 drag count and 0.0005 lift coefficient on the
ONERA M6, which is a much smaller range than the fixed grid at a comparable size. This motivates the need for
continued development of goal-oriented and output-based grid adaptation metrics.

Ibanez et al. [15] and Park et al. [12] enumerate the open items that remain for future work. Studying more realistic
and complicated geometry models would increase the robustness of the adaptive grid mechanics. Parallel execution
permits larger grid sizes and faster execution, see Chrisochoides et al. [82]. The execution time to a specified accuracy
should be compared to fixed-grid methods to demonstrate practical utility and encourage adaptive grids to be the default
approach. Error estimation and metric formation should be studied for multiple outputs and time-accurate simulations.

This study documents a clear improvement to existing grid adaptation mechanics and the introduction of new
implementations. This effort demonstrates progress toward CFD Vision 2030 [13], and a number of the timeline
elements proposed by Park et al. [12] continue to be accomplished. This work provides a benchmark for verifying the
multiscale metric in integrated adaptive grid tools for scalar fields and wing aerodynamics. These verified processes will
set the stage for the infusion of solution interpolation error and ultimately output-error-controlled RANS simulations
into production CFD workflows.
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A. sinfun3 Convergence Rates and Grids for Each Mesh Adaptation Tool
The Figs. 29 through 37 show the L2-error converge rates using the sinfun3 function for each mesh adaptation tool.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 29 sinfun3 L2-error multiscale metric convergence and grids using refine.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 30 sinfun3 L2-error multiscale metric convergence and grids using FEFLO.A.
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(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 31 sinfun3 L2-error multiscale metric convergence and grids using EPIC-ICSM.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 32 sinfun3 L2-error multiscale metric convergence and grids using avro.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 33 sinfun3 L2-error multiscale metric convergence and grids using PRAgMaTIc.
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(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 34 sinfun3 L2-error MOESS convergence and grids using refine.

(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 35 sinfun3 L2-error MOESS convergence and grids using FEFLO.A.

(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 36 sinfun3 L2-error MOESS convergence and grids using EPIC-ICSM.
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(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 37 sinfun3 L2-error MOESS convergence and grids using avro.
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B. tanh3 Convergence Rates and Grids for Each Mesh Adaptation Tool
The Figs. 38 through 46 show the L2-error converge rates using the tanh3 function for each mesh adaptation tool.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 38 tanh3 L2-error multiscale metric convergence and grids using refine.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 39 tanh3 L2-error multiscale metric convergence and grids using FEFLO.A.
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(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 40 tanh3 L2-error multiscale metric convergence and grids using EPIC-ICSM.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 41 tanh3 L2-error multiscale metric convergence and grids using avro.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 42 tanh3 L2-error multiscale metric convergence and grids using PRAgMaTIc.
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(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 43 tanh3 L2-error MOESS convergence and grids using refine.

(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 44 tanh3 L2-error MOESS convergence and grids using FEFLO.A.

(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 45 tanh3 L2-error MOESS convergence and grids using EPIC-ICSM.
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(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 46 tanh3 L2-error MOESS convergence and grids using avro.

36



C. sinatan3 Convergence Rates and Grids for Each Mesh Adaptation Tool
The Figs. 47 through 55 show the L2-error converge rates using the sinatan3 function for each mesh adaptation

tool.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 47 sinatan3 L2-error multiscale metric convergence and grids using refine.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 48 sinatan3 L2-error multiscale metric convergence and grids using FEFLO.A.
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(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 49 sinatan3 L2-error multiscale metric convergence and grids using EPIC-ICSM.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 50 sinatan3 L2-error multiscale metric convergence and grids using avro.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 51 sinatan3 L2-error multiscale metric convergence and grids using PRAgMaTIc.
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(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 52 sinatan3 L2-error MOESS convergence and grids using refine.

(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 53 sinatan3 L2-error MOESS convergence and grids using FEFLO.A.

(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 54 sinatan3 L2-error MOESS convergence and grids using EPIC-ICSM.
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(a) Convergence: reference line slopes of p + 1. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 55 sinatan3 L2-error MOESS convergence and grids using avro.
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D. TripleBL Convergence Rates and Grids for Each Mesh Adaptation Tool
The Figs. 56 through 63 show the L2- and Ju-error converge rates using the TripleBL function for each mesh

adaptation tool. Figures 64 through 67 show the L2- and Jb-error converge rates.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 56 TripleBL L2-error multiscale metric convergence and grids using refine.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 57 TripleBL L2-error multiscale metric convergence and grids using FEFLO.A.
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(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 58 TripleBL L2-error multiscale metric convergence and grids using EPIC-ICSM.

(a) Convergence: reference line with slope of 2. (b) L2 target 128,000 elements. (c) k-exact target 128,000 elements.

Fig. 59 TripleBL L2-error multiscale metric convergence and grids using avro.

(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 60 TripleBL L2- and Ju-error MOESS convergence and grids using refine.
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(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 61 TripleBL L2- and Ju-error MOESS convergence and grids using FEFLO.A.

(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 62 TripleBL L2- and Ju-error MOESS convergence and grids using EPIC-ICSM.

(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 63 TripleBL L2- and Ju-error MOESS convergence and grids using avro.
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(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 64 TripleBL L2- and Jb-error MOESS convergence and grids using refine.

(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 65 TripleBL L2- and Jb-error MOESS convergence and grids using FEFLO.A.

(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 66 TripleBL L2- and Jb-errorMOESS convergence and grids using EPIC-ICSM.
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(a) Convergence: reference line slopes of p + 1 and 2p. (b) p = 1 CG target 128,000 elements. (c) p = 1 DG target 128,000 elements.

Fig. 67 TripleBL L2- and Jb-error MOESS convergence and grids using avro.
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E. ONERA M6 Integrated Adaptation Trajectories
The force and moment trajectories summarized in Section X are shown here for each integrated adaptation scheme.

All grids that constitute a fixed-complexity step are shown. The descriptions in the legend are the flow solver, grid
mechanics, and metric construction method joined with the + symbol. This examination of integrated adaptation
schemes begins with GGNS+EPIC in Fig. 68. Mach multiscale, lift output, and drag output metrics are shown with
(EPIC-ICSM) and without (EPIC-ICS) vertex location optimization. The output-based metrics converged closer to the
uniformly refined fixed-grid force and moment coefficients on coarser grids with less scatter at constant complexity
than the multiscale metric. The addition of vertex optimization (EPIC-ICSM) resulted in slightly faster convergence to
fine-grid coefficient, particularly for the viscous component of drag. The 2-norm exponent multiscale metric converged
dramatically slower than the a 4-norm exponent multiscale metric, which was very close to the output-based methods.

h = DOF
1/3

C
D

p

0 0.005 0.01 0.015 0.02 0.025
0.0110

0.0115

0.0120

0.0125

0.0130

0.0135

FUN3DFV, Fixed Tet
FUN3DFV, Fixed Mixed

FUN3DSFE, Fixed Tet
CFL3D, Fixed Structured

GGNS+EPICICS+L4
GGNS+EPICICS+L2
GGNS+EPICICS+Drag

GGNS+EPICICSM+Drag
GGNS+EPICICSM+Lift

(a) Pressure component of drag coefficient.
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(c) Total lift coefficient.
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(d) Total pitching moment coefficient.

Fig. 68 ONERA M6 force and moment convergence, GGNS+EPIC.

The Wolf+FEFLO.A cases are shown in Fig. 69. The intermediate pitching moment coefficients are not available,
only the final pitching moment at each fixed-complexity step is shown. The drag goal-based metric converges faster
and more consistently to the final force and moment values than the multiscale metric. The pressure drag component
approaches from above and the viscous drag component approaches from below, which provides cancellation of errors.
The pressure and viscous components of these forces are not targeted independently by the drag goal-based metric, only
the total. A norm-oriented [87] metric could target these individual drag components simultaneously.

The FUN3D-FV cases shown in Fig. 70 are constructed to explore the impact of multiscale norm exponent,
Hessian reconstruction method, and metric gradation limit. All grids that constitute a fixed-complexity step are shown.
Perturbations are shown from a baseline case of 4-norm multiscale metric, k-exact Hessian reconstruction, and a
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(d) Total pitching moment coefficient.

Fig. 69 ONERA M6 force and moment convergence, Wolf+FEFLO.A.

metric gradation limit of 10. The combination of FUN3D-FV, refine grid adaptation mechanics, and the refine
implementation of the multiscale metric shows a saw-tooth force and moment coefficient trajectory, where the trend
at constant complexity is opposite of increasing complexity. With the exception of the drag pressure component, the
2-norm exponent required a larger grid (smaller h) to reach the same values than the 4-norm exponent trajectories. All
of the trajectories appear to be converging toward the fine-grid, fixed-grid refinement series values.

An improvement over previously reported FUN3D-FV results [16] is shown here, where the largest implementation
difference is the metric construction. Larger grids and more trajectories could be attempted due to parallel geometry
queries enabled by EGADSlite. In this study, identical error estimates and grid mechanics are used for FUN3D-FV and
FUN3D-SFE solvers to isolate the impact of the solver. Previous comparisons [16, 17] varied the entire integrated grid
adaptation system of flow solver, metric construction, and grid adaptation mechanics simultaneously.

The FUN3D-SFE cases shown in Fig. 71 are performed in the same perturbations as the FUN3D-FV cases to explore
the impact of multiscale norm exponent, Hessian reconstruction method, and metric gradation limit. Again, all grids
that constitute a fixed-complexity step are shown. Both FUN3D-FV and FUN3D-SFE share strong noslip boundary
and normal-derivative-based force calculations for the ONERA M6. FUN3D-SFE, refine grid adaptation mechanics,
and the refine implementation of the multiscale metric is less sensitive to the multiscale options and approach the
uniformly refined fixed-grid force and moment coefficients faster than FUN3D-FV.

The multiscale metric construction and gradation limit trends are consistent between FUN3D-FV and FUN3D-SFE,
where the 2-norm exponent required a larger grid (smaller h) to reach the same values than the 4-norm exponent
trajectories with the exception of the drag pressure component. The lower gradation limit of 1.5 seems to slow
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(b) Viscous component of drag coefficient.
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(d) Total pitching moment coefficient.

Fig. 70 ONERA M6 force and moment convergence, FUN3D-FV+refine.

convergence at lower complexity levels than a gradation limit of 10.
Images of the symmetry plane and wing upper surface grids from the FUN3D-FV (Fig. 70) and FUN3D-SFE

(Fig. 71) multiscale parameter studies are shown in Fig. 72. The upper row is FUN3D-FV and the lower row is
FUN3D-SFE. Gradation and Hessian reconstruction method changes the wake and varies the isotropic grid desity at a
distance greater than 5 chord lengths from the wing. An isotropic gradation limiting procedure is used. The isotropic
nature of this “metric-space-gradation” [62] limiting procedure extends the wake as a side effect of limiting the gradation
normal to the wake sheet. The “mixed-space-gradation” approach of [62] is formulated to mitigate this unintended
refinement but not currently implemented in refine. At similar complexity levels, more grid resolution is available to
support the solution near the wing if it is not being used to resolve the wake multiple chord lengths downstream of the
wing.

The differences in the grid of the upper surface shock on the symmetry plane is shown for FUN3D-FV (Fig. 70) and
FUN3D-SFE (Fig. 71) in Fig. 73. There is a tighter clustering of the grid in the shock for FUN3D-FV than FUN3D-SFE.
The FUN3D-FV reconstructed Hessian may have stronger 2nd-derivatives near the shock than FUN3D-SFE, which is
increasing resolution in the streamwise direction.
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(a) Pressure component of drag coefficient.
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(b) Viscous component of drag coefficient.
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(d) Total pitching moment coefficient.

Fig. 71 ONERA M6 force and moment convergence, FUN3D-SFE+refine.
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(a) FUN3D-FV, L4, k-exact, Grad
10.

(b) FUN3D-FV, L2, k-exact, Grad
10.

(c) FUN3D-FV, L4, L2-proj, Grad
10.

(d) FUN3D-FV, L4, k-exact, Grad
1.5.

(e) FUN3D-SFE, L4, k-exact,
Grad 10.

(f) FUN3D-SFE, L2, k-exact,
Grad 10.

(g) FUN3D-SFE, L4, L2-proj,
Grad 10.

(h) FUN3D-SFE, L4, k-exact,
Grad 1.5.

Fig. 72 FUN3D-FV and FUN3D-SFE ONERA M6 wing and symmetry plane grids, approx 800,000 vertex.
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(a) FUN3D-FV, L4, k-exact, Grad
10.

(b) FUN3D-FV, L2, k-exact, Grad
10.

(c) FUN3D-FV, L4, L2-proj, Grad
10.

(d) FUN3D-FV, L4, k-exact, Grad
1.5.

(e) FUN3D-SFE, L4, k-exact,
Grad 10.

(f) FUN3D-SFE, L2, k-exact,
Grad 10.

(g) FUN3D-SFE, L4, L2-proj,
Grad 10.

(h) FUN3D-SFE, L4, k-exact,
Grad 1.5.

Fig. 73 FUN3D-FV and FUN3D-SFE ONERA M6 wing and symmetry plane grids, approx 800,000 vertex.
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