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Flush air data sensing (FADS) systems have been previously used at both Earth and Mars
to provide onboard estimates of angle of attack, sideslip angle, and dynamic pressure.
However, these FADS data were often not used in an in-the-loop sense to inform the onboard
guidance and control systems. A method to integrate FADS-derived density and wind
estimates with a numerical predictor-corrector guidance algorithm is presented. The method
is demonstrated in a high-fidelity simulation of a human-scale Mars entry vehicle that utilizes
a hypersonic inflatable aerodynamic decelerator (HIAD) with direct force control. Effects on
guidance commands and state uncertainties both with and without FADS system modeling are
presented and discussed.

I. Introduction

In recent years, there has been an interest in the development of precision landing capabilities with advanced
guidance, navigation, and control (GN&C) techniques involving new algorithms and sensors. One type of sensor
system that has potential to be utilized for improved flight control is a flush air data sensing (FADS) system. FADS
systems have the capability to produce estimates of the freestream atmospheric state conditions by making
measurements of the pressure distribution across the forebody, and fitting those measurements to a pressure model.
The FADS concept was specifically conceived for use in the hypersonic flight regime where traditional pitot static
tubes would be inappropriate for the flow conditions. The development of the concept can be traced to the servo-
actuated Q-Ball air data system that successfully flew on the X-15 hypersonic research aircraft [1]. The first successful
entry vehicle FADS system was demonstrated during the Shuttle Entry Air Data System (SEADS) project, which flew
an instrumented nose cap on five missions on the orbiter OV-102 (Columbia) [2]. Since then, FADS systems have
been employed for a wide range of vehicle configurations including high performance aircraft and atmospheric entry
vehicles. Recent examples include the Mars Science Laboratory (MSL) [3] and Orion Exploration Flight Test One [4]
entry capsules. Past FADS applications have acquired data for use in post-flight trajectory and atmosphere
reconstruction. FADS systems have the potential to be utilized in real-time to augment on-board GN&C systems by
providing estimates of the wind-relative state and atmosphere [5].

A numerical predictor-corrector (NPC) guidance algorithm has been developed at NASA Langley Research
Center (LaRC) as a flexible and robust method of spacecraft aerocapture and entry, descent, and landing (EDL)
guidance [6, 7, 8, 9]. The NPC guidance can be used in a direct force control (DFC) sense, meaning that target
downrange and crossrange errors can be managed in real-time by modulating angle of attack and angle of sideslip.
This approach is particularly effective when the entry vehicle lacks a significant roll moment due to sideslip (Cz)
term, which is generally the case with the entry capsules that have been used for all NASA Mars landing missions to
date. The DFC concept is illustrated in Fig. 1.
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Currently, the NPC guidance uses onboard INS data to estimate the atmospheric properties and aerodynamics,
meaning that there are insufficient data to separate the aerodynamics from the atmospheric properties. A method will
be presented that integrates FADS-derived atmospheric estimates with the NPC guidance, thus providing the data
required to separate aerodynamics from atmospheric properties. Effects on guidance performance and state
uncertainties both with and without FADS system modeling are presented and discussed.
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Fig. 1. Direct force control example.

Il.  Application: Human-Scale Mars Entry

The effects of including an integrated FADS model in an onboard vehicle NPC guidance is evaluated using a
human-scale Mars entry vehicle that utilizes a hypersonic inflatable aerodynamic decelerator (HIAD) with DFC
achieved by aerodynamic flaps and relevant sensor errors [7-9].

A. Vehicle

The vehicle used in this analysis is a low lift-to-drag ratio (L/D = 0.15) 70° sphere-cone concept that utilizes a
HIAD and aerodynamic flaps, shown in Fig. 2. In this figure, the four aerodynamic flaps are shown at the four cardinal
locations on the outer edge of the deployed HIAD, shown in beige. The rigid central nosecone is shown in dark gray,
with the eight engine nozzles show in a double configuration (the nozzles are shown for illustrative purposes; in flight,
they will be sealed until just prior to engine ignition). The habitat payload can be seen to the right, behind the heat
shield. When deployed, the HIAD diameter is 16.4 m. Four aerodynamic flaps positioned at 0°, 90°, 180°, and 270°
clock angles about the outer edge of the HIAD provide dynamic and trim control and stability. Each flap area is 3%
of the vehicle surface area. During powered descent, eight 100 kN engines located in the vehicle centerbody provide
supersonic retropropulsion (SRP). For this analysis, aerodynamic effects on the vehicle are not considered during
SRP.

Fig. 2. Representation of the HIAD entry vehicle.
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B. Concept of Operations

The crewed entry vehicle performs a deorbit burn at apoapsis of a 1 Sol polar orbit (33793 km apoapsis altitude
by 250 km periapsis altitude). After the deorbit burn, the vehicle coasts until atmospheric entry interface (125 km
altitude), at which point the simulation atmosphere model (MarsGRAM 2010 [10]) is activated. The guidance and
control algorithms are activated when the sensed vehicle acceleration reaches 0.15 g’s. Throughout entry, the onboard
guidance commands angle of attack and sideslip to control downrange and crossrange targeting errors. At powered
descent initiation (PDI), the main engines are activated and the vehicle begins the PD main phase. The PD terminal
phase is the final phase, during which the vehicle is directly over the landing site and descends vertically at a constant
velocity of 2.5 m/s for 5 s. The EDL concept of operations is shown in Fig. 3.

Deorbit Burn (RCS)
HIAD Deploy o)

Spdewnrange, beta

PD Main Phase
Mach = ~2.5
Differential engine throttlin
Roll RCS
Augmented gravity turn (AO.
sideslip < ~2 deg)
Threttle down-to pitch over

PD Terminal Phas\e'\ ,
+  Maintain at least 5 sof 2.5 m/s

Fig. 3. Human-scale Mars EDL with HIAD vehicle.

Table 1. NPC guidance segments for human-scale Mars EDL with HIAD vehicle.

Update Start End Propagation

Segment (H2) Condition Condition End Controls Targets (at Propagation End)
1 02 Sensed G TAEM TAEM Angle of attack Energy at TAEM
) Load Acquisition Acquisition  Angle of sideslip Zero crossrange
TAEM ) Angle of a_ttack_ Land?ng site rad_ius
2 0.2 Acquisition PDI Landing Angle of sideslip Landing site latitude
Time of PDI Landing site longitude
Throttle ) Angle of a.ttack. Land!ng s!te raqius
3 1.0 PDI Down Landing Angle of sideslip Landing site latitude
Net engine thrust Landing site longitude
. Velocity at throttle down Pitch angle at terminal
4 1.0 Tlgrottle Terminal Landing Throttle setting at throttle descent
own Phase d N .
own Landing site radius
5 1.0 Tgrglsr;al Landing Landing - -

The entry trajectory was divided into segments for the onboard NPC guidance, listed in Table 1. The guidance
was designed so that the command update frequency can be changed at segments, so that commands during unpowered
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flight are issued at larger intervals than during powered flight (where the vehicle dynamics occur much faster).
Additionally, the trajectory propagation endpoints can differ from the guidance segment end conditions. Specifically,
for most of the simulation, the guidance is internally propagating the vehicle trajectory to landing, rather than just to
the next waypoint. Thus, the guidance is continually targeting parameter conditions at the end of the propagated
trajectory (usually landing), rather than simply the next waypoint. Note that for this study, the flight phase of terminal
area energy management (TAEM) is the period during which the vehicle has already performed the pull-out maneuver
that targets the peak G load and is now determining when to start the engines so that the spacecraft will land at the
desired location.

From Table 1 it is clear that different controls were used to achieve different targets depending on the segment.
For example, Segment 2, which starts at TAEM acquisition, is modulating angle of attack and sideslip as well as the
time of PDI to minimize the landing site targeting errors (this is an example of DFC). After PDI, the guidance
transitions to Segment 3 and the time of PDI control is changed to the net engine thrust, but the targets remain the
same. A throttle-down phase was used to permit targeting of a vertical pitch angle at the start of the terminal phase.
During this final phase (Segment 5), the vehicle holds a constant velocity of 2.5 m/s and side velocities are nulled to
descend vertically, and no further commands are issued.

I, System Modeling

To date, the trajectory design assumptions in Refs. [7-9] have included perfect navigation data, meaning that the
guidance has perfect knowledge of the vehicle state at every guidance update. In this paper, an effort is made to
introduce relevant sensor errors and to quantify their effects on overall vehicle performance. To that end, the NPC
guidance, the methods of modeling the air data sensors, and the FADS system estimation algorithm are detailed here.

A. Guidance

The guidance used in the simulation is an NPC guidance currently in development at NASA Langley Research
Center. This guidance uses waypoint targets obtained from a reference three-degree-of-freedom (3DOF) trajectory
that optimizes performance (e.g., maximum mass to surface) and satisfies trajectory constraints such as G-load limits.
The waypoint targets are then loaded into the guidance, which utilizes an internal projected gradient algorithm to solve
for the combination of guidance commands that satisfy the targets. Trajectories required for NPC targeting are
propagated internally using simplified 3DOF equations of motion.

Waypoint definitions are selected by the analyst and are highly dependent on the type of trajectory (e.g.,
aerocapture, entry, powered descent) and type of vehicle (e.g., blunt body, slender body). The periods of the trajectory
between waypoints are referred to in this work as segments. Each guidance segment can have different guidance
controls and constraints. See Table 1 for a description of the various guidance segments used in the trajectory
simulation.

A flowchart illustrating the logic flow of the NPC guidance is shown in Fig. 4. Note that in this study, the FADS-
derived atmosphere estimates will overwrite the density estimates obtained from the vehicle accelerations.

stlmates II!!!'

Fig. 4. Outline of NPC guidance logic.
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The NPC guidance obtains an estimate of the atmospheric density by using the IMU-derived sensed axial
acceleration and onboard aerodatabase to solve the following equation

_ 2ma, )
V2C,S

Peo

where m is the vehicle mass, a, is the sensed axial acceleration obtained from the onboard accelerometers and
smoothed using a 40 s running mean, V,, is the vehicle velocity relative to the planet obtained from the onboard
navigation estimate, C, is the axial force coefficient obtained from the onboard aerodatabase, and S is the vehicle
aerodynamic reference area. This computed density is then used to modify the onboard reference density model. This
updated reference density is then used in the propagated trajectories internal to the NPC guidance. Thus, the NPC
guidance can correct for deviations in the actual atmosphere using accelerometer data. In the present analysis, the
computed density from accelerometers is replaced with the density obtained from the FADS system, and a comparison
is made between the two approaches.

B. Flush Air Data Sensing System

The FADS pressure port layout used for this study consists of a cruciform array of nine ports located on the
vehicle forebody shown in Fig. 5. These ports are arrayed with one located at the geometric center of the heatshield
and the other eight ports in two sets of symmetric rings in the pitch and yaw planes. The inner ports are intended to
capture the expected range of the stagnation point as the NPC guidance issues angle of attack and sideslip commands.
The outer ports are intended to provide observability of the flow angles and are placed as far outboard as possible
without interfering with hardware constraints.

Z Position [m]
o
o
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Fig. 5. FADS Pressure Port Layout.
The pressure distribution across the forebody can be approximated using modified Newtonian flow theory. The
pressure at port i is given by the equation [11]
pi = pe[(1 — R) cos? 6; + R] )

where p,is the total pressure, R = pg/p; is the ratio of static (or freestream) to total pressure, and 6; is the incidence
angle of the flow at the given port location. The incidence angle is a function of the flow angles, given by

cos 0; = cosacosf cos A; + sin ff sin ¢; sin A; + sin a cos § cos ¢; sin A; 3)

where 4; is the port cone angle, ¢; is the port clock angle, « is the angle of attack, and g is the angle of sideslip. The
pressure ratio R is a function of the freestream Mach number, given by the equation
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(y + 1)M? y+1
R= 4
y—1 -y/(y-1)
[1+(T)Mz] forM <1

where M is the freestream Mach number and y is the ratio of specific heats (for Mars this is approximated as a constant
1.333).

The port pressures evaluated along the nominal trajectory are shown as a function of time in Fig. 6. Note that
these pressure ranges are similar to those for which the MEDLI2 supersonic pressure transducers are designed to
operate [12].
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Fig. 6. Nominal sensed port pressures.

The air data are assumed to be measured by pressure transducers similar in performance to those flown on the
MEDLI system in the MSL heatshield [13] but configured for full scale ranges appropriate to this entry vehicle. The
error model used for this study assumes a 3¢ scale factor uncertainty of 0.5% of reading and 3¢ random measurement
noise of 5 Pa. Note that the MEDLI2 system that will be flown on Mars 2020 3¢ scale factor uncertainty is expected
to be 0.25%. Pneumatic lags are not modeled in this study. System latencies are captured by implementation of the
FADS system processing algorithm in the flight software, as described in the next subsection.

C. Air Data State Estimation Algorithm

The nine measured FADS pressures yield an overdetermined system of nonlinear algebraic equations that can be
solved using a nonlinear least squares technigque to produce an estimate of the freestream atmospheric-relative state
[3]. The freestream state can be defined as

x:{qoo P « ,B}T (5)

where g, is dynamic pressure and p., is the freestream pressure. The modified Newtonian flow equations can be
expressed as

p =h(x) (6)
wherep = {pP1 - Pn}'. The pressure model can be linearized about a reference state X to yield
p=hXx)+Hx-X) ()
where H = dh/dx. The terms can be rearranged to yield a linear regression problem of the form
y =Hx ®)

where y = p — h(X) + HX. The problem can then be solved using the least squares estimator, given by
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where W is the measurement weighting matrix (usually the inverse of the measurement covariance matrix). The
solution can be iterated at each measurement by replacing x with X until the estimate converges or a predetermined
iteration threshold has been reached (convergence is not guaranteed). The guidance states can then be updated with
the air data state estimates. In particular, the freestream density p., can be approximated (assuming zero winds) from
the converged dynamic pressure by the equation

2qo

Poo = T.S (10)

where V,, is the magnitude of the velocity computed from the on-board navigation. Note that an advantage of the
FADS system method is that the estimated angle of attack and sideslip are wind-relative, rather than planet-relative
quantities derived from the accelerometers, though the effects of this are likely to be small in the hypersonic regime.

IV. Trajectory Simulation

High-fidelity, six-degree-of-freedom (6DOF) trajectories were simulated in the Program to Optimize Simulated
Trajectories 11 (POST2), an event-driven, point-mass trajectory simulation software with discrete parameter targeting
and optimization capability [14]. The POST2 simulation was executed at an integration rate of 100 Hz. The various
models were queried at specific frequencies, listed in Table 2, to simulate actual flight software (differing frequencies
are possible but not investigated in the present study). At every simulation time step, the models for the FADS sensors,
navigation filter, FADS estimator, and guidance were queried, in that order.

Table 2. Simulation model call rates.

System Frequency (Hz)
Simulation 100
FADS Pressure Sensors 100
Navigation Filter 100
FADS Estimator 100
Guidance 0.2

A. FADS Pressure Sensors

The nine FADS pressure sensors were modeled using the modified Newtonian flow approximations described in
Section I1.A. The resultant data were corrupted to simulate actual an actual FADS pressure sensor by applying white
noise and scale factors to each sensor output. Biases were not applied because they will be removed prior to entry with
an in-flight zero. The FADS pressure sensors were activated when the dynamic pressure estimate reached 250 Pa
(approximately Mach 24.5), and deactivated at PDI (approximately Mach 2.5).

B. Navigation Filter

A “perfect” navigation filter was implemented that duplicated the simulation calculations for the various vehicle
states and parameters required by the vehicle guidance, controllers, and other flight software. Perfect vehicle states
(position, velocity, and attitude) were queried from the simulation at the navigation filter frequency. Derived states
and parameters such as angle of attack, range to target, and “sensed” body accelerations, were computed using the
same or similar equations as in POST2. In the specific case of the body accelerations, “measurement” errors in the
form of noise, biases, and scale factors were applied. All other quantities were left uncorrupted. Note that the body
accelerations were not used in the navigation filter to obtain a state estimate and were used only in the guidance
algorithm to correct density as described in Section I1.C.

A simulation flag informed the navigation filter to use FADS-derived dynamic pressure, freestream pressure,
freestream density, angle of attack, angle of sideslip, and Mach number if the FADS estimator was active during that
simulation time step. Otherwise, the perfect-state derived quantities for these parameters were used.

C. FADS Estimator

The FADS estimator was modeled using the least squares approach described in Section I1.B. The iterative
algorithm was limited to 10 iterations, and was considered converged when the root-sum-squared value of the estimate
changes was equal to or less than 0.1. The FADS estimator was active during the period when the FADS pressure
sensors were active (dynamic pressure greater than 250 Pa and prior to PDI). At every FADS estimator call, the
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estimator updated the navigation filter values for dynamic pressure, freestream pressure, freestream density, angle of
attack, angle of sideslip, and Mach number. For this study, the measurement covariance was an identity matrix,
meaning that the weights were assumed to be uncorrelated and time-invariant.

D. Guidance

The vehicle guidance was modeled using the numerical predictor-corrector approach described in Section I1.C. A
simulation flag informed the guidance when the FADS estimator was active use the FADS-derived density to obtain
the density correction, rather than to estimate the correction from the sensed axial acceleration.

E. Monte Carlo Analysis

Monte Carlo analyses were performed by applying dispersions to parameters in the nominal trajectory. The
dispersions used to generate the Monte Carlo trajectories are listed in Table 3. The initial states at deorbit consisted of
inclination, longitude of the ascending node, periapsis and apoapsis altitude, true anomaly, and argument of periapsis.

Table 3. Monte Carlo dispersions.

Category Parameter Dispersion Distribution
Initial Deorbit burn execution 0.135 m/s 3¢ normal
Conditions Uncorrelated state covariance O.Séolf;sgaf?;ra:ﬁiltejdes normal
Density MarsGRAM -
Atmosphere Winds MarsGRAM -
Dusttau 0.1:0.9 uniform
Aerodatabase uses coefficient multipliers and
Aerodynamics adders for different aerodynamic regimes _ _
based on CFD, wind tunnel tests, and flight
data from similar shapes
Peak thrust Scale factor: 1% 30 normal
Peak Isp Scale factor: 1% 30 normal
Propulsion Start lag time 0.0:0.2s uniform
Startup transient rate Scale factor: 1% 30 normal
Main phase response rate Scale factor: 1% 3o normal
Noise: 0.6 m/s?30 normal
Sensed accelerations [8] Bias: 300 pg 30 normal
Sensors Scale factor: 525 ppm 3¢ normal
Noise: 5 Pa 3o normal
FADS Scale factor: 0.5% 3¢ normal
Mass 500 kg 3¢ normal
Mass Center of gravity 0.05m 30 normal
Moments of inertia 5% kg-m? 3¢ normal

V. Results

Three cases were examined for this analysis in a Monte Carlo sense:

=

A case with the guidance using perfect accelerometer data to estimate density (noted as BSLN in figures)

2. A case with the guidance using corrupted accelerometers data (scale factors, biases, and noise) to estimate
density (noted as ACC in figures)
3. A case with the guidance using corrupted FADS-derived density (scale factors and noise) (noted as FADS in

figures)

For each of these cases, an 8,001-trajectory Monte Carlo (one nominal and 8,000 dispersed runs) was run using
the dispersion listed in Table 3. Relevant statistics are various events along the trajectory were computed and are
shown and discussed in this section.

Figure 7 shows the comparison between the FADS-derived estimates for angle of attack, angle of sideslip,
dynamic pressure, and freestream pressure in black and the truth values in red for an arbitrary trajectory out of the
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8,001 runs. The results indicate that even with corrupted pressure measurements, the FADS estimation algorithm
provides solutions that agree with the truth data. The noise in the solution is apparent in total pressure (noise is not
present in the truth freestream pressure because MarsGRAM does not perturb pressure, but perturbs density).
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==Truth
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0 100 200 300 0 100 200 300
6000 : : 300
5 4000 + 1 3 200t
0'8 2000 1 0-8 100}
0 : : 0 : :
0 100 200 300 0 100 200 300
Time from FADS on, s Time from FADS on, s

Fig. 7. Comparison of FADS-derived estimates to truth values, dispersed trajectory.

Figure 8 shows a comparison of the errors between the estimated and true densities from the three Monte Carlo
analyses for a selected dispersed case. Note that the baseline case, with perfect accelerometers, does not show zero
errors because the guidance is applying a 40 s running mean to the sensed accelerations. It is evident that the corrupted
accelerometer case tracks the perfect accelerometer case, but with more noise. The accelerometer-derived density
errors are both larger in magnitude and noisier than those from the FADS-derived approach, indicating that the FADS
system approach provides a more accurate density estimate given the sensor uncertainties listed in Table 3.

0.4

=—=BSLN

-1 | | | | |
0 50 100 150 200 250 300
Time from FADS on, s

Fig. 8. Errors between estimated and true density, accelerometer-derived and FADS-derived.

It is useful to compare how the FADS estimator can improve the overall vehicle behavior. A dispersed case was
chosen specifically to illustrate an improvement and is shown in Fig. 9. The corrupted accelerometer angle of attack
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profile, shown in green, follows the baseline profile, shown in red, until approximately 120 seconds after the FADS
system is activated (time zero). At this point, the corrupted accelerometer case diverges and displays more dynamic
angle behavior until approximately 210 s, after which the angle of attack begins to oscillate between -9 and -8 degrees,
indicating that the guidance solutions for angle of attack commands are reaching the command bounds. Recall that
the accelerometer cases are not integrating the accelerations to obtain vehicle states as in traditional spacecraft
navigation filters, and are only using the accelerations to update the guidance density estimate. The angle oscillations
and the guidance commands hitting their limits are undesirable vehicle behavior.

The same dispersed case, but using corrupted FADS data, is shown in blue. While it does not follow the baseline
case perfectly, as soon as the angles of attack diverge the vehicle is flying a different trajectory. This case exhibits
angle of attack behavior that is much less dynamic, and illustrates how using the FADS-derived solutions can improve
overall vehicle behavior.

3
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0 50 100 150 200 250 300

Time from FADS on, s

Fig. 9. Comparison of angle attack profiles, dispersed case.

The results of the Monte Carlo simulations are shown in the following figures. In these figures, the top left plot
is the histogram, the top right plot is a quantile-quantile plot that provides an indication of how close the distribution
is to Gaussian (perfectly Gaussian is shown by the dashed line that is the same color as the histogram), and relevant
statistics are shown below the plots.

A comparison of the landing site miss distance between the three Monte Carlo cases is shown in Fig. 10, and there
are several elements to note. The “percentage” value is the percentage of the 8,001 trajectories that were considered
“successful,” which in this case means any case that landed with a non-zero final mass. Thus, of the 8,001 trajectories
run for each Monte Carlo, 1.1% of them failed in the baseline case (perfect accelerations), and 2.3% failed when
acceleration errors were added. When FADS-derived solutions were introduced to replace those derived from the
accelerations, the failed cases were reduced back to match the baseline, 1.1%.

Since the distribution here is non-Gaussian, it is useful to inspect the percentiles rather than the standard
deviations. The 99%-tile highs show that there is a small but noticeable reduction in landing accuracy when adding
accelerometer errors, raising the miss distance from 66.5 mto 70.7 m. However, when FADS estimates are introduced,
this miss distance is reduced to 68.4 m. While the accuracy from the perfect accelerometer case is not regained with a
FADS system, it is an improvement over the corrupted accelerometer case. It is also notable that there are fewer
outliers on the higher end in the FADS case, shown in the quantile-quantile plot, though there is a single outlier with
a larger miss distance than the other two cases. Thus, in terms of landing accuracy, the FADS approach provides an
improvement.
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Fig. 10. Comparison of landing site miss distance.
1000 Hlstograms L Qulantlle-anntlle Pllot
=3
FADS £10
600 <
% 9
400 2
o
200 3 8
(o]
0 = 7
7 8 9 10 11 -4 2 0 2
Total Propellant Used, t Gaussian Quantiles
BSLN ACC FADS
Mean 9.221 9.204 9.22
l-sigma 0.344 0.374 0.347
3-sigma 1.033 1.122 1.04
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Max Value 10.772 10.718 10.783
Min Value 7.965 7.771 7.996
Percentage 98.9 97.7 98.9

Fig. 11. Comparison of total propellant used.
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A comparison of the total propellant used is shown in Fig. 11. Of note in this figure is the apparent mean propellant
usage improvement between the baseline and corrupted accelerometer cases, which is perhaps counter-intuitive as
additional errors should in general lead to worse performance. This improvement is potentially misleading, however,
when two additional statistics are considered. One, recall that the corrupted accelerometer case has more failed cases
than the other two cases, meaning that while there is a small overall propellant usage improvement, fewer cases

American Institute of Aeronautics and Astronautics




actually landed with a non-zero mass. Two, note the standard deviation, which is relevant here since the distributions
are close to Gaussian. With accelerometer errors, the uncertainty grows from 0.34 to 0.37 t. When using FADS
estimates, the error reduces back to 0.35 t, essentially recovering the performance with perfect accelerometers.
Additionally, the 99%-tile is improved when using a FADS system over corrupted accelerometers. However, note that
the differences here are small (on the order of tens of kilograms), so the benefits of a FADS system over accelerometers
are modest in terms of propellant usage.

The next Monte Carlo comparisons relate back to landing site miss distance in Fig. 10. First, a parameter that
illustrates the effect of density estimation accuracy on guidance performance is the commanded main engine throttle
setting at PDI, shown in Fig. 12. Recall from Table 1 that during the TAEM phase, the guidance is attempting to target
the landing site by adjusting the time of main engine start. Prior to when the engines are actually commanded on, the
guidance assumes that the throttle setting is a constant 80% and that the vehicle flies a pure gravity turn during the PD
main phase. The instant the engines are commanded on and the PD main phase guidance segment is entered, the
guidance begins to modulate the main engine throttle setting to target the same landing site (note that angle of attack
and sideslip are also modulated in both of these segments to improve targeting accuracy). Thus, any deviation in the
new main engine throttle setting from 80% is an indicator that the guidance has not correctly accounted for vehicle or
environment dispersions. A significant driver of error is the density estimate.

In Fig. 12, the comparison of this initial commanded throttle setting at PDI is shown. Here, the effects of the
FADS approach on outliers is evident. Adding corrupted accelerometer data increases the outliers on both ends of the
distribution, while introducing FADS-derived density estimates significantly reduces them. While the effects on the
high and low percentiles is not significant, the result is that using a FADS system can improve the ability of the
guidance to estimate the atmosphere and therefore better target PDI.
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Fig. 12. Comparison of main engine throttle setting at PDI.

In Fig. 13 and Fig. 14 the comparison between vehicle altitude at PDI and vehicle planet-relative velocity,
respectively, are shown. While the tails prevent the distributions from being strictly Gaussian, the standard deviations
show that using a FADS system provides a significant improvement in the altitude (essentially regaining the
performance from the perfect accelerometer case) and a modest improvement in velocity uncertainty over using
corrupted accelerometers. This is also supported by the change in the differences between the high and low percentiles.
To understand the implication of this, recall that the reference trajectory uses a pure gravity turn from PDI to the start
of the PD terminal phase, and that any dispersions will cause the guidance to modify the pure gravity turn with small
planet-relative angles of attack and sideslip to attempt to improve landing site targeting accuracy. Thus, smaller
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altitude-velocity dispersions at PDI result in better landing accuracy because the guidance will command the vehicle
to fly closer to the reference trajectory.
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Fig. 13. Comparison of altitude at PDI.
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Fig. 14. Comparison of planet-relative velocity at PDI.
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VI. Summary and Conclusions

This paper has demonstrated that an overall improvement in guidance performance and a reduction in trajectory
uncertainties over using corrupted accelerometers can be achieved by introducing a FADS system model into the
onboard GN&C platform. Specifically, using a FADS system enabled the guidance to more accurately internally
model and propagate the vehicle trajectory, which mitigated large angle of attack oscillations and tighter targeting of
PDI. This also improved altitude and velocity uncertainties at PDI and landing site miss distance. Modest propellant
usage improvements were also noted. In all of these cases, the use of FADS-derived estimates essentially restored the
vehicle performance to that when using perfect accelerometer data.

It is expected that better approximations of a realistic entry system can be modeled within the current simulation
framework. Specifically, the modified Newtonian flow approximation can be replaced with CFD-derived pressure
model tables. The least squares algorithm can be replaced with a Kalman filter implementation that blends multiple
types of data together to provide the guidance and controllers with a “best estimate” and associated uncertainties [3].
The FADS sensor model fidelity can be improved by implemented hysteresis and pneumatic lag present in actual
pressure transducers. The relatively simple sensed acceleration model (embedded in the navigation filter) can be
replaced with a discrete IMU model with misalignments.
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