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Abstract 28 

Tropical second-growth forests could help mitigate climate change, but the degree to 29 

which their carbon potential is achieved will depend on exposure to disturbance. Wind 30 

disturbance is common in tropical forests, shaping structure, composition, and function, 31 

and influencing successional trajectories. However, little is known about the impacts of 32 

extreme winds in fragmented landscapes, though second-growth forests are often located 33 

in mosaics of forest, pasture, cropland, and other land cover types. Though indirect 34 

evidence suggests that fragmentation increases risk of wind damage, few studies have 35 

found such impacts following severe storms. In this study, we ask whether fragmentation 36 

and forest type (old vs. second growth) were associated with variation in wind damage 37 

after a severe convective storm in a fragmented production landscape in western 38 

Amazonia. We applied linear spectral unmixing to Landsat 8 imagery from before and 39 

after the storm, and combined it with field observations of damage to map wind effects 40 

on forest structure and biomass (Figure 4, 5). We also used Landsat 8 imagery to map 41 

land cover with the goals of identifying old- and second-growth forest and characterizing 42 

fragmentation. We used these data to assess variation in wind disturbance across 95,596 43 

hectares of forest, distributed over 6,110 patches. We find that fragmentation is 44 

significantly associated with wind damage, with damage severity higher at forest edges 45 

and in edgier, more isolated patches (Figure 7). Damage was more severe in old-growth 46 

than in second-growth forests, but this effect was weaker than that of fragmentation 47 

(Figure 8). These results illustrate the importance of considering spatial configuration and 48 

landscape context in planning tropical forest restoration and predicting carbon 49 

sequestration in second-growth forests. Future research should address the mechanisms 50 



behind these results, to minimize wind damage risk in second-growth forests so their 51 

carbon potential can be maximally achieved.  52 

 53 

  54 



Introduction 55 

Tropical second-growth forests recover biomass quickly after clearing and can sequester 56 

large amounts of carbon (Poorter et al., 2016). These forests could play an important role 57 

in mitigating climate change; for example, if allowed to grow undisturbed, existing Latin 58 

American second-growth forests could accumulate an additional 8.48 Pg C in the next 40 59 

years, enough to offset all carbon emissions from fossil fuel use and industrial processes 60 

in Latin America and the Caribbean from 1993-2014 (Chazdon et al., 2016). However, 61 

exposure to natural disturbances such as extreme winds, fires, or drought can affect 62 

successional trajectories in second-growth forests (Flynn et al., 2009; Anderson-Teixeira 63 

et al., 2013, Uriarte et al. 2009, Uriarte et al. in revision), influencing the degree to which 64 

the carbon sequestration potential of second-growth forests is achieved. Furthermore, 65 

second-growth forests, by definition, are located in landscapes subject to human 66 

influence that are mosaics of old growth, second growth, and other land cover types. 67 

Regrowth often happens along existing forest margins (Asner et al., 2009; Sloan et al., 68 

2015), making second-growth forests highly exposed to edge effects, impacts of 69 

fragmentation, and anthropogenic disturbances. Accurately predicting biomass recovery 70 

in these forests requires that we understand their disturbance ecology and how their 71 

disturbance regimes are influenced by the landscapes in which they are situated.  72 

Wind is a major disturbance in the tropics and has both short-term impacts and 73 

lasting legacies in tropical forests (Everham & Brokaw, 1996; Laurance & Curran, 2008; 74 

Lugo, 2008). Tropical forests are exposed to extreme winds from tropical storms or via 75 

convective downdrafts, squall lines and isolated cold fronts. Convective downdrafts and 76 

squall lines are relatively common in the Amazon basin (Garstang et al., 1994; 1998), and 77 



associated extreme winds can cause large-scale forest disturbance and tree mortality 78 

(Espírito-Santo et al., 2010; Negrón-Juárez et al., 2010). Tropical storms and heavy 79 

precipitation events are expected to become more intense with climate change (Knutson 80 

et al. 2010, Orlowsky and Senevirante, 2012), and warming and land use change will 81 

affect future convection patterns (Del Genio et al., 2007; Ramos da Silva et al., 2008). 82 

Understanding the determinants of forest susceptibility to extreme winds is thus 83 

important for modeling and monitoring future impacts of forest disturbance (US DOE, 84 

2012).   85 

The spatial distribution and size of blowdowns have important consequences for 86 

understanding biomass dynamics in tropical forests (Fisher et al., 2008; Chambers et al., 87 

2009; Di Vittorio et al., 2014). A number of studies have quantified the frequency, return 88 

interval, rotation period, and carbon impacts of large blowdowns in the Amazon across 89 

expanses of old-growth forest (Nelson et al., 1994; Negrón-Juárez et al., 2010; Chambers 90 

et al., 2013; Espírito-Santo et al., 2014). However, little is known about the impacts of 91 

extreme winds in the fragmented, mosaic landscapes in which tropical second-growth 92 

forests occur. If forest fragmentation increases the impacts of wind disturbance, this 93 

difference could affect estimates of potential carbon sequestration in tropical second-94 

growth forest.   95 

Studies examining impacts of extreme winds in second-growth forests have found 96 

differences due to species composition and forest structure. Damage is most severe for 97 

pioneer species, species with low wood density, taller trees, and trees with a larger 98 

diameter for a given height (Zimmerman et al., 1994; Curran et al., 2008; Canham et al., 99 

2010; Uriarte et al., 2012; Rifai et al. 2016, Putz et al., 1983; Everham & Brokaw, 1996; 100 



McGroddy et al., 2013). Stand structure characteristics such as canopy height, canopy 101 

density, basal area, and median diameter are positively correlated with the amount of 102 

wind damage in a stand (Everham & Brokaw, 1996; Uriarte et al., 2004; McGroddy et 103 

al., 2013). Susceptibility to damage increases with stand age in earlier stages of 104 

succession, but may decline in older stands (Everham & Brokaw, 1996). These shifts are 105 

due to both changes in forest structure and changes in species composition: though 106 

canopy height, density, and basal area increase over succession, species composition 107 

often shifts away from low wood-density pioneers towards late-successional species with 108 

harder wood (Bazzaz & Pickett, 1980; Lohbeck et al., 2013).   109 

 Though second-growth forests are often highly fragmented and located in mosaic 110 

landscapes, few studies have considered the influence of landscape and patch structure on 111 

wind damage. Fragmentation may influence exposure to strong winds because wind 112 

speeds vary with surface roughness, with winds gaining more speed over low-roughness 113 

vegetation such as open grassland, brush, or agricultural crops (Fons, 1940; Oliver, 1971; 114 

Davies-Colley et al., 2000). Accordingly, wind speeds decline with distance from forest-115 

pasture edges (Davies-Colley et al., 2000), and there is strong wind turbulence at high-116 

contrast forest edges (Somerville, 1980; Morse et al., 2002). Wind also moves more 117 

quickly though open forest (Somerville, 1980; Kanowski et al., 2008), and forest edges 118 

have lower biomass and a more open canopy (de Casaneve et al., 1995; Laurance et al., 119 

1997b; Harper et al., 2005). The risk of blowdowns may also be higher at forest edges 120 

because pioneer species are more common (Oosterhoorn & Kappelle, 2000; Laurance et 121 

al., 2006).  122 



 Despite variation in exposure and vulnerability to extreme winds, evidence for 123 

impacts of fragmentation on wind damage in tropical forests is lacking. Though several 124 

studies in temperate silvicultural systems have detected edge effects on wind damage 125 

(Peltola, 1996; Talkkari et al., 2000; Zeng et al., 2004), this effect has been more 126 

challenging to detect in diverse tropical forests. The Biological Dynamics of Forest 127 

Fragments experiment in the Brazilian Amazon found high tree mortality close to forest 128 

edges, with uprooting more frequent relative to standing dead trees (Ferreira & Laurance, 129 

1997; Laurance et al., 1997a; Mesquita et al., 1999). However, this mortality was not 130 

linked to specific extreme wind events and could have resulted from other factors (e.g., 131 

desiccation). A few studies have examined fragmentation effects on wind damage after 132 

tropical storms, and have found little evidence that damage varies with fragmentation 133 

(Catterall et al., 2008; Grimbacher et al., 2008). The degree to which fragmentation 134 

increases the risk of damage from extreme winds in tropical forests thus remains an open 135 

question.  136 

Detecting effects of fragmentation on wind damage may be difficult with a field 137 

sampling approach. Extreme winds can be highly patchy (Bellingham et al., 1992; Imbert 138 

et al., 1996; Grove et al., 2000; Pohlman et al., 2008). Detecting spatial patterns within 139 

heterogeneous, patchy phenomena requires large sample sizes, and inadequate sampling 140 

can make it difficult or impossible to detect patterns (Loehle, 1991). Estimates of 141 

landscape level mortality based on field plot observations may miss up to 17% of 142 

mortality (Chambers et al., 2013), and field plot studies may lack the statistical power to 143 

detect the effect of fragmentation on wind damage (Grimbacher et al., 2008). However, 144 

remote sensing allows detection of patterns that may be unfeasible or impossible in 145 



ground-based studies (Chambers et al., 2007). Recently developed remote sensing 146 

techniques can detect gaps as small as 0.1 ha (Negrón-Juárez et al., 2011). Unlike plot-147 

based approaches, remote sensing allows estimation of wind damage across broad areas, 148 

and in combination with field data can improve our understanding of disturbance and 149 

carbon dynamics in tropical mosaic landscapes. 150 

Here, we use remotely sensed data to quantify damage from a mesoscale 151 

convective storm system across a fragmented production landscape in the Peruvian 152 

Amazon. We use these data in combination with maps of land cover to ask:  153 

1) Are second-growth forests more severely fragmented than old-growth forests? 154 

2) How does fragmentation influence forest vulnerability to extreme winds?  155 

3) Does wind damage severity vary in old-growth versus second-growth forests?  156 

We predict that second-growth forests in our study area will be more severely fragmented 157 

than old-growth forests, and hypothesize that severity of wind damage will be highest in 158 

small, isolated forest fragments and close to forest edges. We expect that second-growth 159 

forests, which have a higher proportion of soft-wooded pioneer species, will suffer more 160 

severe damage than old-growth forests, composed of less vulnerable hard-wooded 161 

species. This variability could affect forest succession in dynamic, fragmented 162 

landscapes, with forest patch and landscape characteristics influencing rates of biomass 163 

recovery via effects on exposure and vulnerability to wind disturbance.  164 

 165 



Materials and methods 166 

Study area 167 

The city of Pucallpa, the capital of the Ucayali region of Peru, is the largest 168 

Amazonian city connected to the national capital, Lima, by road. As a result, Pucallpa is 169 

an important transport center, and in recent years has been a hotspot of forest disturbance, 170 

deforestation, and fire in the Peruvian Amazon (Oliveira et al., 2007, Schwartz et al., 171 

2015, Uriarte et al., 2012). This research focuses on an area of 2,158 km2 near Pucallpa, 172 

surrounding the highway from Lima to Pucallpa. The landscape is heterogeneous, with 173 

patches of old growth and second-growth forest surrounded by pastures, oil palm 174 

plantations, and smallholder farms (Gutierrez-Velez et al., 2013; Figure 1). Elevation 175 

ranges from 150 to 250 m a.s.l. and total annual precipitation ranges from about 1500-176 

2500 mm, with a dry season from July to September.  177 

 178 



Figure 1: Location of the study area, near Pucallpa, Ucayali, Peru. Inset depicts 179 
forest cover, and locations of field plots and roads.  180 

 181 
 182 

On November 30, 2013, a mesoscale convective system (MCS) passed through 183 

the study area, resulting in widespread blowdowns and tree mortality. Though there is 184 

insufficient meteorological station data available from the study area to characterize the 185 

storm severity, data processed from the GOES-13 satellite using the method described in 186 

Bedka and Khlopenkov (2016) indicates high overshooting top probability during the 187 

November 30 storm in the study area (Figure S1). Overshooting tops indicate regions 188 

where strong updrafts were present within the MCS.  Strong downdrafts are often present 189 

near to these updrafts in regions of heavy precipitation. Storms with overshooting tops 190 

often generate winds that exceed 58 mph, the criterion for “damaging wind” by the U.S.  191 

NOAA National Weather Service (Dworak et al. 2012). Given the heterogeneity in land 192 
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cover, forest age, and patch size, this landscape offers an ideal opportunity to study how 193 

impacts of damaging winds vary with fragmentation and landscape context. 194 

 195 

Remote sensing of wind damage 196 

We obtained Landsat 8 OLI scenes covering the study area (path-row 06-066 and 07-066) 197 

from 2013 (pre-storm) and 2014 (post-storm; Table S1) at 30 m resolution. All scenes 198 

were calibrated and converted to surface reflectance via the L8SR algorithm 199 

(http://landsat.usgs.gov/documents/provisional_l8sr_product_guide.pdf) and downloaded 200 

from the Landsat CDR archive via USGS Earth Explorer (http://earthexplorer.usgs.gov/). 201 

The Landsat OLI surface reflectance product includes a cloud mask created by the 202 

FMASK algorithm (Zhu & Woodcock, 2012), which we used to mask pixels that were 203 

cloudy in either 2013 and 2014. 1023 ha were masked out due to cloud cover, equal to 204 

0.5% of the study area. Scenes were radiometrically normalized by applying the MAD 205 

algorithm (Canty & Nielsen, 2008). This procedure reduces differences across scenes 206 

from atmospheric effects not corrected by the L8SR algorithm. All remote sensing data 207 

processing was conducted in ENVI (Exelis Visual Information Solutions, Boulder, 208 

Colorado) unless otherwise indicated. 209 

To map wind damage we follow the approach outlined by Negron-Juarez et al. 210 

(2010, 2011), which uses spectral mixture analysis (SMA) to map the change in non-211 

photosynthetic vegetation (NPV) fraction across pixels. SMA assumes that every pixel is 212 

a linear combination of some number of target endmember spectra, such as vegetation, 213 

shade, NPV, and/or bare soil, and quantifies the per-pixel fraction of each endmember 214 

(Adams & Gillespie, 2006). Wind damage increases the amount of wood, dead 215 



vegetation, and litter exposed to the sensor, and so the change in NPV fraction is 216 

associated with the amount of wind damage. In a study in the Amazon, the signal lasted 217 

for about one year following an extreme wind event, until post-storm recovery generated 218 

sufficient new leaf biomass to obscure the NPV signal (Negrón-Juárez et al., 2010).  219 

We applied linear spectral unmixing to each image using endmembers for green 220 

vegetation (GV), NPV, and shade. Endmembers were identified from the reference scene 221 

using the Pixel Purity Index algorithm (Boardman et al., 1995) available in ENVI (Figure 222 

S2). Following unmixing, we normalized the fraction of NPV without shade as 223 

NPV/(GV+NPV) so that fractions reflected only relative proportions of NPV and GV, 224 

and not differences due to effects of shading (Adams & Gillespie, 2006). Change in NPV 225 

(ΔNPV) was calculated by subtracting the normalized NPV fraction in 2013 from 2014.  226 

 227 

Field data collection: Wind damage was measured in the field to assess whether ΔNPV 228 

provided an adequate approximation of damage. During the months of July and August of 229 

2014 and 2015, we established 30-0.1 ha forest plots (Figure 1). We used satellite images 230 

to identify second-growth forest patches, and from those, chose sites where we could 231 

locate and get permission from the landowners. Within these areas, plot locations were 232 

selected to encompass a range of ΔNPV. Because plots were slightly larger than a 233 

Landsat pixel, plot-level ΔNPV was calculated as the weighted mean of ΔNPV in pixels 234 

overlapped by the plot. Plots were geolocated using a Garmin GPSMAP 62sc.  235 

In each plot we measured diameter at breast height (dbh) of all trees greater than 5 236 

cm, and coded each tree as damaged (uprooted, trunk snapped, or severe branch loss) or 237 

undamaged. Downed or damaged trees that were severely rotted were marked as such, 238 



since these trees were likely damaged prior to the 2013 storm. We conducted all analyses 239 

including and excluding these previously damaged individuals and it did not significantly 240 

affect our results; reported results exclude these trees. We calculated aboveground 241 

biomass (AGB) using the following allometric equation developed for second-growth 242 

forest in Panama (Van Breugel et al. 2011): 243 

ln(biomass) = -1.863 + 2.208*DBH 244 

We divided biomass by two so that estimates were in terms of kg C instead of kg 245 

biomass, under the assumption that C makes up 50% of biomass (Brown and Lugo, 246 

1982). To characterize plot-level damage, we calculated total damaged biomass, 247 

proportion biomass damaged, total stems damaged, and proportion of stems damaged for 248 

each plot. We assessed the accuracy of ΔNPV for mapping wind damage by calculating 249 

linear regressions of ΔNPV vs. field measurements of wind damage in the 30 forest plots. 250 

To estimate AGB loss across the study area, we used the parameters from the linear 251 

model of ΔNPV vs. total AGB lost. 252 

 253 

Remote sensing of land cover: We developed a land cover classification at 30 m 254 

resolution for use in generating predictor variables related to fragmentation and masking 255 

analyses to forested areas. The classification expanded on the approach laid out in 256 

Gutierrez-Velez and DeFries (2013). Land use classes were old-growth forest, second-257 

growth forest, mature oil palm (> 3 years old), and “other,” which included young oil 258 

palm (< 3 years old), bare ground, burned non-forest areas, fallow, pasture, degraded 259 

pasture, and bodies of water. Second-growth forests were defined as tree-dominated 260 

vegetation growing in areas that had previously been cleared. These areas have 261 



significantly lower basal area than old-growth forests in the study area (Gutiérrez-Vélez 262 

et al., 2011). Old-growth forests are predominantly residual forest from logging and 263 

extraction of non-timber resources, but they have never been cleared and have 264 

significantly higher basal area and biomass than second-growth forests. For details on 265 

other land cover classes, see Gutierrez-Velez and DeFries (2013). 266 

 We classified Landsat 8 OLI images (Table S1) and with a random forest 267 

classification built with several spectral indices and spectral transformations: i) NDVI, ii) 268 

bare soil, vegetation, and shade fractions from SMA, iii) brightness, greenness, and third 269 

from a tasseled cap transformation, and iv) first- and second-order texture measures. 270 

Components i-iii were shown to be effective for classifying the non-oil palm land cover 271 

classes in a land cover classification from the same study area (Gutiérrez-Vélez & 272 

DeFries, 2013). Component iv, the texture measures, were useful for distinguishing oil 273 

palm plantations, which are spectrally similar to secondary forests but appear more 274 

uniform in satellite images due to even-aged planting. Training and testing data for land 275 

cover classes were collected during a 2015 field campaign and included 2198.52 ha total, 276 

divided among classes (Table S2). For more details about the classification, see 277 

Supporting Information.   278 

The land cover map from 2014 was used to mask analyses to forested areas (old 279 

growth and second growth). We also masked areas near known anthropogenic 280 

disturbance, since spillover disturbance from recent forest clearing might bias results 281 

along forest edges. To do so, we identified recently deforested areas – areas that were 282 

classified as forest in 2013 and as non-forest in 2014 – and masked all pixels within 60 m 283 

to prevent anthropogenic disturbance biasing results (Figure S3).  284 



 285 

Characterizing forest fragmentation: We used Fragstats (McGarigal et al. 2012) to 286 

characterize forest patch fragmentation. Old-growth and second-growth forests were all 287 

treated as a single forest category for the purpose of characterizing patches. 288 

Fragmentation has three key axes: area, edge, and isolation (Fahrig, 2003; Haddad et al., 289 

2015). We calculated one Fragstats metric to represent each of these axes (Figure 2). 290 

Patch area (ha) represents patch size. Edginess is quantified with the shape index, which 291 

is calculated as:  292 

𝑆𝐻𝐴𝑃𝐸 =   
0.25𝑝
𝑎

 

where p is the patch perimeter and a is the patch area. Shape index increases as the 293 

perimeter of a patch gets more complex, and equals 1 if a patch is a perfect square. We 294 

quantified isolation with the proximity index. The proximity index takes into account the 295 

area and distance of forest within a particular radius around the focal patch, and increases 296 

from zero with the upper limit determined by the search radius. For a given patch I, 297 

proximity index is calculated as: 298 

𝑃𝑅𝑂𝑋 =   
𝑎!"
ℎ!"!

!

!!!

 

where aij is the area (m2) of patches j=1…n within specified neighborhood radius (m) of 299 

focal patch i and hij is the distance (m) between patch i and patch j. Using this 300 

formulation assumes that larger and closer patches decrease patch isolation more than 301 

smaller or more distant ones, a reasonable assumption. We calculated proximity index 302 

with several radii (250 m, 500 m, 1000 m, 2000 m, 4000 m and 10000 m), but these 303 

indices were highly correlated and there was no significant different in model 304 



performance depending on the distance, so we used the 1000 m radius in our final 305 

models. So that higher values represented increasing isolation, we multiplied proximity 306 

index by -1.  307 

Figure 2: Conceptual figure illustrating axes of fragmentation, and variables 308 
associated with fragmentation included in analyses. Green squares represent forest 309 
pixels, and adjacent pixels represent a patch. Orange outline indicates focal 310 
pixel/patch for distance to edge and isolation measures.  311 

 312 
 313 

 314 

Statistical analysis: We compared sizes of damaged vs. undamaged trees, and 315 

fragmentation variables in old- vs. second-growth forest using t-tests. To test the 316 



relationship between wind damage, forest fragmentation, and forest age (old vs second 317 

growth), we fit a generalized linear model to predict ΔNPV at the pixel scale (Table 1). 318 

Pixels with ΔNPV less than 0 were excluded from analysis, because a decline in NPV 319 

cannot represent negative damage and instead likely represents changes due to forest 320 

succession or recovery from prior disturbance. Both pixel characteristics and patch 321 

characteristics were included as predictors. Pixel level predictors were distance from 322 

forest edge and a binary predictor for second-growth forest (0 = old growth, 1 = second 323 

growth). Patch level predictors were area, edginess, and isolation of the patches in which 324 

pixels were located. Because the total number of pixels was large (461,610) and ΔNPV 325 

was highly left skewed, we stratified pixels according to ΔNPV (0-0.05, 0.05-0.15, 0.15-326 

0.25, >0.25) and randomly sampled 2000 pixels from each stratum for use in statistical 327 

analyses (Figure S4). The sample was bootstrapped 200 times. ΔNPV was log-328 

transformed to meet the assumption of normality. Distance from edge was also log-329 

transformed because it was highly left-skewed. To facilitate interpretation, all predictors 330 

were scaled to unit standard deviation by subtracting the mean and dividing by the 331 

standard deviation (Gelman and Hill, 2007). To test for collinearity among predictors we 332 

calculated variance inflation factors (VIF; Fox & Monette, 1992). VIF values greater than 333 

~5 indicate strong collinearity (Dormann et al., 2012). VIF for all predictors was < 4 with 334 

the exception of edginess (VIF = 5.2). To address this potential collinearity issue we ran 335 

the model with all predictors other than patch area, which was correlated with the other 336 

fragmentation predictors and was the predictor with the weakest effect in the full model. 337 

The maximum VIF in this partial model was 2.2, and the results for all remaining 338 

predictors were qualitatively the same as in the full model. Here, we present the full 339 



model, including area. We tested for spatial autocorrelation among model residuals by 340 

calculating Moran’s I and found no spatial autocorrelation in the model residuals 341 

(Moran’s I = 0.0003, p = 0.45). Model parameters reported are the median estimates of 342 

the 200 bootstrapped models and 95% bootstrapped confidence intervals. Statistical 343 

analyses were conducted in R (R Core Team, 2016).  344 

Table 1: Model covariates, descriptions, and summary statistics. 345 

Variable name Description 
Landscape 
mean (SD) 

Bootstrap sample 
mean (95% 
bootstrapped CI) 

Bootstrap sample 
SD (95% 
bootstrapped CI) 

Response     
ΔNPV  Change in non-

photosynthetic 
vegetation fraction in 
pixel, i.e. wind 
damage (log 
transformed). 

0.034 
(0.039) 

0.1560 [0.1556, 
0.1565] 

0.1318 [0.1312, 
0.1322] 

Predictors     
Distance to 
edge 

Pixel distance to forest 
edge (meters) 

102.5 (2.5) 69.4 [68.0, 70.8] 2.39 [2.36, 2.44] 

Secondary  Binary variable for 
second growth. 0 = old 
growth, 1 = second 
growth 

0.53 (0.50) 0.59 [0.58, 0.60] 0.491 [0.490, 
0.493] 

Area Patch size in which 
pixel is located 
(hectares). 

33247.5 
(28869.9) 

33035.4 [32503.2, 
33605.0] 

30899.6 [30592.6, 
31200.1] 

Edginess (shape 
index) 

Shape index for patch 
in which pixel is 
located. 

24.4 (14.6) 24.9 [24.6, 25.2] 15.9 [15.7, 16.0] 

Isolation (-1* 
proximity 
index) 

Proximity index for 
patch in which pixel is 
located. 

75887.7 
(50523.7) 

-71336.3 [-72230.3, 
-70415.9] 

48734.9 [47999.9, 
49327.5] 

 346 

 347 

 348 

Results 349 

Overview: linking field and remote sensing data  350 



 Validation of ΔNPV with field observations: Mean pre-damage AGB in field 351 

plots was 37.03 Mg C ha-1 (s.d. = 13.31). Mean AGB damaged was 9.76 Mg C ha-1 (s.d. 352 

= 10.49), or 23.4% of pre-storm AGB (s.d. = 24.4%). Mean stem density in field plots 353 

was 1286 stems ha-1 (s.d. = 342.6), with an average 16.5% of stems damaged (s.d. = 354 

15.7). Damaged stems were significantly larger than undamaged stems (Figure 3, t = -355 

9.73, p < 0.0001).  356 

 357 

Figure 3: Frequency distributions and box plots of tree sizes for undamaged vs. 358 
damaged trees. Boxes show 25, 50, and 75% quantiles and whisker endpoints are 2.5 359 
and 97.5% quantiles. 360 

 361 
 362 

 363 

 ΔNPV was strongly related to damage as measured in the field plots. It was most 364 

strongly correlated with the proportion of stems damaged in field plots (R2 = 0.699, 365 

Figure 4), but the relationship held when damage was quantified in terms of total number 366 



of stems damaged (R2 =0.649), total AGB damaged (R2 = 0.574), or proportion of AGB 367 

damaged (R2 = 0.603, Figure S5). On average ΔNPV was low across the landscape: mean 368 

ΔNPV was 0.03, and standard deviation was 0.04 (Figure 5). Five percent of forest 369 

pixels, or 2058 ha, had ΔNPV higher than 0.1, corresponding to 20.7% stems damaged, 370 

or 30.7% of AGB damaged (12.8 Mg C ha-1). ΔNPV was greater than 0.2 in 0.8% of 371 

forest pixels (348.5 ha), corresponding to 48.6% stems damaged, or 78.5% of AGB lost 372 

(32.9 Mg C ha-1). The total biomass lost as a result of the wind storm across the study 373 

area was approximately 1.68 Tg C.  374 

Figure 4: ΔNPV vs. proportion of stems > 5 cm DBH damaged in field plots. Shaded 375 
areas indicate 95% confidence interval of regression line. 376 
 377 
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Figure 5: Map of wind damage (ΔNPV) in study area. Insets show two areas of 380 
interest where several field plots were located. 381 

 382 
 383 

 Characterizing land cover and fragmentation: The land cover classification 384 

accurately distinguished between oil palm, old-growth forest, second-growth forest, and 385 

other classes (Table S3). Overall accuracy was 96.4%. Forty-four percent of the study 386 

area, 95,596 ha, was classified as forest. Forty percent of forest pixels were classified as 387 

old-growth forest, and 60% were classified as second-growth forest (Figure 1). There 388 

were 6110 forest patches in the study area, with a mean area of 42.1 ha (Figure S6). Mean 389 

edginess (shape index) was 1.3, and mean isolation (-1*proximity index) was -19688 390 

(Figure S6).   391 

 392 

Fragmentation in old- vs. second-growth forests  393 

 Degree of fragmentation varied across old-growth and second-growth forest 394 

pixels, with second-growth forests more fragmented along most measures (Figure 6). 395 

Second-growth forest pixels were closer to forest edges (t = 237.15, p < 0.001), but in 396 

  

0.0 
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less edgy patches (t = 134.76, p < 0.0001). Second-growth pixels were also located in 397 

smaller (t = 141.28, p < 0.001, Figure 6) and more isolated patches, (t = 47.658, p < 398 

0.0001, Figure 6).   399 

Figure 6: Comparison of the distribution of fragmentation variables between old-400 
growth and second-growth forest pixels. Boxes show 25, 50, and 75% quantiles and 401 
whisker endpoints are 2.5 and 97.5% quantiles of observed data. Light grey points 402 
are outliers. Figures include data from all forest pixels in the study area. 403 
Fragmentation variables are a) distance to edge, b) area, c) edginess, and d) 404 
isolation. 405 
 406 
 (a)          (b)           (c)          (d) 407 

 408 
Wind damage model 409 

 Fragmentation and forest type were significantly associated with ΔNPV (R2 = 410 

0.158, 95% bootstrap CI = [0.143, 0.173]). Distance to edge had the strongest association 411 

with ΔNPV (Figure 7), which exponentially decreased with pixel distance from forest 412 

edge (Figure 8a). Patch edginess was positively associated with ΔNPV, with pixels in 413 

edgier patches suffering more severe wind damage (Figure 7, Figure 8c). Isolation also 414 

influenced damage: ΔNPV was higher in more isolated patches (Figure 7, Figure 8d).  415 

Patch area was negatively associated with damage, though this effect was weaker than 416 

that of the other fragmentation predictors (Figure 7, Figure 8b). Predicted ΔNPV was 417 

slightly higher for old-growth forest pixels, though the difference between second growth 418 



and old growth was small compared to the predicted variation in ΔNPV associated with 419 

fragmentation (Figure 7, Figure 8).  420 

Figure 7: Parameter estimates from wind damage model. Points show the median 421 
coefficient estimates from the 200 bootstrapped model fits, whiskers show 422 
bootstrapped 95% confidence interval.  423 

  424 
 425 
 426 



Figure 8: Model predictions of ΔNPV and the fragmentation predictors. Solid lines 427 
depict predictions of the median coefficient estimates from bootstrapped model fits, 428 
dashed lines and shaded areas show predictions of 2.5 and 97.5% quantiles of 429 
coefficient estimates.  a) distance from edge. b) patch area. c) edginess. d) isolation. 430 

 431 
 432 
 433 

Discussion 434 

Effects of fragmentation on wind damage 435 

This study provides the first strong empirical evidence that fragmentation increases risk 436 

of damage from extreme wind events in tropical forests. The severe convection event that 437 

occurred in our study region caused an overall loss on the order of 1.7 x 10-3 Pg C in the 438 

study area. When averaged across the total forested area in the study area (95,596 ha), 439 
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this amounts to ~17.8 Mg C ha-1, more than six times greater per hectare than figures 440 

from a recent study that estimated annual carbon loss from natural disturbances in the 441 

entire Amazon forest (Espírito-Santo et al., 2014). That study estimated the total loss at 442 

1.88 Pg C y-1, an average of 2.8 Mg C ha-1 across the ~6.8 x 108 ha of Amazon forest.  443 

A number of differences between their study and ours could explain the 444 

discrepancy. The Espírito-Santo et al. study mapped disturbances across a study area 445 

many times the size of ours, and developed a disturbance size-frequency distribution for 446 

the entire Amazon. The disturbances captured in our far smaller study are likely on the 447 

intermediate-to-large end of their disturbance size-frequency distribution. However, the 448 

discrepancy might also be due to differences in landscape structure in the two studies. 449 

Espírito-Santo et al. focused on contiguous forest, where, based on our results, wind 450 

damage is likely to be less severe than in the fragmented landscapes of our study region. 451 

These findings illustrate the importance of considering fragmented landscapes when 452 

assessing disturbance regimes in tropical forests. Studies that do not consider the effects 453 

of landscape configuration may underestimate the importance of wind disturbance for 454 

quantifying tropical forest carbon sinks, especially given that recent estimates suggest 455 

70% of the world’s forests are within 1 km of a forest edge (Haddad et al., 2015), 456 

Though many studies suggest that fragmented forests should have heightened 457 

vulnerability to wind damage (Saunders et al., 1991; Laurance & Curran, 2008), evidence 458 

for this phenomenon has been lacking. For example, a number of studies that set out to 459 

measure effects of fragmentation on wind damage after Cyclone Larry, a category 5 460 

tropical cyclone, found little difference in wind damage between fragments and 461 

continuous forest (Catterall et al., 2008; Grimbacher et al., 2008; Pohlman et al., 2008). 462 



Our study may have detected an effect where former studies did not for several reasons. 463 

First, the storm we considered was not as intense as a Cyclone Larry, and continuous 464 

forest cover may provide a protective benefit only up to a certain degree of storm 465 

intensity (Catterall et al. 2008). We do not have precise wind speed measurements from 466 

the date of the storm, but the presence and intensity of overshooting tops indicates that 467 

winds were probably ≥ 93 km/h (Bedka and Khlopenkov, 2016). In contrast, Category 5 468 

tropical storms are associated with sustained winds > 200 km/h. Lending support to this 469 

hypothesis, a study after Hurricane Hugo in South Carolina found that in areas struck by 470 

the most intense part of the hurricane, species differences in wind resistance were not 471 

apparent (Hook et al., 1991). Differences in rates of damage across species were only 472 

observed in areas where wind speeds were lower. Variation in exposure and vulnerability 473 

to extreme winds due to species composition and landscape configuration may come into 474 

play only when winds are not so severe that they cause widespread damage regardless.  475 

Second, previous studies of fragmentation and wind damage were based on field 476 

data from a relatively small number of plots. Heterogeneity in damage and wind speeds 477 

may have affected the statistical ability to detect underlying patterns related to 478 

fragmentation (Grimbacher et al., 2008). This patchiness and unmodeled variation in 479 

wind speeds is likely the reason for the substantial unexplained variance in our statistical 480 

models. However, because our remote sensing approach allows us to consider a broad 481 

landscape with a large sample size we are able to detect an effect of fragmentation 482 

despite the noise, demonstrating, as many other studies have, the usefulness of remote 483 

sensing for understanding ecosystems at landscape-to-regional scales (Chambers et al. 484 

2007).  485 



 Fragmented forests may be more prone to wind damage via two main 486 

mechanisms: because they are exposed to stronger winds than continuous forest, or 487 

because they are more vulnerable to strong winds due to differences in species 488 

composition or forest structure (Laurance and Curran 2008). We found effects of all three 489 

axes of fragmentation – isolation, edge, and area – on wind damage, which suggest 490 

possible support for both mechanisms. The effects of isolation are probably due to 491 

exposure to stronger winds. Forest slows wind down; rougher surfaces exert more drag 492 

leading to slower wind speeds (Davies-Colley et al., 2000). Wind picks up more speed 493 

over smoother vegetation types, like pasture. Because our measure of isolation only takes 494 

into account the landscape surrounding a patch, and no characteristics of the patch itself, 495 

our finding that wind damage was more severe in more isolated fragments probably 496 

reflects exposure to stronger wind speeds in isolated patches, rather than differences in 497 

species composition or structure across patches.  498 

Edge and area effects on wind damage are more difficult to attribute to exposure 499 

versus vulnerability, and could be due to either or both mechanisms. We found that pixels 500 

close to forest edges and pixels in edgier patches were more likely to be severely 501 

damaged. We also found a weak effect of patch size, likely because pixels in smaller 502 

patches are closer to edges. Forest edges are exposed to stronger winds (Somerville, 503 

1980; Morse et al., 2002), but there are also well-documented edge effects on species 504 

composition that could increase vulnerability to wind damage (Oosterhoorn & Kappelle, 505 

2000; Laurance et al., 2006). The degree to which differences in exposure or 506 

vulnerability explain the relationship between fragmentation and wind damage has 507 



implications for management actions to minimize impacts of strong winds. Future 508 

research could focus on disentangling the mechanisms responsible for these patterns. 509 

 510 

Wind damage in old- vs. second-growth forest 511 

 When controlling for fragmentation, second-growth forests suffer slightly lower 512 

damage than old-growth forests, counter to our initial hypothesis. Because trees with 513 

lower wood density are more prone to wind damage and community mean wood density 514 

tends to increase over succession in wet tropical forests (Bazzaz & Pickett, 1980; 515 

Lohbeck et al., 2013), we hypothesized that wind damage would be more severe in 516 

second-growth forests. Our finding to the contrary may be due to differences in tree 517 

stature between old-growth and second-growth forests. Larger trees are more susceptible 518 

to wind damage, in particular to uprooting (Putz et al., 1983; Zimmerman et al., 1994; 519 

Everham & Brokaw, 1996; Canham et al., 2010), which translates into differences in 520 

damage across sites with different forest structure. For example, Uriarte et al. (2004) 521 

found that damage after Hurricane Georges in the Dominican Republic was higher in 522 

sites with higher basal area and that young forests with low basal area were not severely 523 

affected by hurricane. Similarly, McGroddy et al. (2013) found that forest stands in the 524 

southern Yucatan with taller canopies and higher basal area suffered more severe 525 

hurricane damage, and that these structural differences were associated with past land 526 

use.  527 

We further suspect that these differences are due to forest structure, and not 528 

species composition, because the way we distinguished between old-growth and second-529 

growth forests in our land cover map does not detect differences in species composition. 530 



Rather, the difference between old-growth and second-growth forest is determined by 531 

spectral properties that relate to stand structure (Gutiérrez-Vélez et al., 2011). 532 

Furthermore, because of the high levels of anthropogenic disturbance in the study area, 533 

we do not necessarily expect the successional shifts in species composition that are 534 

predicted for relatively undisturbed forests. Old-growth forests in the study area have 535 

never been completely cleared, but they have still been subject to anthropogenic 536 

disturbance, such as selective logging. Selective logging tends to target timber species 537 

with higher wood density (Verburg & van Eijk-Bos, 2003), so the largest remaining trees 538 

in selectively logged forests may be soft-wooded species. Large stature and soft wood 539 

would make these stands especially prone to wind damage, perhaps explaining the higher 540 

damage we observed in old-growth forests.  541 

In our model, however, fragmentation had a much stronger influence on damage 542 

than forest type (Figure 7, 9). Second-growth forests in the study area are more 543 

fragmented than old-growth forests, which ultimately might result in more severe wind 544 

impacts in these forests. Elsewhere, studies have found that second growth tends to 545 

happen along forest margins and in small fragments surrounded by non-forest land use 546 

(Helmer, 2000; Asner et al., 2009; Sloan et al., 2015). Wind is not the only disturbance 547 

for which risk is higher along edges: fire in the Amazon tends to be concentrated along 548 

forest edges (Cochrane & Laurance, 2002; Alencar et al., 2004; Armenteras et al., 2013). 549 

There is potential for wind and fire to interact and amplify the other’s impacts: studies in 550 

temperate ecosystems have found that an earlier fire can increase the severity of 551 

subsequent blow downs, and wind damage can increase the risk of fire by adding fuels 552 

and opening up the forest canopy (Myers & van Lear, 1998; Kulakowski & Veblen, 553 



2002; Kulakowski & Veblen, 2007). These interactions might occur in the Amazon, and 554 

could exacerbate disturbance effects on forest carbon balance.  555 

Wind and other disturbances can alter successional pathways in regrowing forests 556 

(Anderson-Teixeira et al., 2013; Uriarte et al 2016). Variability in disturbance risk should 557 

thus be taken into account in spatial planning, management, and carbon accounting in 558 

tropical second-growth forests where the goal is to promote carbon sequestration. 559 

Silviculture has long considered wind damage risk in site and species selection and 560 

planting configuration (Somerville, 1980; Savill, 1983; Talkkari et al., 2000). However, 561 

managing tropical second-growth forests for carbon is a relatively new endeavor and the 562 

way landscape configuration influences susceptibility to disturbance is not well 563 

understood for tropical forests (US DOE, 2012). However, where possible, and where 564 

risk of extreme winds is high, minimizing fragmentation and isolation could reduce risk 565 

of wind damage. 566 

Future research should attempt to disentangle the mechanisms behind the patterns 567 

observed in this study. Understanding the degree to which differences in vulnerability 568 

versus exposure underlie variation in wind impacts will clarify appropriate management 569 

actions to minimize risk of wind damage in second-growth or remnant forests. 570 

Fragmentation experiments such as the Biological Dynamics of Forest Fragments 571 

experiment in Brazil have shed light on how fragmentation affects forest composition, 572 

structure, and microclimate (Laurance et al., 2002). However, understanding what those 573 

changes mean for impacts of extreme winds is not straightforward, and doing so would 574 

require some “luck” in that a severe windstorm would have to strike the experiment. This 575 

limitation presents some challenges in studying mechanisms of wind damage in 576 



fragmented landscapes, but there are ways forward. Fragmentation experiments like the 577 

aforementioned, but located in landscapes that suffer frequent severe wind events, such as 578 

Caribbean forests, could be useful in that the likelihood of extreme winds striking an 579 

experiment would be higher. However, an experimental approach relying on random 580 

chance is not the only way to further investigate these mechanisms. Improvements in 581 

modeling and mapping wind speed and in our understanding of how wind interacts with 582 

complex landscapes will further shed light on how exposure varies with fragmentation. 583 

Advances in remote sensing technology, which are beginning to provide a more detailed 584 

picture of forest structure and composition, will be useful in understanding ecological 585 

mechanisms responsible for variability in disturbance impacts (Chambers et al., 2007). 586 

Finally, much of what we already know about variation in species and stand susceptibility 587 

to wind comes from opportunistic field sampling after extreme winds (e.g. Zimmerman et 588 

al., 1994; Uriarte et al., 2004; McGroddy et al., 2013), and there is a need for further 589 

opportunistic post-storm sampling in fragmented landscapes. Continued monitoring of 590 

forest disturbance in fragmented landscapes, such as with the remote sensing approach 591 

demonstrated in this paper, is essential so that such opportunities are not lost. An 592 

improved understanding of how and why fragmentation and landscape configuration 593 

influence disturbance regimes in tropical second-growth forests will help ensure that the 594 

carbon potential of tropical second-growth forests is maximally achieved.  595 
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