

Formulation of Plasticity Models through Symbolic Regression

Geoffrey Bomarito

NASA Langley Research Center

Tyler Townsend

University of Central Florida

Kathryn Esham

The Ohio State University

Ethan Adams

Brigham Young University Idaho

Motivation for homogenization

Homogenization methods

Response = f(loading)

Human developed/derived models

- Pros:
 - Can be physically based
 - Transferability
 - Compact and quick to evaluate
- Cons:
 - Can take decades in development

Typical machine learning models

- Pros:
 - Rapid development (training)
 - More input → more accurate
- Cons:
 - Not transferable
 - Not insightful (black box)
 - Evaluation is relatively expensive

Can we have the best of both worlds?

Human developed homogenization models

- Choose functional form
- Fit parameters (in red)
- Model misfit identified
- Abuse parameters

 Add more physics to functional form

Time consuming step!

$$\Phi = \left(\frac{\overline{\sigma}}{\sigma_y}\right)^2 + 2q_1 f^* \cosh\left(\frac{3}{2}q_2\frac{\sigma_h}{\sigma_y}\right) - \left(1 + (q_1 f^*)^2\right)$$

$$\Phi = \left(\frac{\overline{\sigma}}{\sigma_y}\right)^2 + 2q_1(\sigma)f^*\cosh\left(\frac{3}{2}q_2(\sigma)\frac{\sigma_h}{\sigma_y}\right) - \left(1 + (q_1(\sigma)f^*)^2\right)$$

Symbolic regression and homogenization

parameters simultaneously! $\Phi = f(\sigma)$

- Decide what data to use
- Define fitness to data
- (Decide how much data to use)
- Attribute physics to portions of equations

Find **best fit functional forms** and

Verification problem: von-Mises plasticity

$$\Phi = (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 - 2\sigma_{yield}^2 = 0$$

RVE:

- Single element model
- von-Mises plasticity

Verification:

Can we recover φ from looking at response data?

Symbolic regression problem definition

1. Decide what data to use

- 2. Define fitness to data
- proportional loading
- Data for each loading case:
 - Principle stresses: σ_i
 - Principle strains: ϵ_i
 - Equivalent plastic strain: ϵ^{p}

Symbolic regression problem definition

- 1. Decide what data to use
- 2. Define fitness to data

- $\Phi = f(\sigma) = 0$ (on yield surface)
- Implicit regression

$$E = \sum \frac{\frac{df(\sigma)}{d\sigma} : \frac{d\sigma}{dt}}{\left\| \frac{df(\sigma)}{d\sigma} : \frac{d\sigma}{dt} \right\|} \to 0$$

• $\Phi(\sigma) = \text{constant for each loading case}$

Solving the symbolic regression problem

- Using genetic programming
 - (Genetic algorithms of computer programs)
- Equations evolve untill they fit the data
- In-house code: bingo

Mutation

Early results

- Looking for yield surface: $\Phi(\sigma) = 0$
- $\Phi(\sigma) = \text{constant}$ for each loading case

$$\sigma_1 - (\sigma_3 + \sigma_2) + \sigma_1 = constsant$$

Issue: all loading cases are parallel!

Solution: more complex loading cases

Early results

- Looking for yield surface: $\Phi(\sigma) = 0$
- $\Phi(\sigma) = \text{constant}$ for each loading case

$$\sigma_1 - (\sigma_3 + \sigma_2) + \sigma_1 = constsant$$

Issue: all loading cases are parallel!

Solution: more complex loading cases

Stage 1 Loading ratio: [0.675 1.0 0.825]

Stage 2 *Loading ratio*: [1.0 0.825 0.675]

Yield surface from 2 stage loading data

$$\Phi = (\sigma_3 - \sigma_1)^2 + (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 = constant$$

Adding hardening

13

$$\Phi = (\sigma_3 - \sigma_1)^2 + (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 = constant$$

$$\Phi = (\sigma_3 - \sigma_1)^2 + (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 - c_1 \bar{\epsilon}^p - c_2 (\bar{\epsilon}^p)^2 = constant$$

Hardening yield surface from 2 stage loading data

Computation time: 1.5h on 160 processors

$$((\sigma_1 - \sigma_3 + \sigma_3 - \sigma_2)(\sigma_3 - \sigma_2 + \sigma_1) + 47602 + \sigma_1 + (\sigma_3 - \sigma_1 - \sigma_3)(\sigma_3 + \sigma_3 - \sigma_3)$$

$$\Phi = (\sigma_3 - \sigma_1)^2 + (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 - c_1 \bar{\epsilon}^p - c_2 (\bar{\epsilon}^p)^2 = constant$$

Yield surface now depends on a state variable!

Now it needs a state evolution equation

Hardening yield surface from 2 stage loading data

Assuming incremental elastic strains are small

Goal:
$$\dot{\epsilon}^p = \sqrt{\frac{2}{9}[(\dot{\epsilon}_1 - \dot{\epsilon}_2)^2 + (\dot{\epsilon}_2 - \dot{\epsilon}_3)^2 + (\dot{\epsilon}_3 - \dot{\epsilon}_1)^2]}$$

$$\dot{\epsilon}_1 + \dot{\epsilon}_2 + \dot{\epsilon}_3 = \text{constant}$$

$$\dot{\epsilon}_1 + \dot{\epsilon}_2 + \dot{\epsilon}_3 = 0$$
 deviatoric plastic strains

Goal:
$$\dot{\epsilon}^p = \sqrt{\frac{4}{3}[\dot{\epsilon}_1^2 + \dot{\epsilon}_1\dot{\epsilon}_2 + \dot{\epsilon}_2^2]}$$

$$\dot{\epsilon}_1^2 + \dot{\epsilon}_1 \dot{\epsilon}_2 + \dot{\epsilon}_2^2 - (\dot{\bar{\epsilon}}^p)^2 = \text{constant}$$

Quick Recap

Verification of von-Mises plasticity

Non-hardening yield surface

Hardening yield surface

State evolution

How much data is required?

How much data is needed?

Step size

- More dense data =
 - more computation time
 - more accurate derivative calculations
- Density needed will depend on
 - complexity of loading scenarios
 - Complexity of yield surface

How much data is needed?

Number of loading scenarios

- No real trend (except very low values)
- Minimum case found:

Summary

19

 Set up framework for SR formulation of plasticity models

RVF

- Implicit symbolic regression of yield surface
- Use non-proportional loading
- Von-Mises verification problem

- Surprisingly little data needed
 - will depend on complexity of yield surface

90 100 homogenization

Symbolic Regression

Data

Future work

application to real materials

- adaptive data generation
- bingo (soon to be open source)
 - python & c++
 - Features:
 - Coevolution of fitness predictors
 - Island parallelization scheme
 - Acyclic graph representation
 - Constant optimization
 - Age-fitness Pareto selection

thank you!

geoffrey.f.bomarito@nasa.gov