Formulation of Plasticity Models through Symbolic Regression

Geoffrey Bomarito
NASA Langley Research Center

Tyler Townsend
University of Central Florida

Kathryn Esham
The Ohio State University

Ethan Adams
Brigham Young University Idaho
Motivation for homogenization

metallic alloy

$\Phi = f(\sigma)$
Homogenization methods

Response = \(f(\text{loading}) \)

Human developed/derived models

- **Pros:**
 - Can be physically based
 - Transferability
 - Compact and quick to evaluate

- **Cons:**
 - Can take decades in development

Typical machine learning models

- **Pros:**
 - Rapid development (training)
 - More input \(\rightarrow \) more accurate

- **Cons:**
 - Not transferable
 - Not insightful (black box)
 - Evaluation is relatively expensive

Can we have the best of both worlds?
Human developed homogenization models

Example: GTN porous plasticity model

\[
\Phi = \left(\frac{\bar{\sigma}}{\sigma_y} \right)^2 + 2q_1 f^* \cosh \left(\frac{3}{2} q_2 \frac{\sigma_h}{\sigma_y} \right) - (1 + (q_1 f^*)^2)
\]

\[
\Phi = \left(\frac{\bar{\sigma}}{\sigma_y} \right)^2 + 2q_1 (\sigma) f^* \cosh \left(\frac{3}{2} q_2 (\sigma) \frac{\sigma_h}{\sigma_y} \right) - (1 + (q_1 (\sigma) f^*)^2)
\]

- Choose functional form
- Fit parameters (in red)
- Model misfit identified
- Abuse parameters
- Add more physics to functional form

Time consuming step!
Symbolic regression and homogenization

- Find best fit functional forms and parameters simultaneously!
 1. Decide what data to use
 2. Define fitness to data
 3. (Decide how much data to use)

- Attribute physics to portions of equations

\[y = 10e^{-x} \sin(2x) + x \]

\[\Phi = f(\sigma) \]
Verification problem: von-Mises plasticity

\[\Phi = (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 - 2\sigma_{\text{yield}}^2 = 0 \]

RVE:
- Single element model
- von-Mises plasticity

Verification:
- Can we recover \(\phi \) from looking at response data?
1. Decide what data to use
2. Define fitness to data

- proportional loading

Data for each loading case:
- Principle stresses: σ_i
- Principle strains: ϵ_i
- Equivalent plastic strain: ϵ^p
Symbolic regression problem definition

1. Decide what data to use
2. Define fitness to data

- \(\Phi = f(\sigma) = 0 \) (on yield surface)
- Implicit regression
- \(E = \sum \frac{df(\sigma)d\sigma}{d\sigma dt} = 0 \)
- \(\Phi(\sigma) = \text{constant for each loading case} \)
Solving the symbolic regression problem

- Using genetic programming
 - (Genetic algorithms of computer programs)
- Equations evolve until they fit the data
- In-house code: bingo

\[y = 1.5x^2 - x^3 \]

NODE operators

TERMINAL
- constants, variables

Crossover

Mutation
Looking for yield surface: $\Phi(\sigma) = 0$

$\Phi(\sigma)$ = constant for each loading case

$\sigma_1 - (\sigma_3 + \sigma_2) + \sigma_1 =$ constant

Issue: all loading cases are parallel!

Solution: more complex loading cases
Early results

- Looking for yield surface: $\Phi(\sigma) = 0$
- $\Phi(\sigma)$ = constant for each loading case

$$\sigma_1 - (\sigma_3 + \sigma_2) + \sigma_1 = \text{constant}$$

- **Issue:** all loading cases are parallel!

 $$\Phi(x, y) = y = \text{constant}$$

- **Solution:** more complex loading cases

 Stage 1

 Loading ratio: [0.675 1.0 0.825]

 Stage 2

 Loading ratio: [1.0 0.825 0.675]
Yield surface from 2 stage loading data

\[\Phi = (\sigma_3 - \sigma_1)^2 + (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 = \text{constant} \]

Computation time: 32s on 40 processors

\[(\sigma_3 - \sigma_2)(\sigma_3 - \sigma_2) - (\sigma_2 - \sigma_1)(\sigma_3 - \sigma_1) = \text{constant} \]
Adding hardening

\[\Phi = (\sigma_3 - \sigma_1)^2 + (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 = \text{constant} \]

- No hardening

\[\sigma_{\text{yield}} \]

\[\text{plastic strain} \]

- Hardening

\[\sigma_{\text{yield}} \]

\[\text{plastic strain} \]
Hardening yield surface from 2 stage loading data

\[
\Phi = (\sigma_3 - \sigma_1)^2 + (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 - 19797\bar{\varepsilon}^p - 980185(\bar{\varepsilon}^p)^2 = \text{constant}
\]

\[
\Phi = (\sigma_3 - \sigma_1)^2 + (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 - c_1\bar{\varepsilon}^p - c_2(\bar{\varepsilon}^p)^2 = \text{constant}
\]

Computation time: 1.5h on 160 processors

\[
((\sigma_1 - \sigma_3 + \sigma_3 - \sigma_2)(\sigma_3 - \sigma_2 + \sigma_1) + 47602 + \sigma_1 + (\sigma_3 - \sigma_1 - \sigma_3)(\sigma_3 + \sigma_3 -
\]

Data: \(\sigma_1, \sigma_2, \sigma_3, \bar{\varepsilon}^p\)

Yield surface now depends on a state variable!

Now it needs a state evolution equation
Hardening yield surface from 2 stage loading data

Assuming incremental elastic strains are small

Goal: \(\dot{\epsilon}^p = \sqrt{\frac{2}{9}[(\dot{\epsilon}_1 - \dot{\epsilon}_2)^2 + (\dot{\epsilon}_2 - \dot{\epsilon}_3)^2 + (\dot{\epsilon}_3 - \dot{\epsilon}_1)^2]} \)

\(\dot{\epsilon}_1 + \dot{\epsilon}_2 + \dot{\epsilon}_3 = \text{constant} \)

\(\dot{\epsilon}_1 + \dot{\epsilon}_2 + \dot{\epsilon}_3 = 0 \) deviatoric plastic strains

Data: \(\dot{\epsilon}_1, \dot{\epsilon}_2, \dot{\epsilon}_3, \dot{\epsilon}^p \)

Goal: \(\ddot{\epsilon}^p = \sqrt{\frac{4}{3}[\dot{\epsilon}_1^2 + \dot{\epsilon}_1 \dot{\epsilon}_2 + \dot{\epsilon}_2^2]} \)

\(\dot{\epsilon}_1^2 + \dot{\epsilon}_1 \dot{\epsilon}_2 + \dot{\epsilon}_2^2 - (\dot{\epsilon}^p)^2 = \text{constant} \)

Data: \(\dot{\epsilon}_1, \dot{\epsilon}_2, \dot{\epsilon}_3, \dot{\epsilon}^p \)
Quick Recap

- Verification of von-Mises plasticity
 - Non-hardening yield surface
 - Hardening yield surface
 - State evolution

- Moving Forward:
 - Seconds (on single processor)
 - Hours (on multiple processors)

- How much data is required?
How much data is needed?

- **Step size**
 - More dense data =
 - more computation time
 - more accurate derivative calculations

- Density needed will depend on
 - complexity of loading scenarios
 - Complexity of yield surface
How much data is needed?

- **Number of loading scenarios**
 - No real trend (except very low values)
 - Minimum case found:

![Graphs showing data points and numbers 2, 4, and 8]
Summary

- Set up framework for SR formulation of plasticity models
- Implicit symbolic regression of yield surface
- Use non-proportional loading
- Von-Mises verification problem
 - Surprisingly little data needed
 - will depend on complexity of yield surface

\[\Phi = f(\sigma) \]

RVE

Data

Symbolic Regression

homogenization
Future work

- application to real materials
- adaptive data generation
- bingo (soon to be open source)
 - python & c++
 - Features:
 - Coevolution of fitness predictors
 - Island parallelization scheme
 - Acyclic graph representation
 - Constant optimization
 - Age-fitness Pareto selection

performance

robustness
thank you!

gooffrey.f.bomarito@nasa.gov