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This research is a follow on to the "Optimal Control Prediction Method for Control Allo-
cation" paper in which the Prediction Method iterative algorithm was introduced. Previously,
the PredictionMethod was shown to provide optimal control allocation solutions over the entire
Attainable Moment Set for the Moore-Penrose and the generalized (weighted) inverse. As an
extension to the Prediction Method, this paper introduces a family of Moore Penrose Affine
Generalized Inverses, applicable for all moments, which compute control allocation solutions
using a constant matrix and fixed null-space vector. The Moore-Penrose Affine Generalized
Inverse is proven to yield equivalent solutions to those of the PredictionMethod and therefore is
guaranteed to yield Moore-Penrose optimal control allocation solutions. While the Prediction
Method is applicable for any moment along an a priori specified moment direction, the Affine
Generalized Inverse is shown to yield optimal control allocation solutions in a neighborhood
of the given moment which is not restricted to a specified moment direction. Furthermore, the
Affine Generalized Inverse is shown to provide the time derivative of optimal control allocation
solutions and to facilitate maintaining solutions within control effector rate limitations. The
Moore-Penrose AffineGeneralized Inverse is broadened to encompass any arbitrary (weighted)
Affine Generalized Inverse. Finally, a method of creating a moment lookup table is outlined to
utilize the Affine Generalized Inverse as an offline control allocation solution for all moments
in the Attainable Moment Set.

I. Nomenclature

δ(Ω) = boundary of Allowable Control Set
δ(Φ) = boundary of Attainable Moment Set
Ω = Allowable Control Set (ACS), Ω ⊂ <m

Φ = Attainable Moment Set (AMS), Φ ⊂ <n

B = control effectiveness matrix, B ∈ <n×m

B1 = columns of B corresponding with unsaturated control effector indices (S1), B1 ∈ <
n×(m−k)

B2 = columns of B corresponding with saturated control effector indices (S2), B2 ∈ <
n×k

B̂ = complete orthogonal basis vector matrix containing ûdes and N (B) basis vectors
B̂ = orthogonal basis vector matrix containing N (B) basis vectors
B̂1 = rows of B̂ corresponding with unsaturated control effector indices (S1), B̂1 ∈ <

(m−k)×(m−n)

B̂2 = rows of B̂ corresponding with saturated control effector indices (S2), B̂2 ∈ <
k×(m−n)

®c0 = null-space offset vector used with Paf f , ®c0 ∈ <
m

®c1 = a null-space component of ®upred whose magnitude is moment dependent, ®c1 ∈ <
m

k = Number of saturated control effectors or number of elements in set S2
®mdes = desired moment, ®mdes ∈ <

n

m̂des = unit vector in the direction of desired moment, m̂des ∈ <
n

Paf f = Moore-Penrose affine generalized inverse, Paf f ∈ <
m×n

PIso = Moore-Penrose Iso surface, orthogonal projection of ACS on N (B)
Pmin = Moore-Penrose generalized inverse of control effectiveness matrix B, Pmin ∈ <

m×n

®rlwr = Lower bounds of control effector rate limitations, ®rlwr ∈ <
m

®rupr = Upper bounds of control effector rate limitations, ®rupr ∈ <m

S1 = Set of indices for all currently unsaturated control effectors, S1 = {1, 2, . . . ,m} \ S2
S2 = Set of indices for all currently saturated control effectors (e.g. S2 = {1, 5, 10})
®s2 = Vector of active control effectors position limits for all indices in S2
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ûdes = Control unit vector in the direction of Pmin ®mdes , ûdes ∈ <
m

®ulwr = Lower bounds of control effector position limitations, ®ulwr ∈ <
m

®uopt = Optimal control allocation solution, ®uopt ∈ <m

®upred = Moore-Penrose optimal control allocation solution found using Prediction Method, ®upred ∈ <
m

®uupr = Upper bounds of control effector position limitations, ®uupr ∈ <m

Wgi = Positive definite weighting matrix used for generation of arbitrary generalized inverse, Wgi ∈ <
m×m

II. Introduction

Most modern flight control systems make extensive use of linear and/or linearized analysis, due to the extensive
volume of linear theory and analysis tools. A large majority of these analyzes are performed by linearizing a

non-linear system around a point of interest and expressing the system as a time varying (or invariant) system which in
state space form yields:

Ûx(t) = A(t)x(t) + B(t)u(t) (1)
y(t) = C(t)x(t) + D(t)u(t) (2)

Legacy flight control methodologies typically used groups or "ganged" flight controls to generate the time history of the
desired control signal u(t) such that the resulting states are stable, provide the desired performance, stability margins etc.
The last few decades have shown an increased interest in control allocation which is the process to solve for u(t) while
treating the control effectors individually. The control allocation problem is often cast using the system states to solve
for ®u(t) given ®m(t) [1], or for each time step in discrete systems as:

min
®u

J (®u) = ®uTWgi ®u such that (3)

®m = B®uopt, ®ulwr ≤ ®uopt ≤ ®uupr elementwise (4)

where Wgi > 0 and thus the state derivative equation is of the form:

Ûx(t) = A(t)x(t) + m(t) (5)

Alternatively, the controls allocation problem can be established for the output state [2] such as the Moore-Penrose
allocation in discreet form:

min
®u

J(®u) = ®uT ®u, such that (6)

®ad = (CB) ®uopt, ®ulwr ≤ ®uopt ≤ ®uupr elementwise (7)

Regardless of whether the control allocation problem formulation uses system states or system outputs, it is desirable to
achieve control allocation solutions of linear form. Generalized inverses, such as the Moore-Penrose generalized inverse
Pmin, are a well known method to provide linearly weighted optimal solutions (e.g. ®uopt = Pmin ®m where Pmin ∈ <

n×m).
Some of the benefits of linear control allocation solutions include: simplicity and speed in computation of solutions
(matrix vector multiplication), derivative of control allocation solution is readily available and they facilitate linear
stability analysis. Unfortunately, it has been shown that generalized inverses (including the Moore-Penrose generalized
inverse) are only applicable on a strict subset of the Attainable Moment Set (AMS)[1, 3]. The research in this paper,
extends the previous work introducing the Prediction Method (PM) for optimal control allocation[4]. In particular, this
research introduces a proposed method to compute a family of affine generalized inverses (constant matrix plus vector
offset) which expands the coverage of generalized inverses to the entire Attainable Moment Set, thereby extending the
linear allocation solution to the entire AMS.

III. Affine Moore-Penrose Generalized Inverse
The affine generalized inverse refers to a constant matrix Paf f ∈ <

m×n and constant vector ®c0 ∈ <
m ∩N (B) such

that:
®uopt = Paf f ®mdes + ®c0, ®mdes ∈ Φ (8)
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It should be noted that in the sequel, Paf f is shown to be a particular choice among the available generalized inverses.
We are already aware of the existence of one Moore-Penrose affine generalized inverse that is applicable to a subset of
Φ. Recalling from [4], that the AMS consists of two non-intersecting subsets Φ = Φ1 ∪ Φ3, then for ®mdes ∈ Φ1 the
choice of Paf f = Pmin and ®c0 = ®0 satisfies Eq. (8). It has been shown [1, 3] that no choice of generalized inverse
matrix is applicable to all of Φ. Therefore, we seek additional affine general inverses for the remaining portion of Φ
or Φ3 = Φ \ Φ1. In this section, the existence of a family of affine Moore-Penrose generalized inverses is rigorously
derived ∀ ®mdes ∈ Φ3 and is proven equivalent to the solutions obtained by the PM which was previously shown to yield
the Moore Penrose optimal control allocation solution [4]. The use of these affine MP generalized inverse matrices, in
conjunction with the Moore-Penrose generalized inverse, enable the offline (non-iterative) computation of MP optimal
controls allocation solution throughout the entire AMS as follows:

®uopt = Pmin ®mdes, ∀ ®mdes ∈ Φ1 (9)
®uopt = Paf fi ®mdes + ®c0i , ∀ ®mdes ∈ φi ⊂ Φ3 (10)

In the sequel, a numerical process using the prediction method and linearly independent moments vectors is shown
to compute an affine generalized inverse. Next, some mathematical preliminaries are completed which enable a proof by
construction method of analytically finding Moore-Penrose affine generalized inverse Paf fi and the associated offset
vector ®c0i which yields solutions identical to those of the Prediction Method.

A. Numerical Computation of Affine Generalized Inverse using the Prediction Method
This section documents a numerical process to compute Paf fi for a given ®mdes ∈ φi using the Prediction Method.

The basics of the process are to use the Prediction Method on ®mdes and nearby permutations of ®mdes ∈ φi to generate
MP optimal control allocation solutions ®upred . Expressing these linearly independent moments and the resulting control
solutions offset by the vector ®c0 asM andU respectively, then Paf f is found using:

Paf fM = (U − I ®c0) =⇒ Paf f = (U − I ®c0)M
−1 (11)

Without a priori knowledge of the boundaries of φi ⊂ Φ3, then the challenge is to permutate ®mdes while ensuring
that the permutations remain within the selected φi . While the nature of Paf f has yet to be derived, it is subsequently
shown that Paf fi associated with φi requires a fixed set of saturated controls S2, and Eq. (10) shows that we also require
a fixed ®c0i . Thus, for a given ®mdes , any moment perturbations ( ®mj) that result in a consistent set of saturated controls for
each ®upred j and yield a consistent ®c0 will enable the solution of Paf f as shown in Eq. (11). Recalling the general form
of the predicted optimal control allocation solution from [4] as:

®upredi = B̂


C02

C03
...

C(m−n)+1


+ ‖ ®mi ‖2 B̂



C11

C12

C13
...

C(m−n)+1


, where ®c0 = B̂


C02

C03
...

C(m−n)+1


(12)

Therefore for a particular φi ⊂ Φ3, rewriting Eq. (11) in vector form usingM B [ ®m1, ®m2, . . . , ®mn] and corresponding
U B

[
®upred1, ®upred2, . . . , ®upredn

]
yields:

Paf f

[
®m1 ®m2 . . . ®mn

]
=

[
®upred1 − ®c0 ®upred2 − ®c0 . . . ®upredn − ®c0

]
(13)

Since ®mj are chosen such that they are linearly independent then
[
®m1 ®m2 . . . ®mn

]−1
exists which implies:

Paf f =
[
®upred1 − ®c0 ®upred2 − ®c0 . . . ®upredn − ®c0

] [
®m1 ®m2 . . . ®mn

]−1
(14)

So then for fixed φi ⊂ Φ3, we have Paf f and can readily compute any optimal control solutions for ®mdes ∈ φi as:

®upred = Paf f ®mdes + ®c0 (15)

Equation (14) has been shown in numerical examples to generate Paf f . Moreover, using Eq. (15), it has been shown
to provide ®upred solutions for moments in the neighborhood of those used to generate Paf f with the same very high
degree of precision (≈ 10−12) as the solutions found using the Prediction Method.
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B. Construction of Moore-Penrose Affine Generalized Inverse Equivalent to Prediction Method
Previously, a numerical method using linearly independent moment vectors and corresponding MP optimal control

allocation solutions in the vicinity of a selected moment ®mdes was demonstrated. This methodology required n-linearly
independent moment vectors and optimal control solutions in order to generate Paf f . While the prediction method has
been proven to yield MP optimal control allocation solutions[4], the aforementioned numerically generated Paf f has
not been shown to provide control allocation solutions which are MP optimal. In this section, an MP affine generalized
inverse is constructed and it is proven to yield MP optimal solutions. More specifically, the MP affine generalized
inverse is shown as equivalent to the PM solution which was shown to provide MP optimal control allocation solutions.
As with the prediction method, the MP optimality using Paf f generated solutions is conditional upon having the correct
lists of saturated control effectors (S2,®s2) for ®mdes ∈ Φ3.

First, some mathematical preliminaries (including notation and two Propositions) are required which will enable the
construction of an affine MP generalized inverse. For notation, there is utility in expressing associated vectors and
matrices by dividing them into saturated and unsaturated portions (each in ascending order of indices). The subscript 1
will denote unsaturation while subscript 2 will denote saturation. To that end the following divisions are defined:

®u =

[
®uunsat
®usat

]
=

[
®u1

®u2

]
(16)

B =
[
B1 B2

]
(17)

B̂1 = B̂unsat =
[
b̂1unsat b̂2unsat . . . b̂(m−n)unsat

]
B̂2 = B̂sat =

[
b̂1sat b̂2sat . . . b̂(m−n)sat

]
B̂ =

[
B̂1

B̂2

]
(18)

Pmin =

[
Pmin1

Pmin2

]
(19)

Paf f =

[
Paf f1

Paf f2

]
(20)

Proposition 1. Given the generalized inverse Paf f ∈ <
m×n and the Moore-Penrose generalized inverse Pmin B

BT
(
BBT

)−1
∈ <n×m, then

(
Paf f − Pmin

)
= B̂B̂T Paf f .

Proof. Recall that the columns of Pmin form a basis (neither orthogonal nor unit vectors) for the range for Pmin ∈ <
n.

Additionally, B̂ B N (B) forms a basis with column vectors that are orthogonal unit vectors and which has previously
been shown perpendicular to the columns of Pmin. Then by linear algebra, together the columns of Pmin and B̂ form
a basis that spans all of <m. So then for the given affine generalized inverse Paf f , we seek to express the affine
generalized matrix using the stated basis for<m or equivalently we seek to determine the matrix C such that :

Paf f =
[
Pmin B̂

]
C (21)

Multiplying Eq. (21) by
[
Pmin B̂

]T
on the left yields:[

Pmin B̂
]T

Paf f =
[
Pmin B̂

]T [
Pmin B̂

]
C (22)

Since Pmin ⊥ B̂ and the columns of B̂ are orthogonal unit vectors (B̂T B̂ = I) then:[
Pmin B̂

]T
Paf f =

[
PT
minPmin 0n×(m−n)

0(m−n)×n I(m−n)×(m−n)

]
C (23)
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Now the matrix on the right is of block diagonal form and since
(
PT
minPmin

)−1 exists, then its inverse is easily found as:[
PT
minPmin 0n×(m−n)

0(m−n)×n I(m−n)×(m−n)

]−1

=

[ (
PT
minPmin

)−1 0n×(m−n)

0(m−n)×n I(m−n)×(m−n)

]
(24)

So therefore

C =

[ (
PT
minPmin

)−1 0n×(m−n)

0(m−n)×n I(m−n)×(m−n)

] [
PT
min

B̂T

]
Paf f =

[ (
PT
minPmin

)−1 PT
min

B̂T

]
Paf f (25)

Now using the Moore-Penrose generalized inverse Pmin = BT
(
BBT

)−1 shows that:(
PT
minPmin

)−1
PT
min =

((
BBT

)−1
BBT

(
BBT

)−1
)−1 (

BBT
)−1

B = B (26)

but since Paf f is a generalized inverse then BPaf f = I which applied with Eq. (26) to Eq. (25) yields

C =

[
In×n

B̂T Paf f

]
(27)

so then Eq. (27) applied to Eq.(21) yields

Paf f =
[
Pmin B̂

] [
In×n

B̂T Paf f

]
=⇒ (28)(

Paf f − Pmin

)
= B̂B̂T Paf f (29)

as claimed. �

Some examination of the nature of the vector
(
Paf f − Pmin

)
®m = B̂B̂T Paf f ®m is warranted. Since for any generalized

inverse BPgi = I, ∀Pgi , then BPaf f ®m = BPmin ®m = ®m, ∀ ®m ∈ Φ. then Eq. (29) implies:

B
(
Paf f − Pmin

)
®m = ( ®m − ®m) = 0 = B

(
B̂B̂T Paf f ®m

)
(30)

which shows that B̂B̂T Paf f ®m ∈ N (B). For rationale that is explained subsequently, the special case of the generalized
inverse Paf f is shown to be constructed by setting the columns of B2 to zero vectors or equivalently:

Paf f =

[
BT

1
0

] ( [
B1 0

] [
BT

1
0

])−1

=

[
BT

1
0

] (
B1BT

1

)−1
=⇒

Paf f1 = BT
1

(
B1BT

1

)−1
, Paf f2 = 0k×n where k = number saturated controls (31)

So then revisiting Eq. (29) expressed in saturated and unsaturated components yields:

Pmin =
(
I − B̂B̂T

)
Paf f ≡[

Pmin1

Pmin2

]
=

©«I −

[
B̂1

B̂2

] [
B̂1

B̂2

]T ª®¬
[
Paf f1

0

]
[
Pmin1

Pmin2

]
=

(
I −

[
B̂1B̂T

1 B̂1B̂T
2

B̂2B̂T
1 B̂2B̂T

2

]) [
Paf f1

0

]
=⇒

Pmin1 =
(
I − B̂1B̂T

1

)
Paf f1 (32)

Pmin2 = −B̂2B̂T
1 Paf f1 (33)
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and therefore Eq. (28) can be written as: (
Paf f − Pmin

)
®m = B̂B̂T

1 Paf f1 ®m (34)

Proposition 2. Given
(
Paf f − Pmin

)
®m = B̂B̂T

1 Paf f1 ®m, then B̂B̂T
1 Paf f1 ®m = −B̂B̂T

2

(
B̂2B̂T

2

)−1
Pmin2 ®m, ∀ ®m ∈ Φ

Proof. The equivalence is shown by proving that

B̂B̂T
1 Paf f1 ®m = −B̂B̂T

2

(
B̂2B̂T

2

)−1
Pmin2 ®m ⇐⇒

(
B̂B̂T

1 Paf f1 + B̂B̂T
2

(
B̂2B̂T

2

)−1
Pmin2

)
®m = 0, ∀ ®m ∈ Φ (35)

Noting from Eq. (33) that Pmin2 = −B̂2B̂T
1 Paf f1 then substituting into Eq. (35) and rearranging yields:

B̂
(
B̂T

1 − B̂T
2

(
B̂2B̂T

2

)−1
B̂2B̂T

1

)
Paf f1 ®m = 0 (36)

Now noting that N
(
B̂
)
= ®0, then

B̂
(
B̂T

1 − B̂T
2

(
B̂2B̂T

2

)−1
B̂2B̂T

1

)
Paf f1 ®m = 0 ⇐⇒ (37)(

B̂T
1 − B̂T

2

(
B̂2B̂T

2

)−1
B̂2B̂T

1

)
Paf f1 ®m = 0 (38)

Now pulling out B̂T
1 from Eq. (38) in order to provide geometric insight yields:(

I − B̂T
2

(
B̂2B̂T

2

)−1
B̂T

2

)
B̂T

1 Paf f1 ®m = 0 (39)

But B̂T
2

(
B̂2B̂T

2

)−1
B̂T

2 is readily recognized as the projection operator PB̂T
2
, which in turn shows that(

I − B̂T
2

(
B̂2B̂T

2

)−1
B̂T

2

)
= P

B̂T⊥

2
(40)

As projection operators, PB̂T
2
and P

B̂T⊥

2
have eigenvalues in {0, 1} and thus N

(
I − B̂T

2

(
B̂2B̂T

2

)−1
B̂T

2

)
, ®0. Similarly,

N

(
B̂T

1

)
, ®0 and therefore we seek to show that:

Paf f1 ®m ∈ N
(
B̂T

1 − B̂T
2

(
B̂2B̂T

2

)−1
B̂2B̂T

1

)
, ∀ ®m (41)

Now for the choice of Paf f such that Paf f2 = 0, then from Eq. (31) we have that Paf f1 = BT
1

(
B1BT

1
)−1, then we define

B1s = B1BT
1 which shows that:

Paf f1 B1s = BT
1

(
B1BT

1

)−1
B1BT

1 = BT
1 (42)

Since we know that B times any column vector in the span of the null-space of B is identically ®0, or equivalently that
BB̂ = 0, then

®0 = BB̂ =
[
B1 B2

] [
B̂1

B̂2

]
=⇒ −B1B̂1 = B2B̂2 ⇐⇒ −B̂T

1 BT
1 = B̂T

2 BT
2 (43)
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Now thinking of B1s as a matrix consisting of
[
®m1 ®m2 · · · ®mn

]
, then applying B1s to Eq. (38) and utilizing Eq.

(42) and Eq. (43) twice yields: (
B̂T

1 − B̂T
2

(
B̂2B̂T

2

)−1
B̂2B̂T

1

)
Paf f1 B1s =⇒ (44)(

B̂T
1 − B̂T

2

(
B̂2B̂T

2

)−1
B̂2B̂T

1

)
BT

1 =⇒(
B̂T

1 BT
1 − B̂T

2

(
B̂2B̂T

2

)−1
B̂2

(
−B̂T

2 BT
2

))
=⇒(

B̂T
1 BT

1 + B̂T
2

(
B̂2B̂T

2

)−1 (
B̂2B̂T

2

)
BT

2

)
=⇒(

B̂T
1 BT

1 + B̂T
2 BT

2

)
=⇒(

B̂T
1 BT

1 − B̂T
1 BT

1

)
=

[
®01 ®02 · · · ®0n

]
(45)

Equation (45) shows that ∀ ®mi ∈ B1s, i ∈ {0, 1, . . . , n} we have
(
B̂T

1 − B̂T
2

(
B̂2B̂T

2

)−1
B̂2B̂T

1

)
Paf f1 ®mi = ®0, so then

all linear combinations of the columns of B1s (i.e. B1s ®x, x ∈ <n) also yield ®0. Now since rank (B1) = n then
rank(B1) = rank

(
B1BT

1
)
= rank (B1s) = n where B1s ∈ <

n×n and thus (B1s)
−1 exists [5]. So finally,

∀ ®m ∈ <n, !∃®x ∈ <n, such that ®m = B1s ®x, where ®x B (B1s)
−1 ®m (46)

Thus ∀ ®m ∈ <n, Eq. (41) holds. Since the zero matrix is the only matrix for which the null-space consists of the entire

space (<n), then B̂B̂T
1 Paf f1 ®m = −B̂B̂T

2

(
B̂2B̂T

2

)−1
Pmin2 ®m as claimed. �

Finally, recalling from [4] the general form of the Prediction Method optimal control allocation solution for given S2
and ®s2:

®uopt = ®c0 + ®c1 + Pmin ®mdes, where (47)

®c0 B B̂B̂T
sat

(
B̂sat B̂T

sat

)−1
®s2 (48)

®c1 B −B̂B̂T
sat

(
B̂sat B̂T

sat

)−1
(Pmin ®mdes)sat (49)

Now separating Eqs. (50-52) into saturated and unsaturated components yields:

®uopt = ®c0 + ®c1 + Pmin ®mdes, where (50)

®c0 B B̂B̂T
2

(
B̂2B̂T

2

)−1
®s2 (51)

®c1 B −B̂B̂T
2

(
B̂2B̂T

2

)−1
Pmin2 ®mdes (52)

and therefore by Propositions (1,2), we have that

®c1 =
(
Paf f − Pmin

)
®m = −B̂B̂T

2

(
B̂2B̂T

2

)−1
Pmin2 ®m (53)

with ®c1 as computed by the Prediction Method.
Some physical insight is available with further examination. Since, the columns of B̂ are orthogonal unit vectors

then B̂T B̂ = I, so then pre-multiplying Eq. (53) by B̂2B̂T yields:

B̂2B̂T ®c1 = −Pmin2 ®m (54)

Recalling from [4], that multiplying a control vector in Piso ⊂ N (B) by B̂T converts the vector to the Gain Subspace,
and then multiplying by B̂2 or only the saturated control portions of B̂, converts the gains into only the saturated
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components in the Control Subspace. So separating ®c1 into unsaturated and saturated components, ®c1 B

[
®c11

®c12

]
, then

Eq. (54) implies that ®c12 = B̂2B̂T ®c1 = −Pmin2 ®m or that the saturated components of ®c1 are equivalent to −Pmin2 ®m.
Following a similar analysis for Eq. (51), we see that ®s2 = B̂2B̂T ®c0, which shows that the saturated components of ®c0 are
identically the saturated limits. Finally, in the Proposition 2 we have seen that:

B̂B̂T
1 Paf f1 ®m = B̂B̂T

2

(
B̂2B̂T

2

)−1
B̂2B̂T

1 Paf f1 ®m, ∀ ®m ∈ <m (55)

where B̂T
2

(
B̂2B̂T

2

)−1
B̂2 = PB̂T

2
. Since Eq. (55) has been shown true, then B̂T

1 Paf f1 ®m ∈ span{B̂T
2 }, ∀ ®m.

Now construction of Paf f which yields solutions equivalent to those using the Prediction Method is according to
the following theorem.

Theorem 1. Given ®mdes ∈ φ ⊂ Φ, the set of associated saturated controls S2 and the corresponding vector of saturated
limits ®s2, then ∃Paf f (Moore-Penrose Affine Generalized Inverse) so that !∃®uopt which is 2-norm minimal such that
®uopt = ®c0 + Paf f ®mdes where ®c0 ∈ N (B), B®uopt = ®mdes and ®uopt ∈ Ω.

Proof. This proof is shown by construction. Specifically, for a given set of saturated controls, a MP affine generalized
inverse is constructed and then shown to yield equivalent solutions to the Prediction Method which was shown in [4] to
yield MP optimal control allocation solutions.
Case 1: ®mdes ∈ φ = Φ1

Choose Paf f = Pmin B BT
(
BBT

)−1 and ®c0 = ®0 then as shown in [4], !∃®uopt = Pmin ®mdes + ®0 which is 2-norm minimal,
where ®c0 ∈ PIso and B®uopt = ®mdes and ®uopt ∈ Ω.
Case 2: ®mdes ∈ φ ⊂ Φ3
Recalling the general form of the generalized inverse (with positive semi-definite weighting matrix):

Pgi B WgiBT
(
BWgiBT

)−1
(56)

then the Moore-Penrose generalized inverse is the special case for which Wgi = I. Now reorganizing Pgi into saturated
and unsaturated components which rewriting Eq. (56) yields:[

Pgi1

Pgi2

]
=

[
I 0
0 I

] [
BT

1
BT

2

] ( [
B1 B2

] [
I 0
0 I

] [
BT

1
BT

2

])−1

(57)

Now we define Paf f by setting those diagonal elements of weight matrix which correspond to the saturated components
to zero (or equivalently setting the columns of the B2 matrix to all zeros) we have Wgi ≥ 0 and then:

Paf f =

[
Paf f1

Paf f2

]
=

[
I 0
0 0

] [
BT

1
BT

2

] ( [
B1 B2

] [
I 0
0 0

] [
BT

1
BT

2

])−1

=⇒ (58)

Paf f =

[
Paf f1

Paf f2

]
=

[
BT

1
(
B1BT

1
)−1

0

]
(59)

Now choosing a solution of the form ®uopt = ®c0 + ®c1 + Pmin ®mdes , then in particular we define ®c0 as:

®c0 = B̂B̂T
2

(
B̂2B̂T

2

)−1
®s2 (60)

and choose ®c1 as:
®c1 =

(
Paf f − Pmin

)
®m (61)

then for these choices of ®c0 and ®c1 we have the desired MP Affine Generalized inverse solution:

®uopt = ®c0 +
(
Paf f − Pmin

)
®mdes + Pmin ®mdes = ®c0 + Paf f ®mdes (62)
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but cannot yet make any claims on 2-norm optimality nor uniqueness. Now noting for the special case of Paf f2 = 0, we

showed that ®c1 =
(
Paf f − Pmin

)
®m = −B̂B̂T

2

(
B̂2B̂T

2

)−1
Pmin2 ®mdes (see Proposition 2). Therefore we have:

®uopt = ®c0 + Paf f ®mdes ⇐⇒ (63)

= B̂B̂T
2

(
B̂2B̂T

2

)−1 (
®s2 − Pmin2 ®mdes

)
+ Pmin ®mdes (64)

which is equivalent to the Prediction Method solutions in Eqs. (50-52). Thus for a given ®mdes , saturated control set S2
and associated saturated limits vector ®s2, with the choice of Wgi with the saturated diagonal elements set to zero, then

∃Paf f , and ®c0 = B̂B̂T
2

(
B̂2B̂T

2

)−1
®s2, such that !∃®uopt = ®c0 + Paf f ®mdes where ®c0 ∈ N (B), B®uopt = ®mdes and ®uopt ∈ Ω

with ®uopt 2-norm minimal as claimed. �

IV. Derivative
Typical flight applications for the controls allocation problem require adherence to both control effector position (®ulwr

and ®uupr ) and rate limitations (®rlwr and ®rupr ). While both the prediction and affine methods for computing MP optimal
control allocation solutions ensure compliance with control effector position requirements (®ulwr ≤ ®uopt ≤ ®uupr ), the
analytical tools to ensure rate limitation compliance are detailed in this section. First, various forms of the time-derivative
of MP optimal control allocation solutions ( d

dt ®uopt ) are derived ∀ ®mdes ∈ Φ and limitations on the existence of the
derivative are discussed. Subsequently, the derived forms of the time derivative are used to aid in control effector rate
limitation compliance.

A. Computation of Total Derivative
Recalling the chain rule of differentiation for a quantity of several variables: M = F (t, p1, p2, . . . pn)

dM
dt
=
∂M
∂t
+

n∑
i=1

∂M
∂t

dpi
dt

(65)

The quantity we seek to differentiate is the vector ®uopt and it would generally be expressed as a function of:

®uopt = F (t, ®mdes) (66)

In this case, as ®uopt is not expressly a function of time:

∂ ®uopt
∂t

= ®0 (67)

so then:
Ûuopt =

d ®uopt
dt

=
∂ ®uopt
∂ ®mdes

∂ ®mdes

∂t
(68)

Note that ®uopt differentiable requires that all the partial derivatives exist and that these are continuous. It is shown
subsequently that while the partial derivatives exist throughout Φ, they are not continuous everywhere. In particular, the
partial derivative discontinuities occur at the boundaries of the subsets within Φ (e.g. Φ1 ∩ φi or φi ∩ φ j) where the set
of saturated controls S2 changes.

B. Total Derivative Using Moore-Penrose Affine Generalized Inverse
Previously, it was shown that an affine generalized inverse exists ∀ ®mdes ∈ Φ, where in particular the MP optimal

control allocation solution is found using:

®uopt = Pmin ®mdes, ∀ ®mdes ∈ Φ1 (69)
®uopt = Paf fi ®mdes + ®c0i , ∀ ®mdes ∈ φi ⊂ Φ3 (70)

9



Then applying Eq. (68) for ®mdes ∈ Φ1 yields:

∂ ®uopt
∂ ®mdes

(Pmin ®mdes) = Pmin =⇒ (71)

d ®uopt
dt

= Pmin
∂ ®mdes

∂t
, ∀ ®mdes ∈ Φ1 (72)

Similarly, ®mdes ∈ φi Eqs. (68,70) yield:

∂ ®uopt
∂ ®mdes

(
Paf fi ®mdes + ®c0i

)
= Paf fi =⇒ (73)

d ®uopt
dt

= Paf fi

∂ ®mdes

∂t
, ∀ ®mdes ∈ φi (74)

which shows the existence of the vector partial derivative ∂ ®uopt/∂ ®mdes, ∀ ®mdes ∈ Φ. Recalling that previously we have
shown (see Eq. 59) that the rows of each Paf fi can sorted into unsaturated and saturated components. Similarly, we can
sort ®uopt such that:

d
dt
®uopt = Ûuopt =

[
Ûuopt1
Ûuopt2

]
(75)

(76)

then we obtain:
d ®uopt

dt
=

[
Ûuopt1
Ûuopt2

]
=

[
Paf f1

0

]
∂ ®mdes

∂t
(77)

where the time derivative of the MP optimal control allocation solution for the saturated components ( Ûuopt2 ) is zero as
expected.

However while the partial derivatives exist, the nature of the boundaries between subsets of Φ ensures that these
partial derivatives are not continuous. In particular, the transition from Φ1 to φi , requires transition from Pmin to Paf f

for a change in the set of saturated limits S2, or similarly the change from one subset φi to an adjacent one φ j requires
a change in the set of saturated controls S2. This change typically occurs as one of the components ®uoptk of the MP
optimal control allocation vector saturates (or unsaturates).

For example, when transitioning from φi to φ j along a constant m̂des, given ®mdes = mm̂des, then as the scalar
m ∈ < increases at a constant rate ( Ûm = const), from Eq. (74) we see that for ®mdes ∈ φi:

d ®uopt
dt

= ÛmPaf fi m̂, =⇒ Ûuoptk = ak(constant), ∀k ∈ S1 and Ûuoptk = 0, ∀k ∈ S2 (78)

Now as m continues to increase, then mm̂des ∈ φi ∩ φ j , and changes occur to the sets of unsaturated controls S′1,
saturated controls S′2 and the affine generalized inverse Paf fj , so then we have:

d ®uopt
dt

= ÛmPaf fj m̂, =⇒ Ûuoptk = bk(constant), ∀k ∈ S′1 and Ûuoptk = 0, ∀k ∈ S′2 (79)

In this simple example, the changes across the Φ boundary cause a "step" function in the time derivatives for each
component of Ûuoptk . Each component Ûuoptk transitions from one constant to another (e.g. ak changes to either 0 or bk)
and therefore the partial derivatives are not continuous.

However, in the interior of any subset of Φ, the partial derivatives are continuous since neither the Pmin,Paf fi nor
S1,S2 change. To demonstrate this, starting with the definition of continuity, the vector function f is continuous at the
point ®p if given ε > 0, ∃δ > 0 such that:

‖ ®p − ®x‖2 < δ =⇒ ‖ f ( ®p) − f (®x)‖2 < ε (80)

Note also for matrix norms we know that for A®x, that ‖A®x‖2 ≤ ‖A‖2 ‖ ®x‖2. Now we seek to examine the derivative
continuity at the point Ûuopt . So ∀ Ûm′, such that ®mdes + Ûm′dt ∈ Φ1, then given ε > 0 we choose δ = ε/(‖Pmin‖2 ‖B‖2)
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so then by Eq. (72):

Ûuopt − Ûu′opt = Pmin ( Ûmdes − Ûm′) , since BPmin = I =⇒

B
(
Ûuopt − Ûu′opt

)
= ( Ûmdes − Ûm′) =⇒

‖( Ûmdes − Ûm′)‖2 =
B

(
Ûuopt − Ûu′opt

)
2
≤ ‖B‖2

 Ûuopt − Ûu′opt2 (81)

So then

‖Pmin ( Ûmdes − Ûm′)‖2 ≤ ‖Pmin‖2 ‖ Ûmdes − Ûm′‖2 ≤ ‖Pmin‖2 ‖B‖2
 Ûuopt − Ûu′opt2

But
 Ûuopt − Ûu′opt2 < δ =⇒

‖Pmin ( Ûmdes − Ûm′)‖2 ≤ ‖Pmin‖2 ‖B‖2
ε

‖Pmin‖2 ‖B‖2
= ε shows that (82) Ûuopt − Ûu′opt2 < δ =⇒ ‖Pmin ( Ûmdes − Ûm′)‖2 =
PminB

(
Ûuopt

)
− PminB

(
Ûu′opt

)
2
< ε (83)

which shows that the partial derivative ∂®uopt

∂ ®mdes
is continuous. Thus the existence and continuity of the partial derivative

shows that d ®uopt/dt is differentiable ∀ ®m ∈ Φ1. The same logic holds for φi ⊂ Φ using Eq. (73), and therefore d ®uopt/dt
is differentiable within individual subsets of φi ⊂ Φ3, however, differentiability fails at the points of intersection between
adjacent subsets.

C. Incorporating Control Effector Rate Limitations
In this section, the incorporation of control effector rate limitations is discussed. Given minimum ®rlwr and maximum

®rupr control effector rate limitation vectors, with ®rlwr < ®rupr where:

®rlwr =
[
rlwr1 rlwr2 . . . rlwrm

]T
with rlwri ∈ <∀i = 1 . . .m (84)

®rupr =
[
rupr1 rupr2 . . . ruprm

]T
with rupri ∈ <∀i = 1 . . .m (85)

then reordering the control effector elements into unsaturated and saturated groups respectively yields:

®rlwr =

[
®rlwr1

®rlwr2

]
(86)

®rupr =

[
®rupr1

®rupr2

]
(87)

(88)

So similarly reordering the time-derivative of the MP optimal control vector:

d
dt
®uopt = Ûuopt =

[
Ûuopt1
Ûuopt2

]
(89)

(90)

since we desire [
®rlwr1

®rlwr2

]
≤

[
Ûuopt1
Ûuopt2

]
≤

[
®rupr1

®rupr2

]
(91)

Now by Eqs. (72,74), for the interior of the respective subsets (where the derivative exists), we have:[
®rlwr1

®rlwr2

]
≤

[
Pmin1

Pmin2

]
∂ ®mdes

∂t
≤

[
®rupr1

®rupr2

]
, ∀ ®mdes ∈ Φ1 \ δ (Φ1) (92)

®rlwr1 ≤ Paf f1

∂ ®mdes

∂t
≤ ®rupr1, with Ûuopt2 = ®0, ∀ ®mdes ∈ φi \ δ (φi) (93)
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Noting that BPmin = I and similarly B1Paf f1 = I, then Eqs. (92,93) show

B®rlwr ≤
∂ ®mdes

∂t
≤ B®rupr, ∀ ®mdes ∈ Φ1 \ δ (Φ1) (94)

B1®rlwr1 ≤
∂ ®mdes

∂t
≤ B1®rupr1, ∀ ®mdes ∈ φi \ δ (φi) (95)

Equations (92,93) show that management of the time rate of change of the desired moment vector (element wise) will
enable compliance with control effector rate limitations.

V. Offline Methodology for Moore-Penrose Affine Generalized Inverse
The Prediction Method detailed in [4] is an iterative algorithm that for a given ®mdes , starts at the origin and proceeds

along m̂des B ®mdes/‖ ®mdes ‖ until the maximum moment is achieved in the direction of m̂des. As described, the
Prediction Method is therefore relegated to be an online control allocation routine. However, with the proposed affine
generalized inverse presented in this research, an opportunity is available to obtain optimal Moore-Penrose optimal
control allocation throughout the entire AMS using an offline algorithm.

The following is an outline of a proposed offline affine generalized inverse algorithm. To implement an offline
algorithm, then for a given ®mdes, the algorithm would require the ability to determine which subset of the AMS
( ®mdes ∈ Φ1 or ®mdes ∈ φi ⊂ Φ3) contains the given moment vector or equivalently which portion of the δ (Ω) is nearest.
For any ®mdes ∈ Φ1, the process could be accomplished by utilizing the Pmin matrix to compute the optimal solution
®uopt and then verifying that ®uopt ∈ Ω. For ®mdes ∈ Φ3, the determination of the correct subset φi could be accomplished
with a moment lookup table, however this requires knowledge of the moment boundaries for each subset φi ∈ Φ3.

Establishment of the moment boundaries for all subsets φi ∈ Φ3 requires multiple phases. First, the determination
of the particular subsets φi is required such that the union of the subsets is identically Φ3. The determination of the total
number of subsets required is a combinatorics problem. Specifically, the number of φi subsets required for a given
number of saturated controls k is the k-combination defined as:(

n
k

)
=

n!
k!(n − k)!

(96)

where n is the total number of control effectors. So for example, the total number of subsets h required for B ∈ <3×10

would be:

h =

(
10
2

)
+

(
10
3

)
+ · · · +

(
10
7

)
(97)

Now that the individual subsets are determined, then the moment boundaries of each subset are required. A process in
[6] details a method to determine the moment area (n=2) or volume (n=3) associated with any generalized inverse. This
process yields the knowledge of the moment boundaries that we seek. This process would be applied to the affine subset
(including the offset vector ®c0) to determine the moment boundaries. Lastly, as noted in [4], there are a large number of
instances of control effector unsaturation which occur along a specified m̂des. Since each Paf fi is applicable over the
subset φi , then the moment boundaries of each φi may be further constrained by control effector unsaturation which
occurs based on the nearest portion of the boundary of Ω. Therefore, based on the large number of moment subsets and
the work required to determine each subset’s moment boundaries, the process of generating a moment lookup table for
®mdes ∈ Φ3 is non-trivial.

VI. Conclusions
This research introduced a family of proposed affine Moore-Penrose generalized inverses which provide Moore-

Penrose optimal control allocation solutions equivalent to those of the Prediction Method detailed in [4]. These affine
MP generalized inverses are valid over a subset φi ⊂ Φ3 which removes the requirement of validity along a given
m̂des inherent with the Prediction Method. Additionally, these affine MP generalized inverses are shown to provide the
derivative of the optimal control solutions and further aid in ensuring control effector rate compliance. A potential
offline control algorithm ∀ ®mdes ∈ Φ using the affine generalized inverse is outlined. Finally, the affine Moore-Penrose
generalized inverse is expanded to any arbitrary weighted affine generalized inverse in the Appendix of this paper.
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Follow on research by this author explores in detail the relationship between the Prediction Method and Cascading
Generalized Inverse algorithms. Various methods to ensure the local optimization problem utilizes the nearest portion
of the boundary of the AMS (or equivalently updates the list of saturated control effectors S2) are discussed. Techniques
to minimize the Prediction Method computation times for the Moore-Penrose optimal control allocation are described.
Additionally, the problem of bounding the neighborhoods φi or equivalently determining the region for which Paf fi is
applicable are detailed.

Appendix

Affine Arbitrary Generalized Inverse
The previous work demonstrating the existence of an Affine Moore-Penrose Generalized Inverse is restated (for

completeness) as the Affine Arbitrary Generalized Inverse. The relevant equations are:

®c0 = B̂
(
B̂TWgi B̂

)−1
B̂T

2

(
B̂2

(
B̂TWgi B̂

)−1
B̂T

2

)−1
®s2 (98)

®c1 = −B̂
(
B̂TWgi B̂

)−1
B̂T

2

(
B̂2

(
B̂TWgi B̂

)−1
B̂T

2

)−1
Pgi2 ®mdes (99)

®uopt = ®c0 + ®c1 + Pgi ®mdes (100)
®uopt = ®c0 + Pgia f f ®mdes (101)

where

Pgia f f B

[
Pgia f f1

Pgia f f2

]
(102)

Pgia f f1
B

(
WT

gi1

)−1
B1

(
B1

(
WT

gi1

)−1
BT

1

)−1
(103)

Pgia f f1
B 0 (104)

where Wgi1 consists of the unsaturated rows and columns of Wgi . For the case of Wgi = I, the MP affine generalized
inverse form is recovered as expected.
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