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This research is a follow on to the '"Optimal Control Prediction Method for Control Allo-
cation'' paper in which the Prediction Method iterative algorithm was introduced. Previously,
the Prediction Method was shown to provide optimal control allocation solutions over the entire
Attainable Moment Set for the Moore-Penrose and the generalized (weighted) inverse. As an
extension to the Prediction Method, this paper introduces a family of Moore Penrose Affine
Generalized Inverses, applicable for all moments, which compute control allocation solutions
using a constant matrix and fixed null-space vector. The Moore-Penrose Affine Generalized
Inverse is proven to yield equivalent solutions to those of the Prediction Method and therefore is
guaranteed to yield Moore-Penrose optimal control allocation solutions. While the Prediction
Method is applicable for any moment along an a priori specified moment direction, the Affine
Generalized Inverse is shown to yield optimal control allocation solutions in a neighborhood
of the given moment which is not restricted to a specified moment direction. Furthermore, the
Affine Generalized Inverse is shown to provide the time derivative of optimal control allocation
solutions and to facilitate maintaining solutions within control effector rate limitations. The
Moore-Penrose Affine Generalized Inverse is broadened to encompass any arbitrary (weighted)
Affine Generalized Inverse. Finally, a method of creating a moment lookup table is outlined to
utilize the Affine Generalized Inverse as an offline control allocation solution for all moments
in the Attainable Moment Set.

I. Nomenclature

0(Q) = boundary of Allowable Control Set

o6(®) = boundary of Attainable Moment Set

Q = Allowable Control Set (ACS), Q c R™

(O] = Attainable Moment Set (AMS), ® c R”

B = control effectiveness matrix, B € R"™™

B; = columns of B corresponding with unsaturated control effector indices (), B; € Rx(m—k)
B = columns of B corresponding with saturated control effector indices (S,), B> € Rk

B = complete orthogonal basis vector matrix containing ii4.s and N (B) basis vectors

B = orthogonal basis vector matrix containing N (B) basis vectors

B = rowsof B corresponding with unsaturated control effector indices (S7), B, € Rim—k)x(m-n)
1§2 = rowsof B corresponding with saturated control effector indices (S$>), I§2 € Rkx(m-n)
co = null-space offset vector used with Psr, ¢p € R™

¢ = anull-space component of ﬁpred whose magnitude is moment dependent, ¢; € R™
k = Number of saturated control effectors or number of elements in set S,

Mges = desired moment, mges € R

Mdes unit vector in the direction of desired moment, 1., € R"

Purr = Moore-Penrose affine generalized inverse, P,rr € R™"

Prso = Moore-Penrose Iso surface, orthogonal projection of ACS on N (B)

Pnin = Moore-Penrose generalized inverse of control effectiveness matrix B, Py, € R™"
Pwr = Lower bounds of control effector rate limitations, 7, € R™

Fupr = Upper bounds of control effector rate limitations, 7,,,, € R™

Si = Set of indices for all currently unsaturated control effectors, S} = {1,2,...,m} \ S,
S = Set of indices for all currently saturated control effectors (e.g. S, = {1, 5, 10})

k) = Vector of active control effectors position limits for all indices in S
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figes = Control unit vector in the direction of Pp,infiges, Udges € R™

uny = Lower bounds of control effector position limitations, iy, € R™

Uop: = Optimal control allocation solution, ii,,, € R™

Uprea = Moore-Penrose optimal control allocation solution found using Prediction Method, iipreq € R™

Uy, pr = Upper bounds of control effector position limitations, iy, pr € R™

Wei = Positive definite weighting matrix used for generation of arbitrary generalized inverse, W,; € R"*™

I1. Introduction
ost modern flight control systems make extensive use of linear and/or linearized analysis, due to the extensive
Mvolume of linear theory and analysis tools. A large majority of these analyzes are performed by linearizing a
non-linear system around a point of interest and expressing the system as a time varying (or invariant) system which in
state space form yields:

x(t) = A(®)x(t) + B(t)u(t) (1)
y(t) = C()x(t) + D(t)u(r) 2

Legacy flight control methodologies typically used groups or "ganged" flight controls to generate the time history of the
desired control signal u(¢) such that the resulting states are stable, provide the desired performance, stability margins etc.
The last few decades have shown an increased interest in control allocation which is the process to solve for u(¢) while
treating the control effectors individually. The control allocation problem is often cast using the system states to solve
for ii(r) given m(r) [}, or for each time step in discrete systems as:

rrgn J (if) = ii” Wyii such that 3)
m = Bligp, Upwr < lopt < lypr elementwise 4)

where Wg; > 0 and thus the state derivative equation is of the form:
X(t) = A(0)x(r) + m(1) ®)

Alternatively, the controls allocation problem can be established for the output state [2] such as the Moore-Penrose
allocation in discreet form:

min J(id) = i’ i, such that (6)
u
da = (CB)iipps, Hpwr < lopr < lypr elementwise (7)

Regardless of whether the control allocation problem formulation uses system states or system outputs, it is desirable to
achieve control allocation solutions of linear form. Generalized inverses, such as the Moore-Penrose generalized inverse
Poin, are a well known method to provide linearly weighted optimal solutions (e.g. i, pt = Pinim Where Py, € RV,
Some of the benefits of linear control allocation solutions include: simplicity and speed in computation of solutions
(matrix vector multiplication), derivative of control allocation solution is readily available and they facilitate linear
stability analysis. Unfortunately, it has been shown that generalized inverses (including the Moore-Penrose generalized
inverse) are only applicable on a strict subset of the Attainable Moment Set (AMS)[1} 3]]. The research in this paper,
extends the previous work introducing the Prediction Method (PM) for optimal control allocation[4]]. In particular, this
research introduces a proposed method to compute a family of affine generalized inverses (constant matrix plus vector
offset) which expands the coverage of generalized inverses to the entire Attainable Moment Set, thereby extending the
linear allocation solution to the entire AMS.

III1. Affine Moore-Penrose Generalized Inverse
The affine generalized inverse refers to a constant matrix P,ry € R™" and constant vector ¢ € R™ N N (B) such
that:
’Zopt =P, f’”T’ldes + EO’ ”T'ldes S (8)



It should be noted that in the sequel, P,z is shown to be a particular choice among the available generalized inverses.
We are already aware of the existence of one Moore-Penrose affine generalized inverse that is applicable to a subset of
®. Recalling from [4]], that the AMS consists of two non-intersecting subsets ® = ®; U @3, then for mg.; € ®; the
choice of Pysf = Ppin and ¢y = 0 satisfies Eq. . It has been shown [} 3] that no choice of generalized inverse
matrix is applicable to all of ®. Therefore, we seek additional affine general inverses for the remaining portion of @
or @3 = @ \ @;. In this section, the existence of a family of affine Moore-Penrose generalized inverses is rigorously
derived Viges € @3 and is proven equivalent to the solutions obtained by the PM which was previously shown to yield
the Moore Penrose optimal control allocation solution [4]. The use of these affine MP generalized inverse matrices, in
conjunction with the Moore-Penrose generalized inverse, enable the offline (non-iterative) computation of MP optimal
controls allocation solution throughout the entire AMS as follows:

Uopt = PrinMges, VYMges € @y &)
Uopt = P, fiMdes T C0;» Viges € ¢i C O3 (10)

In the sequel, a numerical process using the prediction method and linearly independent moments vectors is shown
to compute an affine generalized inverse. Next, some mathematical preliminaries are completed which enable a proof by
construction method of analytically finding Moore-Penrose affine generalized inverse P,y and the associated offset
vector ¢, which yields solutions identical to those of the Prediction Method.

A. Numerical Computation of Affine Generalized Inverse using the Prediction Method

This section documents a numerical process to compute P sz for a given Mges € ¢; using the Prediction Method.
The basics of the process are to use the Prediction Method on 7145 and nearby permutations of 74,5 € ¢; to generate
MP optimal control allocation solutions iip,.q. Expressing these linearly independent moments and the resulting control
solutions offset by the vector ¢y as M and U respectively, then Pz is found using:

PupfM = (U~ 13) = Pupr = (U-T1E) M (11)

Without a priori knowledge of the boundaries of ¢; C ®3, then the challenge is to permutate m4.; while ensuring
that the permutations remain within the selected ¢;. While the nature of P,ry has yet to be derived, it is subsequently
shown that P, associated with ¢; requires a fixed set of saturated controls S, and Eq. @) shows that we also require
a fixed ¢,. Thus, for a given /7.5, any moment perturbations (77 ;) that result in a consistent set of saturated controls for
each ﬁpred, and yield a consistent ¢y will enable the solution of Pgyy as shown in Eq. . Recalling the general form
of the predicted optimal control allocation solution from [4] as:

Cn
C02 C02
Ci2
R | Cos LA _ .| Cos
iprea; = B +|lmill, 8| Ci3 |, where & = B . (12)
Cim-n)+1 Cim-ny+1
C(m—n)+1
Therefore for a particular ¢; C ®3, rewriting Eq. (11) in vector form using M := [y, ma, . . ., i, ] and corresponding
U = |iiprea,s lipredss - - -+ iprea, | yields:
Paff I:"T'll 7712 s %n] = [ﬁpredl - Z:0 ﬂpredz - 50 s ’/-Zpred,, - EO] (13)
— - - — -1
Since m; are chosen such that they are linearly independent then [ml my ... mn] exists which implies:
- - - - - - - - - -1
Paff = [upredl —C0 Upred, —€C0 --- Upred, — C()] [ml my ... mn] (14)

So then for fixed ¢; C @3, we have P,¢r and can readily compute any optimal control solutions for Myes € ¢; as:
ﬁpred = Paffﬁ)ldes + 50 (15)

Equation @) has been shown in numerical examples to generate P,yr. Moreover, using Eq. @, it has been shown
to provide ip,,.q solutions for moments in the neighborhood of those used to generate P,y with the same very high
degree of precision (~ 107'?) as the solutions found using the Prediction Method.



B. Construction of Moore-Penrose Affine Generalized Inverse Equivalent to Prediction Method

Previously, a numerical method using linearly independent moment vectors and corresponding MP optimal control
allocation solutions in the vicinity of a selected moment 74,5 was demonstrated. This methodology required n-linearly
independent moment vectors and optimal control solutions in order to generate P,rr. While the prediction method has
been proven to yield MP optimal control allocation solutions[4], the aforementioned numerically generated P,r has
not been shown to provide control allocation solutions which are MP optimal. In this section, an MP affine generalized
inverse is constructed and it is proven to yield MP optimal solutions. More specifically, the MP affine generalized
inverse is shown as equivalent to the PM solution which was shown to provide MP optimal control allocation solutions.
As with the prediction method, the MP optimality using P,y generated solutions is conditional upon having the correct
lists of saturated control effectors (S,,5>) for fiiges € ©3.

First, some mathematical preliminaries (including notation and two Propositions) are required which will enable the
construction of an affine MP generalized inverse. For notation, there is utility in expressing associated vectors and
matrices by dividing them into saturated and unsaturated portions (each in ascending order of indices). The subscript 1
will denote unsaturation while subscript 2 will denote saturation. To that end the following divisions are defined:

0= |:ﬁznmt _ [1:_‘:1] (16)
Usat uz
B=|B B a7
él = éunsat = [Elunsat 52unsat cee I;(m—n)unsat]
é2 = ésat = [l;lsul 525‘(41 cee l;(m—n)sat]
. |B
B=|" (18)
B,
—Pmin
Popin = 1 19
P (19)
P
Papp = | “ (20)
| Pass

Proposition 1. Given the generalized inverse Popy € R™" and the Moore-Penrose generalized inverse P =
BT (BBT)™' € R™™, then (Pufs — Poin) = BB Pyyy.

Proof. Recall that the columns of P,,;;, form a basis (neither orthogonal nor unit vectors) for the range for P,,;,, € R".
Additionally, B := N (B) forms a basis with column vectors that are orthogonal unit vectors and which has previously
been shown perpendicular to the columns of P,,;,. Then by linear algebra, together the columns of P,,;, and B form
a basis that spans all of R™. So then for the given affine generalized inverse P,sr, we seek to express the affine
generalized matrix using the stated basis for R" or equivalently we seek to determine the matrix C such that :

Pags = |Puin B| C e
RLA
Multiplying Eq. by [Pm,-n B] on the left yields:

A T A T A
[Pmin B] Paff = [Pmin B] [Pmin B] c (22)
Since Py L B and the columns of B are orthogonal unit vectors (ETB = 1) then:

AT PT. P : Onx(m—n)
[Pmin B] Paf — min~ min (23)

O(m—n)xn I(m—n)x(m—n)




Now the matrix on the right is of block diagonal form and since (P7 Pm,,,)_1 exists, then its inverse is easily found as:

min

-1 B
Pmumm OnX(mfn) (Prz;LGPmi") 1 Onx(m—n)
O(m mxn  f(m=n)x(m-n) O(m n)xn I(m—n)x(m—n)
So therefore |
— T T
C = (Pmmpmm) OnX(m ") P{\ﬂin Puff - (Pmumm) Pmln Puff
O(m n)xn I(m—n)x(m—n) BT BT

Now using the Moore-Penrose generalized inverse P,,;,, = BT (BBT)_1 shows that:

min min

(pT pm,.n) P :((BBT)_IBBT(BBT)_I)_I (BBT)_leB

but since P,y is a generalized inverse then BP, sy = I which applied with Eq. (26) to Eq. (25) yields

Ian ]
ETPaff_
so then Eq. (27) applied to Eq.(Z1) yields
R [ In)(n
Pags = | Puin  B] Ea

(Paf = Pmin) = BB" Py

as claimed.

(24)

(25)

(26)

27)

(28)

(29)

]

Some examination of the nature of the vector (Pa ff = Pm,-n) m=BBTP, f fn? is warranted. Since for any generalized

inverse BPg; = I,V Pg;, then BPyysint = BP i = m, Vi € . then Eq. implies:

B (Pags — Pin) i = (ift — i) = 0 = B (BBTPaffnz)

(30)

which shows that BBT P, rrm € N (B). For rationale that is explained subsequently, the special case of the generalized

inverse P,y is shown to be constructed by setting the columns of B, to zero vectors or equivalently:

Bf Bf
Po= [B o]
4 0 : 0
BT -1
1 T
-1 (3131 ) —

-1
Purf = BlT (BlBlT) . Parp = 0F*" where k = number saturated controls

So then revisiting Eq. (29) expressed in saturated and unsaturated components yields:

Pin = éé aff =

Pmml — Paffl

Pmmg 0

Pin, ;- BlBT BIBT Pusf, —
Prin, B,BT B,BT 0

mln1 (I BlB ) affi

mmz = BZB Paff

3D

(32)
(33)



and therefore Eq. (28] can be written as:
(Pags = Pmin) i1t = BB Pag ;i (34)

R A PR |
i, then BBT Pyyyin = ~BBY (BQBT) Poingts Vi € @

Proposition 2. Given (Pufs — Pyin) M = BBT Poyy, !

1
Proof. The equivalence is shown by proving that

1

- o el . -
BETPyypin = ~BBT (BszT ) Ponimy i &= (BBITPafﬁ + BET (BzBZT ) Pm,-,u) m=0, Vined  (35)

Noting from Eq. that Pip, = —EzélTPaffl then substituting into Eq. and rearranging yields:

B (é{ - 67 (.87) 323{) Puggin = 0 (36)

Now noting that N (ﬁ) = 6, then
B (é{ - 57 (B.8) ézé{) Pogpiii =0 (37)
(é{ - 57 (B.87) 323{) Paggi = 0 (38)

Now pulling out EIT from Eq. 1) in order to provide geometric insight yields:
A A A _1 A A
(1 - BT (B:87) BZT) BT Pyppini =0 (39)
A A A - 1 A
But BY (BZBZT ) BY is readily recognized as the projection operator # 7. which in turn shows that

SR
(I—BZT (B:87) 8L ) = Py (40)
2

(A s\ Lo -
As projection operators, szr and P r. have eigenvalues in {0, 1} and thus N (I - BZT (BQBZT ) BZT ) # 0. Similarly,
2

N (BIT) # 0 and therefore we seek to show that:
A A A A _1 A A
Pappiie N (BIT - B (8.8 BZBIT),V% 41)

Now for the choice of P,¢¢ such that P,rp = 0, then from Eq. li we have that P, = Bl (BlBlT)_l, then we define
By = By BT which shows that:
-1
PagpBis = BT (BiBY ) BiB] = B] (42)
Since we know that B times any column vector in the span of the null-space of B is identically 6, or equivalently that

BB = 0, then

0=BB= [B] Bz]

B < < < <
le — BB = BB, — -B'BI = Bl B! 43)
2



Now thinking of Bj as a matrix consisting of [fr’zl my - 171,,], then applying B to Eq. and utilizing Eq.
(@2) and Eq. (3) twice yields:

BZBIT) PurfiBis = (44)

BB - BB = [0, G - 0 43)

R B .
Equation shows that Vim; € Bis,i € {0,1,...,n} we have (BlT - B (BQBZT) BQBIT) Puspimn; = 0, so then

all linear combinations of the columns of Big; (i.e. Bjsx,x € R") also yield 0. Now since rank (B1) = n then
rank(By) = rank (BBl ) = rank (Biy) = n where Bj; € R and thus (B15)”" exists [3]. So finally,

Vin € R™ 13% € R", such that i = B4 ¥, where X := (Bi5) " i (46)

Thus Vi € R", Eq. @) holds. Since the zero matrix is the only matrix for which the null-space consists of the entire
R o [ ) =1
space (R™), then BBlTPafflﬁ% = —BBZT (BZBZT) Ponin,m as claimed. O

Finally, recalling from [4]] the general form of the Prediction Method optimal control allocation solution for given S,
and 5,:

ﬁop, = Eo + 51 + Pmin’/?ldesw where (47)
. -1

G = BBT, (BWBW) % 48)
1

_BBsat (BsatBsat) (Pminﬁ/ldES)sut (49)

Now separating Egs. (50[52) into saturated and unsaturated components yields:

Uopt = Co + C1 + PminiMges, Where (50)
A R -1
Go = BBT (BszT ) % (51)
o fa ary -] 3
&= ~BBY (BoBL) " Pringiiaes (52)

and therefore by Propositions (I]2), we have that
> > a7 (5T -
&1 = (Pags = Puin) it = ~BBY (BoBY ) Pruiny i (53)

with ¢} as computed by the Prediction Method.
Some physical insight is available with further examination. Since, the columns of B are orthogonal unit vectors
then BT B = I, so then pre-multiplying Eq. by B, BT yields:

ByBT G| = —Pin,int (54)

Recalling from [4], that multlplymg a control vector in P;5, € N (B) by BT converts the vector to the Gain Subspace,
and then multiplying by B, or only the saturated control portions of B, converts the gains into only the saturated



- . G
components in the Control Subspace. So separating ¢; into unsaturated and saturated components, ¢; := [_)11
6‘12

, then

Eq. 1i implies that ¢}, = B,BT¢ = —Pumin,m or that the saturated components of ¢ are equivalent to — Py, /7.
Following a similar analysis for Eq. (51), we see that 5, = B, B &y, which shows that the saturated components of & are
identically the saturated limits. Finally, in the Proposition 2] we have seen that:

. s (s A\l s
BEB! Payyiin = BB (BoBY)  BoB] Pagpii Vi € R (55)

A A A -1 A A - A -
where B] (BzBZT ) By = Pjr. Since Eq. has been shown true, then B] P,sqm € span{B]}, V.
Now construction of P, ¢y which yields solutions equivalent to those using the Prediction Method is according to
the following theorem.

Theorem 1. Given mg.s € ¢ C @, the set of associated saturated controls Sy and the corresponding vector of saturated
limits 5,, then APurr (Moore-Penrose Affine Generalized Inverse) so that !EL_ZOP, which is 2-norm minimal such that
ﬁopt = E() + Paffﬁldes where EO € N(B), Bl:t)op, = I/T’tdes and ﬁnpt e Q.

Proof. This proof is shown by construction. Specifically, for a given set of saturated controls, a MP affine generalized
inverse is constructed and then shown to yield equivalent solutions to the Prediction Method which was shown in [4]] to
yield MP optimal control allocation solutions.

Case 1: 7.5 € ¢ = D

Choose Pyf = Pmin = BT (BBT)_1 and & = O then as shown in [4], 'Jlopr = PminMdes +0 which is 2-norm minimal,
where ¢y € Prgo and Biiop; = Mges and ilpp; € Q.

Case 2: nges € ¢ C D3

Recalling the general form of the generalized inverse (with positive semi-definite weighting matrix):

1
Pyi = Wyi BT (BWyiB" (56)

then the Moore-Penrose generalized inverse is the special case for which Wy; = I. Now reorganizing Pg; into saturated
and unsaturated components which rewriting Eq. (56) yields:

o

Now we define P,z by setting those diagonal elements of weight matrix which correspond to the saturated components
to zero (or equivalently setting the columns of the B, matrix to all zeros) we have W,; > 0 and then:

-1
Pgil

Pgiz

T
Bl
T
BZ

I 0
0 I

T
Bl

BT (57

-1

P I 0o||BT I Of|B"
Pags = | | = s B D (58)
Purp 0 0f|B; 0 0|5
P BT (B,BT)™"
Pugy = | et | = | B (B1By) (59)
Pafﬁ O
Now choosing a solution of the form ii,p; = Co + €1 + Pminffides, then in particular we define ¢y as:
= _anr (p AT\ '
Go = BET (BQBZ) 55 (60)
and choose ¢ as:
c1 = (Paff_Pmin)rT’l (61)
then for these choices of ¢y and ¢ we have the desired MP Affine Generalized inverse solution:
Izopt = 8() + (Paff - Pmin) ﬁades + Pminr_':ldes = 80 + Pq f"?ldes (62)



but cannot yet make any claims on 2-norm optimality nor uniqueness. Now noting for the special case of P,rp = 0, we

RV RS | .
showed that ¢; = (Paff - Pmm) m= —BB; (BzBZT ) Ppiin,Maes (see Proposition . Therefore we have:

ﬁopt = E() + Paffﬁ:ldes — (63)

A A

A A -1 N - -
= BB; (BZBg) (SZ - Pminzmdes) + PrinMdes (64)

which is equivalent to the Prediction Method solutions in Eqs. (5052). Thus for a given 7., saturated control set S,
and associated saturated limits vector 5,, with the choice of W, with the saturated diagonal elements set to zero, then

A A A A -1 - - - - - -
HPaf ,and 50 = BB; (BszT) §2, such that !Hﬁop, =cCo+ Paffmdes where ¢y € N(B), Buop, = Myes and Uopt € Q

with i, 2-norm minimal as claimed. m]

IV. Derivative

Typical flight applications for the controls allocation problem require adherence to both control effector position (i,
and i, ) and rate limitations (7, and 7). While both the prediction and affine methods for computing MP optimal
control allocation solutions ensure compliance with control effector position requirements (i, < 17(,,,, < i, pr), the
analytical tools to ensure rate limitation compliance are detailed in this section. First, various forms of the time-derivative
of MP optimal control allocation solutions (%ﬁopt) are derived Vrig.s € ® and limitations on the existence of the
derivative are discussed. Subsequently, the derived forms of the time derivative are used to aid in control effector rate
limitation compliance.

A. Computation of Total Derivative
Recalling the chain rule of differentiation for a quantity of several variables: M = F (¢, p1, p2, - . . Pn)

dM_ oM oM dps

=Ty 65
dt ot — ot dt (63)
The quantity we seek to differentiate is the vector i,,, and it would generally be expressed as a function of:
’/-iopt = T(t, ﬁldes) (66)
In this case, as ilyp; is not expressly a function of time:
Oliopr =
=0 67
En (67)

so then: R R
i _ duupt _ auupt (?ﬁ%des (68)
PUT At T Ofges  Of
Note that i,,,, differentiable requires that all the partial derivatives exist and that these are continuous. It is shown
subsequently that while the partial derivatives exist throughout @, they are not continuous everywhere. In particular, the
partial derivative discontinuities occur at the boundaries of the subsets within @ (e.g. ®; N @; or ¢; N ¢;) where the set
of saturated controls S, changes.

B. Total Derivative Using Moore-Penrose Affine Generalized Inverse
Previously, it was shown that an affine generalized inverse exists Vi s € ®, where in particular the MP optimal
control allocation solution is found using:

ﬁopl = Pminﬁ)ldes, Vﬁldes € @, (69)
L_Zopt =P, fiﬁ)’ldes + EOi’ Vﬁ:‘des € ¢; C @3 (70)



Then applying Eq. for ifges € @ yields:

6ﬁopt N _
o (PminMdes) = Pmin = (71)
Mdes
dﬁ() aﬁ/ld S —
dtpl = Ppiin a—l‘e’ Vmges € O (72)
Similarly, 4.5 € ¢; Egs. (68l70) yield:
dii - -
(r_om (Payfiides + Co;) = Paff = (73)
Mdes
du, omy -
dotpt - P“ffi 3tes’dees € ¢; (74)

which shows the existence of the vector partial derivative 0iiop; /O ges, Vifges € ®. Recalling that previously we have
shown (see Eq. @I) that the rows of each P,¢ can sorted into unsaturated and saturated components. Similarly, we can
sort if,p; such that:

d . Uopt,
d _ _ 75
di Mopt uopt uoptz ( )
(76)
then we obtain:
duopt _ bzloptl Paffl Oittdes 77
df unp[2 0 at

where the time derivative of the MP optimal control allocation solution for the saturated components (i, 1, ) is zero as
expected.

However while the partial derivatives exist, the nature of the boundaries between subsets of ® ensures that these
partial derivatives are not continuous. In particular, the transition from ®; to ¢;, requires transition from P,,;, to Pyrs
for a change in the set of saturated limits S, or similarly the change from one subset ¢; to an adjacent one ¢; requires
a change in the set of saturated controls S». This change typically occurs as one of the components i, of the MP
optimal control allocation vector saturates (or unsaturates).

For example, when transitioning from ¢; to ¢; along a constant 7., given Mdes = Miflges, then as the scalar
m € R increases at a constant rate (riz = const), from Eq. we see that for .5 € ¢;:

diiop;
dt

=mPyrpM, = lops, = ar(constant), Vk € Sy and it,p,, = 0,Vk € 5 (78)

Now as m continues to increase, then mnig.s € ¢; N ¢;, and changes occur to the sets of unsaturated controls Sl’ s
saturated controls Sé and the affine generalized inverse P, 1> SO then we have:

diiopy
dt

= mPqffit, = liopy, = br(constant), Vk € S| and tiypy, = 0,Vk € S5 (79)

In this simple example, the changes across the ® boundary cause a "step" function in the time derivatives for each
component of i, . Each component ii,,, transitions from one constant to another (e.g. ax changes to either 0 or by)
and therefore the partial derivatives are not continuous.

However, in the interior of any subset of @, the partial derivatives are continuous since neither the P;,,P 55 nor
S1,5, change. To demonstrate this, starting with the definition of continuity, the vector function f is continuous at the
point p if given € > 0,35 > 0 such that:

1P =Xl <6 = IIf(P) - [P, <€ (80)

Note also for matrix norms we know that for AX, that ||AX||, < ||A]l, [|X]l,- Now we seek to examine the derivative
continuity at the point ti,,;. So V', such that gy + m’dt € @y, then given € > 0 we choose 6 = €/(||Ppinll> || Bll»)
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so then by Eq. (72):

. . . Ly .
Uopr —Uppr = F'min (mdes —m )’ since BP,,ijp =1 —
. ./ . ./

B (uopt - uopt) = (mdes —m ) ==

s =)l = [[B (itope = it )|, <

1B [lttope = el 1)
So then

[Pmin Giges = )la < |\ Pminlla lritaes = iy < 1 Pminlla 1Bl iops = el

But ||u(,,,, — ||2 <0 =

u()pt

. €
| Pmin (itges = ")y < 1Pminlla 1Blly 57— = € shows that (82)
1 Pminll2 [1Bll2

letop: = il < 6 = 1Pmin Gitdes = 1)l = | PrinB Grope) = PoinB (it )|, <€ 83)

i, Uopt

which shows that the partial derivative 7= -~ is continuous. Thus the existence and contlnulty of the partial derivative
shows that dii,, pe/dt is differentiable Vm € (Dl The same logic holds for ¢; ¢ ® using Eq. (73)), and therefore du(,,,, /dt
is differentiable within individual subsets of ¢; c @3, however, differentiability fails at the pomts of intersection between
adjacent subsets.

C. Incorporating Control Effector Rate Limitations
In this section, the incorporation of control effector rate limitations is discussed. Given minimum 7}, and maximum
Fupr control effector rate limitation vectors, with 7y, < 7,,p, Where:

T
Flwr = [rlwr] Thwry, - rlwrm] with Twr; € RVi=1...m (84)

T
Fapr = [Fupry Tupry < Tupr | With Ty, € RV = 1. m (85)

then reordering the control effector elements into unsaturated and saturated groups respectively yields:

- 7
Fiwr = [jwr1:| (86)
Tiwr,
Fupr = lﬁ“””l (87)
Tupr,
(33)
So similarly reordering the time-derivative of the MP optimal control vector:
d N lf'tuptl
—u =1 = 89
dt opt opt [uopzz ( )
(90)
since we desire
i‘lwtﬁ < 1’:{01)[1 < 'juprl (91)
Tlwr, Uopt, Tupr,
Now by Egs. (72]74)), for the interior of the respective subsets (where the derivative exists), we have:
7 Prin, | 0mges 7 -
ten ] i | Z0des ATUPT ey € @1\ 6(D)) (92)
Twry Pin, ot Tupr,
- e
Fiwn, < Pagsi—5 > < Fupriy With tiopy, =0, Vies € 1\ 6 (41) (93)
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Noting that BP,;,, = I and similarly B P,¢5 = I, then Egs. @Hg_?[) show

. OMige, . .
Briywr < Tes < Brupr» Vinges € @1\ 6 (D) %94)
- Ong o -
Blrlwrl < 6tes < Blruprla Vges € ¢; \ 6(¢l) (95)

Equations (9293) show that management of the time rate of change of the desired moment vector (element wise) will
enable compliance with control effector rate limitations.

V. Offline Methodology for Moore-Penrose Affine Generalized Inverse

The Prediction Method detailed in [4] is an iterative algorithm that for a given /74,5, starts at the origin and proceeds
along Mges = Myes/||Maes|| until the maximum moment is achieved in the direction of Rigzes. As described, the
Prediction Method is therefore relegated to be an online control allocation routine. However, with the proposed affine
generalized inverse presented in this research, an opportunity is available to obtain optimal Moore-Penrose optimal
control allocation throughout the entire AMS using an offline algorithm.

The following is an outline of a proposed offline affine generalized inverse algorithm. To implement an offline
algorithm, then for a given 7 ., the algorithm would require the ability to determine which subset of the AMS
(Mges € @y Or Myges € ¢; C D3) contains the given moment vector or equivalently which portion of the 6 (€2) is nearest.
For any 4.5 € @1, the process could be accomplished by utilizing the P,,;;, matrix to compute the optimal solution
i, p+ and then verifying that ﬁopt € Q. For imges € ®3, the determination of the correct subset ¢; could be accomplished
with a moment lookup table, however this requires knowledge of the moment boundaries for each subset ¢; € ®@3.

Establishment of the moment boundaries for all subsets ¢; € @3 requires multiple phases. First, the determination
of the particular subsets ¢; is required such that the union of the subsets is identically ®3. The determination of the total
number of subsets required is a combinatorics problem. Specifically, the number of ¢; subsets required for a given
number of saturated controls & is the k-combination defined as:

n n!
(k )=m (96)

where 7 is the total number of control effectors. So for example, the total number of subsets / required for B € R3*1°

would be:

h:(10)+(10)+ +(10) o7

2 3 7

Now that the individual subsets are determined, then the moment boundaries of each subset are required. A process in
[6] details a method to determine the moment area (n=2) or volume (n=3) associated with any generalized inverse. This
process yields the knowledge of the moment boundaries that we seek. This process would be applied to the affine subset
(including the offset vector ¢y) to determine the moment boundaries. Lastly, as noted in [4]], there are a large number of
instances of control effector unsaturation which occur along a specified #i4.5. Since each P,z is applicable over the
subset ¢;, then the moment boundaries of each ¢; may be further constrained by control effector unsaturation which
occurs based on the nearest portion of the boundary of Q. Therefore, based on the large number of moment subsets and

the work required to determine each subset’s moment boundaries, the process of generating a moment lookup table for
Mges € O3 is non-trivial.

VI. Conclusions

This research introduced a family of proposed affine Moore-Penrose generalized inverses which provide Moore-
Penrose optimal control allocation solutions equivalent to those of the Prediction Method detailed in [4]. These affine
MP generalized inverses are valid over a subset ¢; C ®3 which removes the requirement of validity along a given
Mges inherent with the Prediction Method. Additionally, these affine MP generalized inverses are shown to provide the
derivative of the optimal control solutions and further aid in ensuring control effector rate compliance. A potential
offline control algorithm Y1745 € ® using the affine generalized inverse is outlined. Finally, the affine Moore-Penrose
generalized inverse is expanded to any arbitrary weighted affine generalized inverse in the Appendix of this paper.
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Follow on research by this author explores in detail the relationship between the Prediction Method and Cascading
Generalized Inverse algorithms. Various methods to ensure the local optimization problem utilizes the nearest portion
of the boundary of the AMS (or equivalently updates the list of saturated control effectors S,) are discussed. Techniques
to minimize the Prediction Method computation times for the Moore-Penrose optimal control allocation are described.
Additionally, the problem of bounding the neighborhoods ¢; or equivalently determining the region for which Py, is
applicable are detailed.

Appendix

Affine Arbitrary Generalized Inverse
The previous work demonstrating the existence of an Affine Moore-Penrose Generalized Inverse is restated (for
completeness) as the Affine Arbitrary Generalized Inverse. The relevant equations are:

A R Y -1 o\l

G =B(B"WyB) B (Bz (B7wyiB) B ) 5 (98)

> s (st 2\ ar (s (arw A\ ar) -

& =-B (B ngB) B (32 (B ngB) Bz) Py iges 99)
ﬁopt = EO + El + P'iﬁldes (100)
ﬁopt = EO + Pgil,ffﬁ;ldes (101)

where
Poi
Paiasy = P“,“f""‘l (102)
glaffz
7\ 7\ ot -
Poiary = (WE) Br (B (WE, ) B] (103)
Py =0 (104)

where Wy;, consists of the unsaturated rows and columns of W,;. For the case of Wy; = I, the MP affine generalized
inverse form is recovered as expected.
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