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ABSTRACT
A new method for rapidly planning and dynamically replanning low noise rotorcraft flight operations is developed.
A large database of rotorcraft maneuver segments is generated, and an acoustic cost is assigned to each segment by
using a computationally efficient semiempirical rotorcraft noise modeling method that accurately models the changes
in rotor noise caused by maneuvering flight. Combinatoric optimization techniques are then employed to combine
these maneuver segments into a low noise optimal flight path. A simple heuristic for estimating the total acoustic cost
required to reach the target location is developed and incorporated into the search algorithm, allowing the computation
of low noise paths in seconds. A procedure for implementing an “anytime” version of the method is described, enabling
feasible solutions to be dynamically replanned “on the fly”—i.e., in fractions of a second—and refined over time to a
low noise optimal solution.

INTRODUCTION

Community acceptance of rotorcraft operations is limited by
the resulting noise. Voluntary restrictions on helicopter opera-
tions have recently been adopted in the Los Angeles and New
York City areas (Refs. 1–3) in response to community objec-
tions to noise and the threat of legal restrictions on commercial
operations. In addition to existing helicopter operations, pro-
ponents of Urban Air Mobility (UAM) foresee increases in
rotorcraft operations in urban areas by orders of magnitude,
but this goal is not achievable unless community acceptance
of rotorcraft operations can be dramatically improved. Design
changes can yield some reduction in rotor noise radiation, but
usually with compromises in vehicle performance. However,
due to the high sensitivity of rotorcraft noise to changes in
rotor operating conditions, tailored noise abatement operations
can be effective in reducing community noise impacts.

There exists a considerable body of work on low noise opera-
tions for rotorcraft. Much of this work has focused on avoiding
Blade-Vortex Interaction (BVI) noise during approach using
conventional optimization techniques (Refs. 4, 5). In many
cases, the noise models underlying the optimization are only
accurate for steady flight conditions (Ref. 6), and do not cap-
ture the significant changes in noise that can occur during
transient maneuvers between steady flight states. This can lead
to unrealistically low noise “optimal” approaches, for exam-
ple, where the helicopter instantaneously transitions between
shallow and steep descending flight conditions. The acous-
tic impacts of these trajectories are underpredicted because
the transitions through the high BVI noise operating states
between the shallow and steep descending flight conditions are
not modeled. (Ref. 7).
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Even when realistically smooth flight conditions are appro-
priately modeled—including the acoustic effects of unsteady
flight (Ref. 8)—computationally expensive optimization ap-
proaches are used (Refs. 9, 10), such that low noise operations
must be planned well in advance of the actual flight.

The practicality of preplanned rotorcraft noise abatement op-
erations is questionable because of ever-changing operational
realities such as air traffic, weather, and unforeseen changes
in mission objectives. Rapid trajectory planning and dynamic
replanning have been long established and successfully applied
in the field of robotics (Ref. 11), and more recently used to
generate “on-the-fly” trajectories for Unmanned Aerial Vehi-
cles (Ref. 12) and autonomous cars (Ref. 13). However, the
cost functions applied in these approaches are typically much
less computationally expensive than those necessary to accu-
rately evaluate rotorcraft noise impacts. Although significant
improvements in the computational efficiency of rotorcraft
noise predictions have been realized recently (Ref. 14), de-
veloping near real time noise abatement guidance remains a
challenge.

OBJECTIVE

The objective of this work is to develop a practical method of
dynamic replanning for low noise rotorcraft operations with
the following essential characteristics:

• physically-realizable and “flyable” transitions between
vehicle flight states;

• accurate modeling of the dominant rotor noise sources, es-
pecially the sensitivity of radiated noise characteristics—
frequency, magnitude, and direction—to changes in the
rotor operating state; and

• rapid generation of low noise optimal flight trajectories—
on the order of seconds—enabling practical “on-the-fly”
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Fig. 1: Acoustic path planning graph.

replanning of low noise rotorcraft operations in response
to changing circumstances.

TECHNICAL APPROACH

The basic concept of the approach developed in this work is
that an entire rotorcraft operation can be represented by a se-
quence of fundamental maneuver segments that describe, in
detail, how the vehicle transitions from one defined position
and operating condition to another. Each segment can be evalu-
ated offline to determine the overall “cost” of that portion of the
flight trajectory according to its acoustic impact or any other
metric of interest, such as time of flight, fuel consumption,
or passenger comfort. This allows the trajectory optimization
problem to be converted from a computationally expensive
continuous optimization problem to the much cheaper com-
binatorial graph traversal, where the goal is to determine the
lowest cost sequence of maneuver segments that connects the
current position and state of the vehicle to the target position
and state.

A diagram of the computational graph over which the low noise
trajectory is generated is shown in Figure 1. Each maneuver
segment connects from a particular flight state at the starting
position to another flight state at some position offset from the
starting position. In order to provide a physically realizable
trajectory from the current vehicle position to the target posi-
tion, the flight state at the end of each maneuver segment must
match exactly that at the start of the next segment. In this paper,
all segments begin and end in steady level flight, such that the
vehicle is not accelerating at the points where the segments
connect. The segment end points are then uniquely defined
by their offset position (longitudinal and lateral) relative to
the start point, change in heading, speed, and altitude above
ground.

The space around the vehicle containing the target location is
then populated by a grid of nodes, defined not only by their
discrete position, but also by discrete altitudes, headings, and
speeds. In this paper, the nodes are spaced 1000 m apart
along Cartesian coordinates in X and Y, at altitudes from 50 m

Above Ground Level (AGL) to 500 m AGL in 50 m increments,
headings in 22.5 degree increments, and speeds from 20 m/s to
70 m/s in 10 m/s increments. The Y axis is defined to extend
in the direction between the vehicle’s starting position and
the initial target location, and the X axis is along the ground
perpendicular to this direction. The grid spans 40 nodes along
the Y axis, and is 20 nodes wide along the X axis, covering an
area of 800 km2, approximately the same area as a moderately
large city like Las Vegas, NV (741 km2) or Austin, TX (824
km2).

The connectivity between nodes is defined by the feasible
set of maneuver segments, resulting in a graph containing all
practical paths between the vehicle’s current position and the
target location. Figure 2 illustrates the range of nodes, shown
as squares, that can be connected to the circular node shown
in green. Nodes may be connected directly to nodes that are
not immediate neighbors in physical space; for example, in
this paper, nodes are connected by maneuver segments to their
immediate neighbors—one grid spacing, ∆x, apart and shown
in magenta—as well as the next two concentric layers, shown
in red and blue. Segments are also defined that connect all
start and end node headings that are within 90 degrees of the
line (shown dashed in Figure 2) connecting the start and end
positions; i.e., segments may not start or end at a heading that
opposes the overall direction of motion of the entire maneuver
segment. Segments are defined that increase or decrease speed
by 0, 10, 20, or 30 m/s, and altitude by 0, 50, 100, or 150 m.

∆ x

Fig. 2: An illustration of the connectivity of the circular node
in green to nearby nodes, shown as magenta, red, and blue
squares. The dashed line shows the direct path between the
green node and one nearby node, and the arrows the admissible
headings.

The detailed maneuver segment trajectories are uniquely de-
fined by the cubic polynomials in time that connect the position
and velocity of the starting node to the ending node. Altogether,
over 300,000 different maneuver segments are available de-
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scribing smooth and detailed trajectories, resulting in nearly
200 million edges that connect the approximately 500,000
nodes forming the graph. Each edge composing the graph is
assigned a cost based on the detailed trajectory of the maneuver
segment. These costs can be based on various acoustic or vehi-
cle performance metrics, and can be varied with the location of
the flight segment or emerging mission requirements. In this
paper, only an acoustic cost is assigned to each of the 300,000
maneuver segments.

The acoustic cost of each maneuver segment is calculated us-
ing the FRAME-QS approach (Ref. 15), which is described in
the flowchart shown in Figure 3. First, a semianalytical model
of the helicopter’s aerodynamics and acoustics is calibrated
to measured acoustic data using the Fundamental Rotorcraft
Acoustic Modeling from Experiments (FRAME) (Ref. 16)
method. FRAME allows a limited set of measured noise data
to be generalized across the entire range of rotor operating
conditions a helicopter may enter during practical flight opera-
tions. The FRAME model is then used to build a database of
acoustic spheres representing the magnitude and directivity of
noise for a large number of rotor operating states. Measured
broadband noise levels are simply interpolated from the mea-
sured data and added to the harmonic noise levels predicted by
FRAME for each flight condition. The specific noise model
used in this paper is derived from measurements of the Bell
407 helicopter collected during a joint NASA / FAA flight test
in 2017 (Ref. 17), and consists of nearly 1000 acoustic spheres
across the entire operating envelope of the helicopter.
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Fig. 3: A flowchart of the FRAME-QS maneuvering flight
helicopter noise prediction method.

To predict the noise from a maneuver segment, a set of 10

Fig. 4: Ground noise contours for a maneuver segment.

waypoints is determined using the cubic polynomial defining
the maneuver segment. These waypoints are then interpo-
lated to a high resolution flight trajectory using smoothing
splines (Ref. 18). A simple point-mass flight dynamics model
is used to predict the quasi-static rotor operating state and
main rotor tip-path-plane orientation at each point along the
trajectory. The rotor operating state and orientation are used to
select a noise sphere from the database and orient it correctly
for each point along the trajectory. At each point, the noise is
propagated from the selected sphere to a grid of observers on
the ground using a straight-ray method, including the effects
of atmospheric absorption. The A-weighted Sound Pressure
Levels (SPL) are integrated in time to calculate a Sound Ex-
posure Level (SEL) at each point on the grid. Figure 4 shows
an example of a maneuver segment. The helicopter begins
at the circular marker at (X,Y) = (0,0) km, and travels along
the black flight path to the marker at (X,Y) = (2,1) km. The
spatial positions of all possible nodes reachable from the initial
position are highlighted in yellow; this maneuver segment in-
volves moving one node ahead of the vehicle’s initial starting
position and two nodes to the right. During the maneuver, the
helicopter also descends from 200 m AGL to 50 m AGL, as
denoted by the colors of the markers at the end points of the
segments. The sizes of the markers represent the speed, where
the helicopter decelerates from 70 m/s to 40 m/s. The resulting
SEL ground noise level contours predicted by the FRAME-QS
method for a maneuver segment are plotted in grayscale. This
maneuver results in the generation of BVI noise—particularly
during the aggressive turns at the beginning and end of the
maneuver segment—which radiates most strongly toward the
outside of the turns.

The SEL contours are then averaged over a 12 km square
area—four times the area reachable from the center of the
the area—to produce a single acoustic cost associated with
that maneuver segment. This cost is assigned to each edge in
the graph using this maneuver segment to connect between
two nodes. Altogether, calculating the costs for all maneuver
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segments used in this paper and constructing the graph took
about 30 minutes of wall-clock computer time on a single 2.5
GHz Intel Core i7-E4870HQ Haswell CPU core. However,
these computational costs need only be incurred once, as the
graph, once constructed, can be stored in memory and modified
nearly instantaneously to represent changing circumstances.
For instance, edges between nodes can be marked as invalid
to represent airspace that is no longer available, and the costs
associated with each segment can be updated to represent the
acoustic sensitivity of the position of the node or re-weighted
to prioritize non-acoustic objectives, such as minimizing fuel
costs. The graph used in this paper takes 3.9 GB of memory to
store; the same information may be expressed in significantly
less space—perhaps tens of MB—as no consideration was
given to the efficient use of memory in the low noise dynamic
replanning computer program created for this paper.

Numerous algorithms have been developed to find the lowest
cost path between two nodes on a graph. One of the most
well-known is Dijkstra’s algorithm (Ref. 19), a special case of
the “greedy” best-first search, that can identify the lowest cost
path between two nodes. Dijksta’s algorithm expands outward
from the starting node, and explores all neighboring nodes that
are closer to the destination, updating the shortest possible path
as it progresses.

An accelerated variant of the algorithm, called A* search1

(Ref. 20), employs a heuristic to guide the search. The heuristic
should represent an “optimistic” lower bound cost between
any node and the destination; if the A* algorithm has already
found a path from the starting node to the target node, it can
ignore all nodes where the heuristic is greater than the cost of
the identified path, since the true paths of those nodes must
cost at least as much. The heuristic used in this work can be
expressed as:

h(n) = L̄aemin

‖(x− x(n))2 +(y− y(n))2‖
∆x

(1)

where, L̄aemin is the lowest acoustic cost in the database of
maneuver segments, ∆x is the grid spacing along the ground
plane (1 km), x(n) and y(n) are the X and Y coordinates of the
node being evaluated, x and y the coordinates of the target. This
formulation guarantees that the heuristic will be an “optimistic”
estimate of any real path traversing through that node, since
the actual path can be no shorter than the Euclidean distance
between the target and the node and the acoustic cost for each
grid space, ∆x, traversed must always be at least the minimum
cost, L̄aemin .

A* can further be accelerated by overweighting the heuristic
by some factor, such that it is no longer “optimistic” (Ref. 21).
The overweighted heuristic can then be expressed as:

hε(n) = εh(n) = εL̄aemin

‖(x− x(n))2 +(y− y(n))2‖
∆x

(2)

where ε is the amount of overweighting.

Overweighting the heuristic causes A* to search fewer nodes,
improving computational performance at the expense of the

1Pronounced “A star,” but unrelated to the homonymous helicopter.

optimality of the resulting solution. However, the total cost
of the solution found is still guaranteed to be no more than
ε times greater than the optimal path. This ability to trade
off optimality for computational efficiency allows A* to be
used as an “anytime” algorithm, by beginning the search with
a highly inflated heuristic and incrementally decreasing the
weight of the heuristic value to achieve more accurate results
until either the optimal (unweighted) solution is achieved or a
bounded amount of time has elapsed, guaranteeing that some
solution will be available within the allowable time interval.
The A* algorithm is used in this work to find the lowest cost
path between nodes in the graph, and therefore, a low noise
path between the vehicle’s location and the target position.

RESULTS

Low Noise Optimal Flight Planning

Figure 5 shows an example of applying the method described
in the previous section to a low noise path planning problem.
The path is plotted using the same symbology as Figure 4 from
the previous section. The colored rectangle represents closed
airspace starting at an altitude above ground level indicated
by the color and extending upwards; i.e., the blue rectangle
represents closed airspace at all altitudes. The helicopter begins
just after takeoff at 50 m altitude and 20 m/s speed at (X,Y)
= (10,0) km and flies 40 km in the Y direction ending in the
same 50 m AGL, 20 m/s flight condition at the terminal area.
The helicopter initially turns to a heading directed away from
the obstacle on the left side of the plot while at low speed
and altitude, to minimize the acoustic effect of the turns. The
helicopter then accelerates and climbs to reduce the noise levels
directly under the flight path, changing heading again only after
reaching an altitude of 400 m. The descent is then maintained
at constant speed until the vehicle is low to the ground, at which
point the speed is reduced. This solution is the lowest acoustic
cost path through the graph. Using Djikstra’s algorithm, the
optimal path takes 870 seconds of wall clock time to compute
on a single 2.5 GHz Intel Core i7-E4870HQ Haswell CPU
core, representing 1058 seconds of flight time. Incorporation
of the A* heuristic accelerates the computation greatly: the
same optimal path is computed in 40.5 seconds, which is less
than the shortest time it takes to traverse from one node of the
planned trajectory to another (44.5 s).

Replanning

The low noise trajectory can be quickly replanned in response
to changes in the environment. In this section, all trajectories
will be replanned from the same starting location, (X,Y) =
(10,0) km, as the case shown in Figure 5 for ease of comparison,
but in practice, the trajectories can be replanned starting at any
point along the flight path.

Figure 6 shows the optimal solution when the obstacle is re-
located to the right side of the flight path. The optimal flight
path has similar features to that of the original flight path, with
the noisier turning flight segments performed either at high
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Fig. 5: Optimal path with obstacle on the left.

altitude or while at low speed in the takeoff and landing areas
of the flight trajectory. The A* search is further accelerated
to 29.4 seconds by exploiting previously cached information
about the acoustic costs of traversing from one node to another.

Fig. 6: Optimal path with obstacle on the right.

The airspace available to rotorcraft operations is often limited
to below a ceiling, due to weather or the operations of less
maneuverable fixed wing aircraft in the vicinity of an airport.
For example, Figure 7 shows the replanned trajectory when an
additional altitude restriction is applied at 200 m, representing
vertical separation with the approach or departure corridor
of a fixed-wing aircraft. This forces the helicopter to fly at

a lower altitude to get below the corridor, increasing noise
levels directly underneath the flight path. The ground track
of the path is otherwise similar to that shown in Figure 6.
Once again, replanning is more efficient due to previously
cached information, with the A* search taking 26.8 seconds to
complete.

Fig. 7: Optimal path with obstacle on the right and altitude
restriction.

Due to the varied nature of the missions performed and the
uncontrolled nature of most low-altitude airspace, rotorcraft
operations are often planned in an ad hoc manner, with ob-
jectives that change “on the fly.” Figure 8 shows a trajectory
planned where the target landing zone has been moved to (X,Y)
= (20, 35) km. The low noise optimal solution, planned in 29.7
seconds, adds an additional low altitude turn to provide more
time to gradually decelerate to the new terminal area.

“Anytime” Dynamic Replanning

Although the A* algorithm can replan low noise flight paths
much faster than conventional methods, even faster planning
of feasible low noise solutions may be required when gener-
ating new trajectories “on the fly,” e.g., when the rotorcraft
departs from the originally planned course. As mentioned in
the previous section, faster solutions may be obtained from the
A* method by overweighting the heuristic. This restricts the
search space, reducing the time required to compute a path at
the expense of optimality. Figure 9 shows the path obtained
when overweighting the heuristic to 110% of the nominal value
for the same scenario as Figure 6.

The resulting path is essentially the same as that shown in
Figure 6, but the computational time required to replan the
trajectory was reduced from 29.4 seconds to 10.3 seconds.
Further speedups are possible by further overweighting the
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Fig. 8: Optimal path with obstacle on the right and new target
location.

heuristic. Figure 10 shows the result when the heuristic is over-
weighted 125%. The resulting path is feasible, but diverges
somewhat from the optimum. Not as much of the high speed
portion of the path occurs at high altitudes, and several un-
necessary turns are incorporated, increasing the SEL observed
toward the outside of the turns. However, the computational
time required to dynamically replan is reduced to 3.4 seconds.

Figure 11 shows the path dynamically replanned repeated with
150% overweighting. This path is similar to the 125% case
shown in Figure 10, but was computed in only 1.2 seconds.
Finally, Figure 12 shows the path resulting from 200% over-
weighting. The optimality of the solution is further compro-
mised, with maneuver induced BVI noise setting noise levels
near the terminal area of the trajectory, but a feasible trajectory
is achieved in 250 ms.

These results illustrate how an effective “anytime” dynamic
replanner can be constructed using the A* algorithm. When
replanning is required, multiple A* solvers can be launched, ei-
ther in series from the highest overweighting to no overweight-
ing, or preferably, in parallel. In less than one second, some
feasible path can be generated with a heavily overweighted
heuristic. As the computation continues and solutions are
reached with less overweighing, the path is refined until it
reaches the low noise optimal solution.

Handling Qualities Implications

As the heuristic value is inflated to enable the more rapid
generation of paths, the resulting trajectories tend to include
more frequent and aggressive maneuvers due, in part, to the
discretization enforced by the graph. This raises concerns
about the pilot workload required to track these trajectories.
Following the methods developed in Hess, Zeyada, and Heffley

Fig. 9: “Anytime” path with 110% overweighting for obstacle
on right.

Table 1: Estimated pilot crossover frequencies (rad/s) for tra-
jectories generated with different levels of A* heuristic over-
weighting, ε .

ε 100% 110% 125% 150% 200%
Pitch 1.12 1.12 1.26 2.00 2.40
Roll 1.20 1.20 1.37 1.59 1.33
Yaw 0.150 0.150 0.443 0.687 0.983
Heave 0.0037 0.0037 0.0023 0.0024 0.0024

(Ref. 22), the inner-loop crossover frequencies that must be
employed by the pilot to maneuver the helicopter along these
trajectories can be estimated as:

ωB = 2.4
∆φ̇max

∆φmax
(rad/s) (3)

where ∆φmax is the maximum change of pitch, roll, yaw, or
heave, and ∆φ̇max is the maximum rate of change of pitch,
roll, yaw, or heave over the entire trajectory. The resulting
crossover frequencies, ωB, along each axis are shown in Table
1, for each of the trajectories generated at different heuristic
overweighting factors, ε , shown in the previous section.

The required inner-loop crossover frequencies highlight the
the large pitch and yaw rates required to fly these trajectories,
especially at the higher levels of ε , 150% and 200%, where
unnecessarily aggressive changes in speed and heading will
require high levels of pilot workload.

CONCLUSIONS

This paper demonstrates the existence of a feasible dynamic
replanning method for generating practical low noise rotorcraft
flight trajectories “on the fly.” The method incorporates ac-
curate rotorcraft noise modeling, which realistically accounts
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Fig. 10: “Anytime” path with 125% overweighting for obstacle
on right.

for the changes in noise caused by maneuvering flight dur-
ing transitions between steady flight segments, accounting for
the particular sensitivity of rotorcraft noise to changes in ro-
tor operating condition. A heuristic was developed to enable
rapid low noise trajectory generation using the A* search al-
gorithm. Further speed increases were demonstrated through
overweighting of the heuristic, enabling an “anytime” version
of the algorithm to be employed. However, excessive over-
weighting yielded trajectories that are likely very demanding
for pilots to fly, suggesting that handling qualities constraints
should be imposed on the overweighted solutions. This method
is suitable for generating “on the fly” noise abatement guidance
for crewed rotorcraft and to effectively incorporate acoustic
considerations into the operations of autonomous rotorcraft.

Future Research Directions

This paper demonstrates that dynamic replanning of low noise
rotorcraft flight trajectories is possible using a combinatorial
optimization approach. Further research is required to iden-
tify the most effective, least computationally expensive, and
most useful implementation of this concept. Some research
directions leading toward this goal include:

• The trajectories shown in this paper were developed us-
ing only acoustic considerations; however, the cost of
traversing from one node to another can be determined
by any number of factors. Other important factors should
be considered in the future, such as flight time or fuel
consumption, in addition to noise. Maneuver costs based
on noise could be heavily weighted in noise sensitive ar-
eas, while performance considerations are more heavily
weighted in regions where noise is less important.

Fig. 11: “Anytime” path with 150% overweighting for obstacle
on right.

• Flight guidance, navigation, and control considerations
should be considered in any practical implementation
of this approach because the generated trajectories can
impose demanding maneuver requirements. Even for
fully autonomous vehicles, ride quality considerations are
still a concern when passengers are on board. Depending
on the type of mission being flown, different constraints
could be imposed on the aggressiveness of maneuvers.

• The resulting trajectories are limited to certain paths due
to the limited number of precomputed trajectory segments.
This can result in paths where the flight condition of the
vehicle is continuously varying, for example when the
desired heading to the target does not match one of the
discrete headings defined at each maneuver node. It is
this discretization that is responsible for much of the com-
plexity of the resulting trajectories. Instead of using the
trajectory segments directly, the precomputed database of
noise results could be used to inform an empirical model
that could generate a specific noise cost for a trajectory
generated “on the fly.” This would permit alternative
search algorithms to be used, such as θ ∗ (Ref. 23), that
enable direct connectivity between any pair of nodes on
the graph. Such an approach would result in smoother
and more effective trajectories, and most likely, a further
increase in computational efficiency of the method.

• Algorithmic improvements may enable faster path genera-
tion with greater potential noise reductions. For example,
a hybrid method might use inexpensive empirical models
or precomputed templates to identify potentially promis-
ing low noise paths, and then perform a more detailed
assessment of the best performing candidates with a more
computational expensive, but still faster-than-real-time,
simulation model. Recent research in combinatorics has
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Fig. 12: “Anytime” path with 200% overweighting for obstacle
on right.

shown that probabilistic algorithms (Ref. 24) often have
excellent performance on a variety of graph traversal prob-
lems, especially when there may be multiple objectives
to optimize, e.g., noise and performance.
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