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The quantification and control of discretization error is critical to obtaining reliable sim-
ulation results. Adaptive mesh techniques have the potential to automate discretization error
control, but have made limited impact on production analysis workflow. Recent progress has
matured a number of independent implementations of flow solvers, error estimation methods,
and anisotropic mesh adaptation mechanics. However, the poor integration of initial mesh gen-
eration and adaptive mesh mechanics to typical sources of geometry has hindered adoption of
adaptive mesh techniques, where these geometries are often created in Mechanical Computer-
Aided Design (MCAD) systems. The difficulty of this coupling is compounded by two factors:
the inherent complexity of the model (e.g., large range of scales, bodies in proximity, details
not required for analysis) and unintended geometry construction artifacts (e.g., translation,
uneven parameterization, degeneracy, self-intersection, sliver faces, gaps, large tolerances be-
tween topological elements, local high curvature to enforce continuity). Manual preparation of
geometry is commonly employed to enable fixed-grid and adaptive-grid workflows by reducing
the severity and negative impacts of these construction artifacts, but manual process interac-
tion inhibits workflow automation. Techniques to permit the use of complex geometry models
and reduce the impact of geometry construction artifacts on unstructured grid workflows are
presented. Two complex MCAD models from the AIAA Sonic Boom and High Lift Prediction
Workshop are shown to demonstrate the utility of the current approach.

I. Introduction
The use of Reynolds-averaged Navier–Stokes (RANS) equations with a turbulence model has become a critical tool

for the design of aerospace vehicles. However, the RANS-based Computational Fluid Dynamics (CFD) analysis and
design process has not reached the level of automation desired by practitioners. Alauzet and Loseille [1] documented
the dramatic progress made in the last decade for solution-adaptive methods that includes the anisotropy to resolve
simulations with shocks and boundary layers, and they identify where continued investment is necessary for complex
simulations. Park et al. [2] documented the state of solution-based anisotropic mesh adaptation and motivated further
development with the impacts that improved capability would have on aerospace analysis and design in a context broader
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than that articulated in the CFD Vision 2030 Study by Slotnick et al. [3]. The Vision Study provides a number of case
studies to illustrate the current state of CFD capability and capacity. The Study identifies mesh generation and adaptivity
as continuing bottlenecks in the CFD workflow.

The components of unstructured mesh adaptation are shown on Fig. 1. Starting with an initial mesh, a flow solution
is computed. The information from the flow solution are used to estimate error and specify a new mesh resolution and
orientation request (metric field). If the estimated errors (based on an objective function) are larger than limits specified
by the practitioner, the current mesh system is modified by mesh mechanics to adhere to the mesh resolution request.
Once the adapted mesh is available, the previous flow solution is interpolated to the new mesh to provide an initial
condition for the flow solver that approximates the converged solution. This improved initial condition may decrease the
execution time and improve the robustness of the flow solution calculation. The process is repeated until exit criteria are
met (e.g., accuracy requirement, resource limit). This process interacts with the geometry at two stages: the initial mesh
generation and adaptive mesh mechanics.

initial mesh flow
solution

metric
construction

continue?mesh
mechanics

interpolate
solution

stop
yes no

Fig. 1 Solution-based mesh adaptation process.

An informal Unstructured Grid Adaptation Working Group (UGAWG) has been formed to mature mesh adaptation
technology as described in their first benchmark [4], which focused on evaluating adaptive mesh mechanics for analytic
metric fields on planar and simple curved domains. The UGAWG verified the adaptive process by documenting
design-order convergence rates of scalar function interpolation error and accurate results for a simple wing configuration
[5, 6]. The first benchmark contains a list of future directions, which includes the focus of this paper: Mechanical
Computer-Aided Design (MCAD) integration. These previous UGAWG publications restricted models to simple
geometry to allow a focus on developing mesh mechanics and documenting metric conformity (how well the adapted
grid satisfies the metric size request). The current effort details the complexities encountered in supporting complex,
realistic geometry encountered in typical use cases.

Taylor and Haimes [7] provide an overview of geometry modeling concepts and requirements for computational
simulation, which was motivated by the First AIAA Geometry and Mesh Generation Workshop (GMGW-1) [8]. Here
we focus on Boundary REPresentation (BREP) geometry modeling techniques. While there are alternative techniques,

topology geometry discrete
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edge curve segment −

face surface triangle 4

Taylor and Haimes share this focus on BREP because it underpins the
geometry modeling kernels embedded in all industrial MCAD platforms.
Details of theBREP can have direct impacts on the reliability, robustness, and
repeatability of rapid mesh generation processes as reviewed by Gammon,
Bucklow, and Fairey [9]. Diagrams of the relationship between topology
(face, edge, and node) and geometry (surface, curve, and point) in a BREP
solid are provided in [9] and [7]. The elements of a discrete mesh are
referred to as triangle, segment, and vertex.

GMGW-1 highlighted a number of features of the High Lift Common Research Model geometry description [10]
that complicate the interaction of the BREP with discrete mesh generation and adaptation. Some of these features were
inherited from the cruise version of the Common Research Model used in the Drag Prediction Workshops [11]. Ideally,
a BREP should be free of these complications, but unfortunately they are quite common. These problematic BREP
artifacts are often produced or exacerbated by typical geometry handling processes for aerodynamics as described
by Taylor [12]. Examples of these issues are small gaps, missing faces, duplicate surfaces, overlapping surfaces,
self-intersecting surfaces, inadequate tolerances, discontinuous parameterization, degeneracy, small edges, sliver faces,
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narrow regions, cusps, incorrect edge orientation, intersecting edges, voids, excessive detail, or inconvenient topology
[9, 13]. Taylor [13] made the following observations based on a survey of GMGW-1 participants,

Of the various actions that were required to “repair” the IGES or STEP models (which included
filling small gaps at trailing edges, replacing missing faces, removing duplicate surfaces, and addressing
overlapping surface patches and/or self-intersecting faces), no two responses were the same. In other words,
each respondent appeared to be faced with a slightly different set of problems to resolve. . . . Some reported
joining short edges and/or splitting surface patches possessing high local curvature along iso-parametric
lines in order to aid the subsequent meshing. Again, a diverse range of actions were reported, with no
evidence of a consistent approach being adopted by any two respondents.

The lack of consistent “repair” mechanics may simply be a measure of the geometry tools available to each group.
A follow-on survey of commercial mesh generation software users∗ indicated the same pattern of eliminating small

gaps and unnecessary features with improvements to tolerances and alignment of surfaces. IGES and STEP are the most
common geometry file formats. Propriety, native MCAD formats were used by a minority of the respondents. These
observations indicate that the vast majority of existing mesh generation processes require manual intervention at the
geometry import and processing phase to enable the success of subsequent meshing operations.

While some classes of manual geometry repair may be necessary, the goal is to harden the initial generation and
adaptive mesh procedure for many common issues. In some cases, robustness to geometry issues may come with a
reduction in efficiency (i.e., additional refinement required by geometry topology, not required by the error estimate). A
longer execution time may be preferred over mandatory manual intervention, especially when the problem is detected
downstream in a High Performance Computing (HPC) environment during adaptation. In the cases where efficiency
loss is detected or manual intervention is required, the location and type of problem should be reported to provide the
practitioner the ability to quickly triage, and optionally repair. Repairs can be made directly to the geometry model or an
abstraction layer can be created to map the existing BREP topology to a more desirable topology for meshing.

Improvements to face and edge topology can reduce constraints on mesh generation [14] to create elements with
improved shapes and sizes consistent with the spacing request. Virtual topology operators [15] or surface quilts and
edge chains [16] collect or split [17] the low level topological faces and edges into virtual faces and edges. A quilt can
have a global parameterization [18–20], but constructing a well-behaved (continuous and orthogonal) parameterization
can be difficult. Quilts have the potential for preventing topology changes to virtual topology during model deformation
[17, 21], but only to a certain point.

Virtual BREP topology modification is a powerful tool to provide an improved geometry model to fixed-mesh and
adapted-mesh workflows, but these improvements remain locked in the system that defined the improved topology. An
open, geometry kernel neutral, schema to persist mesh-geometry association, including virtual topology and attribution,
is under development, see Karman and Wyman [22]. This schema includes the discrete mesh association to the topology
and parameters of the BREP. This association can be reconstructed during mesh adaptation, but this recovery process is
error prone. The information describing this association is typically available during initial mesh generation and can
be persisted to eliminate BREP association error. The mesh generation and adaptation community has not adopted
a standard, but defining a common standard to persist virtual BREP topology and the association of a discrete mesh
vertices, segments, and triangles to BREP nodes, edges, and faces would benefit many parties in the mesh generation
and adaptation process.

Many surface mesh generation packages perform internal BREP modifications to increase robustness and improve
element shape. These changes are undocumented and a BREP that matches the resulting surface mesh is not provided.
Adopting a standard to persist virtual topology and mesh-geometry association would allow for communication of these
BREP changes and allow more initial mesh generators to support adaptive meshing. An example of discrete mesh to
BREP association persistence via mesh file records adopted by the UGAWG is described in Section II.B to illustrate the
information required by adaptive meshing techniques. An alternative BREP surrogate geometry that can implicitly
account for virtual topology is described in Section II.C.

Both Taylor and Haimes [7] and Gammon, Bucklow, and Fairey [9] discuss the fit between topological entities
or model tolerancing. Discrete mesh tools must be aware of this property because a BREP is not closed at machine
precision. Adaptive meshes generated on MCAD geometry for the Sixth AIAA Drag Prediction, Third AIAA High Lift
Prediction and GMGW-1 workshops by Michal, et al. [23–25] highlighted that the acceptable fit between geometry
surfaces (model tolerance) is often much tighter for adaptive meshes compared to fixed-mesh applications. As local

∗Survey Results – Mesh Generation and CAD Interoperability https://blog.pointwise.com/2018/06/13/survey-results-mesh-
generation-and-cad-interoperability/ [retrieved 18-MAR-2019].
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mesh resolution approaches the resolution of model tolerance between geometry surfaces, large angles or folds can
develop in the surface mesh. The required level of model tolerance is therefore directly driven by the local mesh
resolution requirements.

For fixed-mesh processes, the geometry is only used during the preprocessing phase of mesh generation. Before
the analysis begins, geometry tolerance issues can be identified and corrected (as the adaptation mechanics require)
based on the mesh resolution choices the user controls. With adaptive meshing, geometry is queried throughout the
solution process. Geometry requirements become coupled to the flow solution and mesh resolution specified by the
error estimate, both of which are constantly changing throughout the analysis. Assessing the adequacy of a geometry
model before mesh adaptation becomes as challenging as predicting future mesh requirements. In addition, the surface
resolution of adapted meshes is generally much finer than fixed meshes due to the interaction between highly anisotropic
sizing metrics and geometry curvature as shown later in Section V.B. The mesh adaptation process must be tolerant of
“loose” model tolerances, because rarely are the tolerances in the geometry definition tight enough to satisfy the smallest
mesh size that the adaptive mesh may request.

The interaction of BREP and initial/adaptive mesh generation is examined for a few classes of common intended
and unintended geometry model artifacts (e.g., high curvature, small feature size, degeneracy). Methodologies are
described to evaluate BREP geometry models or construct and evaluate a discrete surrogate of the geometry model. An
approach to persist the association of the discrete mesh and the BREP is detailed. The combination of BREP evaluation
(with intended and unintended artifacts), discrete mesh to BREP association persistence, and interpolation error control
allow for CFD solutions to be generated from MCAD models without tedious geometry preparation and manual mesh
sizing specification. Examples are provided from two AIAA prediction workshops: The NASA Concept 25D with
Flow-Through Nacelle (C25F) used in the Second AIAA Sonic Boom Prediction Workshop (SBPW-2) [26] and the
Japan Aerospace Exploration Agency Standard Model (JSM) with nacelle used as Case 2d of the Third AIAA High Lift
Prediction Workshop (HiLiftPW-3) [27].

II. Mesh Mechanics
The interaction of BREP geometry with the mesh mechanics step of the solution-based mesh adaptation process

(Fig. 1) is the focus of the method description. Three tools are described, where each is designed to output a unit mesh
[28] in a provided metric field from an input mesh that conforms to the geometry description. After a brief introduction,
details of how each of these tools interact with BREP and BREP construction artifacts are provided. There are a number
of similarities between these three tools, but some BREP construction artifacts are only directly accommodated by a
subset of the three tools or a tool may have alternative methods to accommodate a specific BREP artifact.

The refine open source mesh adaptation mechanics package fulfills the error estimation and mesh mechanics
components. It is available via https://github.com/NASA/refine under the Apache License, Version 2.0. The
current version under development uses the combination of split, collapse, and element swap operations [29]. Some
of these classic operators are undergoing replacement with cavity operators [30]. Vertex relocation is performed to
improve adjacent element shape with a convex combination of ideal vertex locations [31] or nonsmooth optimization
based on Freitag and Ollivier-Gooch [32]. refine requires the domain to be manifold and a one-to-one correspondence of
discrete vertex, segment elements, and triangle elements to geometry node, geometry edge, and geometry face entities,
i.e., virtual topology, chains, and quilts are not supported.

The EPIC anisotropic mesh adaptation package developed at Boeing provides a modular framework for anisotropic
mesh adaptation that can be linked with external flow solvers [33]. EPIC relies on repeated application of split, collapse,
element reconnection, and vertex movement operations to modify a mesh such that element segment lengths match a
given anisotropic metric tensor field. EPIC can support virtual topology indirectly through a discrete surface surrogate.

FEFLO.A is a 2D, 3D, and surface mesh adaptation tool. It uses a combination of generalized standard operators
(e.g., insertion, collapse, element swap). The generalized operators are based on recasting the standard operators in
a cavity framework [30, 34]. The cavity operator allows a simultaneous application of multiple standard operator
combinations. Quality improvements are attained with the cavity operator that are not possible through a sequential
application of standard operators. FEFLO.A can support virtual topology indirectly through a discrete surface surrogate.

A. Geometry Interrogation
refine and FEFLO.A access the topology and evaluate geometry via the Electronic Geometry Aircraft Design

System (EGADS) [35]. EGADS is part of the Engineering Sketch Pad (ESP) [36], which includes the Open-source
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Constructive Solid Modeler (OpenCSM) [37] for initial geometry import and setup. High-performance computing
equipment, including graphic processing units (GPUs), are supported by EGADSlite [38], a lightweight ANSI-C version
of the EGADS functions required by the initial and adaptive mesh process. refine utilizes EGADSlite for efficient
parallel execution and geometry evaluation.

EPIC uses its own lightweight, natively-implemented geometry kernel to access geometry and provide basic
interrogation functions such as point projections, curvature, and normal evaluations. The geometry model can be
defined by a topologically connected set of trimmed surface faces, or by a discrete collection of triangle or quadrilateral
boundary elements. The results in this paper were obtained using trimmed Nonuniform Rational Basis Spline (NURBS)
surface faces.

B. BREP, Mesh, and Mesh-to-BREP Persistence
The mesh-to-BREP association information cached in the Gamma Mesh Format† is used to populate a refine data

structure. This data structure contains a list of geometric associations at each discrete vertex, where a vertex can have
zero or more associations. The associations can be to geometry nodes, edges, or faces. These associations record the
type of parent geometry entity, an index to the instance of the entity, and the parameters of a curve or surface location on
the entity.

The GammaMesh Format is also used for mesh, solution, and metric interchange in addition to geometry association.
refine can read and write this format natively to interact with a single file for the whole domain during parallel execution.
The mesh-to-BREP association persistence keywords are listed in [6] and the EGADSlite geometry model data are
stored as a ByteFlow keyword.

EPIC associates mesh vertex, segment and boundary triangle with geometric entities. Each association may have
multiple instances (e.g., a vertex between two surfaces will be associated with its two neighboring geometry faces).
Associations are stored as parametric locations in the case of NURBS geometry and as references to the geometry
boundary triangles in the case of discrete geometry. The geometry associations are saved with the initial mesh and
tracked on all subsequent adapted meshes in the EPIC native mesh file format.

C. Higher-Order Surface Surrogate
Allowing the discrete grid topology to be different than the BREP topology has the possibility of alleviating the

challenges of problematic BREP features discussed in the introduction. There are also situations where a geometry
model may not be available (e.g., adaptation based on an existing mesh without underlying geometry support). The
input mesh may have been constructed with an external tool that made BREP topology modifications internally without
providing a consistent geometry model that matches the surface mesh. For these situations EPIC and FEFLO.A support
a high-order discrete surface grid as a surrogate geometry model. EPIC constructs quadratic Nagata patches representing
each discrete triangle [39]. FEFLO.A constructs cubic triangular surfaces.

FEFLO.A uses a two-step procedure to recover the BREP-mesh association and increase the robustness of geometry
evaluation during the remeshing procedure. Recovering the BREP-mesh associativity is based on a fast inverse projection
process. For each entity on edge curves or face surfaces, given a point P, a nonlinear search is performed to find σ(u, v)
minimizing ‖P − σ(u, v)‖, where σ is the parametric function. This problem consists of finding roots of the following
( f , g) functions: {

g(u, v) = (σ(u, v) − P) · σu(u, v) = 0
f (u, v) = (σ(u, v) − P) · σv(u, v) = 0.

As for as any nonlinear problem, the initial guess is critical to ensure validity and fast convergence. Octree and
neighboring vertex associations are used for robust initial guesses. The result of this optimization is a match between
each surface vertex and the underlying geometry model. The association recovery process can be applied to any
initial surface mesh, where most of the topology, gaps, and tolerances issues have been resolved. Initializing the mesh
adaptation process with an association to a valid surface mesh implicitly recovers these geometry repairs with the
association. To increase evaluation robustness, a 3rd-order (P3) mesh is built as a surrogate geometry model. A P3
surface ensures a G1 continuity at mesh vertices and exact imposition of tangent planes. The P3 mesh is used as an
intermediate level between the linear discrete mesh and the fully continuous geometry model. When a new surface
vertex is inserted, a hierarchical projection is used. The vertex is projected to the BREP (through geometry model

†a keyword-based file format with reference implementation and description available at https://github.com/LoicMarechal/libMeshb
[retrieved 16-APR-2019]
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interaction) and the P3 mesh. P3 projection can replace a BREP evaluation failure, provide a guess to BREP inverse
evaluation, or help detect BREP construction artifacts in the case of a mismatch. The P3 surface mesh can be used in
isolation when no geometry is provided. The JSM nacelle geometry is shown in Fig. 2 for linear and P3 meshes.

(a) Linear surface mesh.

(b) P3 surface.

Fig. 2 Illustration of the (a) linear surface mesh and (b) surrogate P3 meshmodel on the JSM nacelle geometry.

D. Parameterization Periodicity and Degeneracy
In refine, the topology exposed by EGADS is traversed to mark discrete vertices with parametric periodicity or

degeneracy. This gives refine awareness of parametric discontinuities visualized in Fig. 3 and allows for correct
evaluation (and inverse evaluation) of existing and new discrete vertices. Taylor and Haimes [7] describe the topology
of a cylinder with a periodic edge and cone with periodic and degenerate edges. Aubry et al. [40] describe the impact of
these features on mesh generation. Periodicity is when a face uses an edge twice, which results in two values of the
surface parameter u, v at an edge t (u at the top of the cylinder Fig. 3(a)). A degeneracy is where a parameter range
evaluates to a single x, y, z location (u at the center of the circular face of the cylinder Fig. 3(b)). Topologically, there is
an edge with one node at this degeneracy. The circular face has a four edge topology: one at the center with one node,
a radial periodic edge used twice, and the edge along the circumference. EPIC does not support periodic geometry
surfaces. Prior to running EPIC, a preprocessing step is performed to identify periodic faces and split them along an
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interior iso-parametric line of the underlying surface creating two nonperiodic faces. Degenerate edges are supported by
EPIC provided a vertex in the initial mesh exists on the degenerate edge. In this case, the vertex is marked as frozen (i.e.,
the vertex cannot be deleted or moved in the adapted mesh).

(a) u parameter. (b) v parameter.

Fig. 3 Illustration of cylinder geometry with u-parameter periodicity and degeneracy.

E. Geometry Feature Size and Curvature Constraints
Unresolved geometry features (short edges and narrow faces) and high curvature can create situations where

subsequent adaptive modifications are difficult, especially where anisotropic metric sizing requests are incompatible
with the geometry.

refine estimates a feature size on each mesh vertex associated with a geometry edge. This size is computed by
querying the (typically two) faces that use this edge. For each of these faces, the vertex is inversely evaluated to all
edge curves of the face that do not share a geometry node with the edge associated with the vertex. The feature size
is computed as the distance between the vertex and the location on the edge curve identified via inverse projection.
If a vertex is associated with a geometry node, the edge feature size process is repeated for each incident edge. An
isotropic metric is formed at the vertex with an eigenvalue that matches the geometry feature size. While the current
implementation produces an isotropic metric, an anisotropic metric could be formed from edge curve normal and tangent
proximity queries.

The curvature k is evaluated for the curve that supports the geometry edge associated with a vertex. The curvature is
converted into an isotropic spacing constraint,

hconstraint =
1

Sradian |k |
, (1)

where Sradian is the number of segments used to discretize one radian of a 1/k radius circle. The refine default is
Sradian = 2.

The curvature k is zero for a straight line. To prevent a division by zero, the constraint is not computed if |k | is
smaller than 10/(dSradian) where d is the diagonal of the domain bounding box. The local tolerance of the EGADS entity
is queried and the constraint is ignored if hconstraint < 100 t, where t is the edge tolerance. This tolerance test is a crude
filter to omit constraints that are unlikely to be the intent of the model creator and are hard to consistently represent
where discrete mesh size approaches the model tolerance. These locally high curvatures are often the result of enforcing
the continuity of one or more derivatives between geometry entities in model construction. A more sophisticated
filter that examines the neighboring geometry entities is beyond the scope of the current work, but may be required
for increasing robustness to pathological geometry construction issues. If the hconstraint is accepted by this filter, an
isotropic metric is formed at the vertex with an eigenvalue that matches hconstraint and this metric is intersected with
other geometry metric constraints at this vertex.
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EGADS provides the principle surface curvatures kr, ks in an orthogonal set of vectors tangent to the surface r̂, ŝ. A
vector normal to the surface is formed with n̂ = r̂ × ŝ. For locations where the surface parameterization is degenerate,
the curvature is evaluated 1% of the min-max parameter range of the face toward the center of the face, away from the
nondegenerate parameter (the parameter with the larger x, y, z parameter derivative). Each curvature is converted to a
spacing with Eq. (1). The normal spacing is set to hn = 0.1d based on the domain bounding box d. Aspect ratio of the
metric constraint is limited to hratio = 10 by setting

hr = min (hr, hratiohs) (2)
hs = min (hratiohr, hs) (3)
hn = min (hn, hr, hs). (4)

Limiting the aspect ratio of the surface mesh prevents incompatibilities with isotropic initial volume mesh generation
methods (e.g., Delaunay). The surface curvature constraint is ignored (in the same way as edge constraints) if hr < 100 t
or hs < 100 t, where t is the face tolerance. A metric is formed at the vertex with the eigenvalues of 1/h2

n, 1/h2
r, 1/h2

s and
eigenvectors of n̂, r̂, ŝ. The surface curvature metric is intersected with other geometry metric constraints at this vertex.

An example from the Japan Aerospace Exploration Agency Standard Model (JSM) with nacelle is shown in Fig. 4
to illustrate the necessity of curvature limits. A view forward of the configuration looking aft is shown in Fig. 4(a,b).
A detail of the lower leading edge of the inner and outer flap blend region is shown in Fig. 4(c), where max(kr, ks)
is shown with an exponential color scale. A thin blue horizontal streak is seen in the center of Fig. 4(c), where the
streak corresponds to a small region of the surface with O(1000) curvature surrounded by a region of O(10) curvature.
The region of O(10) curvature is likely the design intent of the model, but the O(1000) curvature is likely a result of
imposing a tangency constraint between the adjacent lower and upper flap nose blend faces. Deactivating the face
curvature constraint on the thin blue streak of Fig. 4(c) and v = 0 of Fig. 4(d) prevents refinement of the unintended
construction artifact that can fail when the refinement approaches the tolerance of the geometry model.

The constraint metric on surface vertices is interpolated across the surface and through the volume with “mixed-
space-gradation” of [41]. This smooth constraint metric is used for adaptation of the initial surface mesh and volume
mesh before adaptation begins. This ensures that the mesh satisfies the geometry constraint metric during the entire
mesh adaptation processes. Once the solution and solution-based metric are available, the solution-based metric is
constrained by the geometry metric. After the input metric is interpolated from the background mesh to the current
mesh, the interpolated metric is intersected with the constraint metric. These constraints are active on the initial mesh
and then may become inactive as the solution-based metric requests finer spacing.

EPIC constructs an anisotropic sizing metric based on the principal curvatures of geometry curves and surfaces. At
each surface vertex, a curvature-based sizing metric is formed for each geometry surface or curve associated with the
vertex. A sizing metric for a single surface or curve is created from the magnitude and direction of the surface principal
curvature vectors evaluated at the vertex. A constraint size in each principal direction is computed using Eq. (1). An
ellipsoid is then constructed that covers the principal direction vectors and computed sizes. At vertices with multiple
geometry surface or curve associations, the curvature-based metrics from each associated entity are intersected to form
a single geometry metric. In addition to curvature-based sizing, discontinuities between adjacent geometry curves or
surfaces can be detected and the sizing metric normal to the discontinuity can be further refined. EPIC also detects
narrow geometry faces and constructs a limit metric at each vertex based on the distance in the narrow direction and
orientation. The resulting geometry curvature and thin face metrics are then intersected with the sizing metric derived
from the solution error estimate. An example of where thin face limiting can be beneficial is shown in Fig. 5. This close
up view of the JSM nacelle trailing edge consists of a thin planar surface trimmed by two concentric curves. These
curves are too close together to distinguish at this scale. The geometry curvature metric at this location will limit the
circumferential size to prevent points on the inner and trim outer curves from crossing in Fig. 5(b). refine constrains the
metric on the nacelle trailing edge with a feature size isotropic constraint based on the width of the trailing edge face in
Fig. 5(c).

F. Surface Normal Deviation and Area Constraints
refine has a triangle surface normal deviation constraint, where the deviation nd = n̂ · n̄. Here n̂ is the normal of the

geometry surface at the triangle u, v parameter centroid, and n̄ is the normal of the discrete triangle. Ideal conformity
of the triangle normal to the surface normal is nd = 1, and a completely inverted triangle has a deviation of nd = −1.
Mesh modification operations are rejected unless nd ≥ 0.1. While refine is typically able to produce surface meshes
with deviation of 0.8 or greater, this lower limit prevents tangling of the surface during metric conformity optimization.
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(a) Nose-on view. (b) Wing outboard of nacelle.

(c) Flap blend detail colored with curvature. (d) Flap blend face in u-v parameter space, curvature vertical axis.

Fig. 4 JSM blend leading edge between inner and outer flap sections.

The n̂ surface normal is computed by a cross product of the u and v derivative. This cross product may point into or
out of the domain. The EGADS model is queried to determine the “sense” of a face’s surface and the direction of n̂.
The area of the triangle in u, v is also constrained to be positive (or negative based on the “sense” of a face’s surface).
EPIC and FEFLO.A also compare the normal vector deviation between mesh boundary triangles and geometry surfaces
to prevent any mesh operations that cause a deviation beyond a specified tolerance. In FEFLO.A, the minimum dot
product between the normal of the triangle and the normal of the surface at the vertices is constrained to be greater than
0.8 or the current dot product.

G. Initial Mesh
The initial mesh (Fig. 1) in a refine-based process is produced in four steps. First, the initial surface mesh is provided

by an EGADS tessellation object. Default global parameters are provided to the EGADS specifying 0.25d for the
maximum length of a triangle side, 0.001d for the maximum deviation between the centroid of the discrete object and the
underlying geometry, and 15◦ for the maximum interior dihedral angle, where d is the diagonal of the domain bounding
box. The user can override these defaults by setting these tessellation parameters as attributes either with the EGADS
API or via OpenCSM. A smaller maximum length or deviation parameter may be required to force a face tessellation to
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(a) Thin faces marked in red. (b) EPIC nacelle trailing edge at pylon. (c) refine nacelle trailing edge at pylon.

Fig. 5 JSM nacelle trailing edge geometry constraint.

contain a triangle, where the defaults produce zero triangles on a face. refine’s assumption of one-to-one geometry and
discrete mesh topology requires that all faces have one or more triangles (and edges have one or more discrete segment
elements). Second, the EGADS surface tessellation is adapted by refine to satisfy the geometry metric constraint with
the surface mesh. Third, the volume of the adapted surface mesh is filled by Advancing-Front/Local-Reconnection
(AFLR) [42] or TetGen [43]. The surface (with EGADS geometry associativity via EGADS tessellation object) and
volume meshes are merged. Fourth, this initial volume mesh is adapted so that the tetrahedra also satisfy the geometry
metric constraint. The volume adapted to geometry constraints provides a start to the adaptive procedure.

The initial mesh for EPIC is generated by first creating a coarse isotropic triangular mesh based on surface curvature
using the Boeing MADCAP‡ mesh generation tool. The isotropic surface mesh is then adapted based on the geometry
metric to form a coarse anisotropic mesh. Anisotropy of the adapted surface mesh is limited to increase the robustness
of the volume mesh boundary recovery. An initial volume mesh for EPIC is then constructed with AFLR.

The initial mesh for FEFLO.A is built in two stages. The initial surface mesh is constructed from the geometry
using the mg_cadsurf module. The initial volume mesh is constructed from the surface mesh with the mg_tetra
module. These modules are distributed by Distene as part of the MeshGems suite based on the INRIA surface [44] and
the volume [45] mesh generation research.

III. Flow Solvers
Two flow solvers are employed to compute the flow solution in Fig. 1. The focus of this work is on accommodating

complex geometry through mesh mechanics. The flow solvers are used to provide relevant inviscid and RANS solutions
to drive solution-based adaptation and evaluate the mesh mechanics. Both of these solvers are capable of using
mixed-element meshes, but only purely-tetrahedral meshes are considered here.

A. FUN3D
FUN3D-FV [46, 47] is a finite-volume Navier-Stokes solver in which the flow variables are stored at the vertices or

nodes of the mesh. At interfaces between neighboring control volumes, the inviscid fluxes are computed using the
Roe approximate Riemann solver [48] based on the values on either side of the interface. For second-order accuracy,
interface values are extrapolated from the vertices with gradients computed at the mesh vertices. These gradients are
reconstructed with an unweighted least-squares technique [46]. The interface values are limited for the C25F with the
van Leer limiter [49].

The full viscous fluxes are discretized using a finite-volume formulation in which the required velocity gradients on
the dual faces are computed using the Green-Gauss theorem. On tetrahedral meshes, this is equivalent to a Galerkin
type approximation. The solution at each time step is updated with a backward Euler time-integration scheme. At each
time step, the linear system of equations is approximately solved with a multicolor point-implicit procedure [50]. Local
time-step scaling is employed to accelerate convergence to steady state. The Spalart-Allmaras (SA) turbulence model
[51] is loosely-coupled to the meanflow equations, where the meanflow and turbulence model equations are relaxed in
an alternating sequence.

‡MADCAP User’s Guide is available https://www.grc.nasa.gov/www/winddocs/windus3.0/madcap/index.html [accessed 06-APR-
2019].
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The SA turbulence model requires the distance from every node to the nearest noslip boundary condition. The
standard wall distance calculation in FUN3D-FV finds the nearest surface node and then searches adjacent triangles to
see if they are closer than the closest surface node. The standard wall distance method is inaccurate if the closest triangle
is not adjacent to the closest surface node. To provide an accurate wall distance, which is critical to the SA model, an
alternative method is used on adapted meshes. The alternative method encloses each surface triangle in a bounding
box. These bounding boxes are stored in an Alternating Digital Tree (ADT) [52] for fast searches. The alternative wall
distance method finds the closest surface triangle for adapted unstructured meshes.

B. GGNS
GGNS (General Geometry Navier-Stokes) is a Boeing-developed flow solver built upon the SUPG finite-element

discretization. The code uses piecewise linear finite elements resulting in a 2nd-order accurate discretization. Additional
1st-order artificial viscosity built upon the DG discretization is added for shock capturing. The indicator triggering
this additional stabilization is based on the oscillation of the Mach number across a cell. The number of degrees of
freedom for the 2nd-order SUPG scheme is equal to the number of vertices in the computational mesh. The discretization
is vertex-based in the sense that it is conservative over the dual volumes of an unstructured mesh. More details on
discretization used in the GGNS solver, including the particular choices of discretization variables and special treatment
of the essential boundary conditions via the Lagrange-multiplier based technique [53], can be found in Kamenetskiy et
al. [54].

The discrete nonlinear solver in the GGNS code implements a variant of the Newton-Krylov-Schwarz algorithm.
On the code level, this is accomplished using the Portable, Extensible Toolkit for Scientific Computation (PETSc)
[55–57] framework. Time stepping is employed to drive to the steady state solution. On each time step, an exact
Jacobian matrix for the discretization is formed by an automatic differentiation technique. The linear system arising
from the Newton’s method is approximately solved using GMRES with a drop-tolerance-based block-ILU preconditioner
(locally on subdomains) implemented in the context of the additive Schwarz method with minimal overlap [58]. Right
preconditioning is employed to maintain consistency between the nonlinear and linear residuals. The compact stencil
property of the SUPG scheme helps to reduce the fill-in levels in the approximate factorization, thereby reducing the
memory footprint.

A line search is applied along the direction provided by the approximate solution of the linear system. Residual
decrease and physical realizability of the updated state are tracked during the line search. A heuristic feedback algorithm
is implemented to communicate failure of the line search back to the time-stepping algorithm, so that the CFL number
can be increased or decreased as necessary. There is no upper preset limit for the CFL number in the time-marching
algorithm; so Newton-type quadratic convergence (or, at least, superlinear, due to inexact linear solves) is routinely
achieved at steady state.

IV. Multiscale Metric Construction
The metric construction step of the solution-based mesh adaptation process (Fig. 1) specifies the new mesh resolution

and orientation request to control estimated error in the solution. Classic Hessian-based adaptation methods [59, 60]
control quadratic interpolation error estimates in the L∞-norm, which results in excessive refinement of nonsmooth
regions. The multiscale metricMLp controls the Lp-norm of the interpolation error of a scalar field [61], which
balances refinement at multiple rapidly and smoothly varying spatial scales. The key ingredient of the multiscale metric
is the local scaling by the (reconstructed) HessianH , determinant,

MLp = DLpdet(H)
−1

2p+d |H |, (5)

where a global scaling DLp ,

DLp =
©­­«

Ct

C
(
det(H)

−1
2p+d |H |

) ª®®¬
2/d

, (6)

corrects the complexity of the locally scaled Hessian to produceMLp with specified target complexity Ct . Complexity
is a measure of density of the spacing request and can be interpreted as the continuous counterpart of the spacing used
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for uniform mesh refinement. The complexity, C, of a continuous metric field,M, is defined as the integral,

C(M) =
∫
Ω

√
det(M(x)) dx, (7)

and is evaluated on the discrete mesh and metric. Both scaling operations depend on the dimensionality of the domain,
which is d = 3 in this case. A mesh conforming toMLp provides optimal control of the scalar field interpolation error
in the p-norm. A lower p-norm targets weaker variations of the scalar field and a larger p-norm targets rapid variations
of the scalar field.

A. refineMultiscale Metric
To form the metric, a Hessian is reconstructed by recursive application of the L2-projection gradient reconstruction

scheme. The gradient is computed in each element and a volume-weighted average is collected at each vertex [61]. The
2nd-derivative Hessian terms are formed by computing the reconstructed gradients of these gradients formed in the first
pass. The mixed derivative terms of the Hessian are averaged. A special boundary treatment is employed, where the
reconstructed Hessian on the boundary is replaced with an extrapolation from neighboring interior vertices, which have
a well-formed stencil.

The reconstructed Hessian is then diagonalized into eigenvalues and eigenvectors. The absolute value of the Hessian
is formed by recombining the absolute value of the eigenvalues with eigenvectors to ensure the Hessian is symmetric
positive definite. The Hessian at each vertex is scaled to control the Lp norm [61] with Eq. (5). The gradation of the
metric field is limited with the “mixed-space-gradation” of [41]. The complexity is computed, and the metric is globally
scaled to set its complexity to a specified value. The complexity is evaluated discretely by assuming it is piecewise
constant in each median dual.

B. GGNS+EPIC Multiscale Metric
The Mach Hessian for each element is evaluated from the flow solution by using a least-squares approach on an

extended stencil in GGNS. GGNS then passes the Hessian at each element to EPIC, which converts it to adaptation
metrics via an element-centered modification of Alauzet and Loseille [61], which minimizes the Lp norm of interpolation
error of the scalar field for a given grid complexity. In this modification, each elemental Hessian is scaled to control the
Lp norm. The complexity of the resulting elemental adaptive metric is computed, and the global scale factor, DLP , is
adjusted to better match the requested value. The metric is then iteratively recomputed until the computed complexity
is within a specified tolerance of the requested value. A continuous metric field is generated by Log-Euclidean [62]
interpolation of the elemental metrics to the grid vertices.

V. Mesh-Adapted Results on MCAD Models
The mesh-adaptation process (Fig. 1) is performed on example supersonic and high-lift configurations from two

AIAA prediction workshops. The focus is the accommodation of complex geometry models with intended and
unintended BREP features described in the Section I with mitigations described in Section II. A cursory presentation
of workshop-relevant outputs show the utility of the current approaches without distracting from the focus on the key
geometric features of the MCAD models.

A. C25F Configuration
The C25F is a notional configuration created to represent a sonic boom demonstrator class vehicle. The model

includes wing, body, tail, nacelle, and flow-through engine path. The C25F was designed primarily for a low ground
loudness level near the centerline of the flightpath [63], with some reduction in the noise level over the entire boom
carpet [64]. The inviscid solver Cart3D [65] was used to design the configuration.

The geometry for C25F was created by an OpenCSM script that translated the Jaguar [66] description used to
develop the model. Jaguar lacks direct geometry export to a geometry interchange format. The OpenCSM model is
not a perfect recreation of the Jaguar model. Due to an oversight, the OpenCSM nacelle outer mold line was linearly
interpolated between fuselage stations where the Jaguar model is splined. There are other smaller known differences
that result in different loudness levels for the workshop configuration than AIAA papers describing the design. A STEP
geometry file was exported from OpenCSM. The geometry was provided with a nose-up orientation of 3.375◦ to include
the design incidence so that the CFD calculation is performed at 0◦ angle of attack. The freestream Mach number is 1.6.
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There are complex shock and expansion interactions present in the C25F nearfield. Derlaga, Park, and Rallabhandi
[67] provide details on how the inlet shock is reflected from the upper wing surface and lower horizontal tail surface to
impact the nearfield and propagated ground signatures. This observation appears to be supported by the relatively large
discretization error estimates reported in this region by Park and Nemec [26].

The initial EGADS coarse tessellation has high-valence vertices with large gradation (e.g., vertices connected to
many triangles on the leading edge of the wing in Figs. 6(a) and 7(a)). These high degree vertices would be difficult to
remove from a volume mesh, but much easier to remove via edge swaps of the surface mesh. Surface modifications are
easier without the requirement of maintaining valid volume element topology. Surface adaptation before attempting
to fill the volume reduces the execution time of the overall process and produces a surface mesh that is more metric
conforming to the geometry constraints. Examples of surface meshes with controlled gradation to geometry constraints
are shown in Figs. 6(b) and 7(b). Conformity to a low-gradation metric implicitly reduces vertex-triangle valance.
This conformity to a set of constraints with controlled gradation dramatically increases the likelihood of initial mesh
generation success and subsequent mesh adaptation operation success. The initial surface mesh constructed with
MADCAP and adapted with EPIC is show in Fig. 8.

The initial and adapted surface meshes of the flow-through inlet are shown in Fig. 9. Fifty loops of the flow chart in
Fig. 1 are performed with FUN3D-FV, refine, and multiscale metric to control interpolation error in Mach number
with inviscid flow. The final inlet surface mesh is shown in Fig. 9(b) for the final volume mesh of 53M vertices. The
adapted surface of the GGNS+EPIC final volume mesh of 22M vertices is shown in Fig. 9(d). A complex set of shock
reflections, initiated by flow-through inlet spillage, is resolved by the surface grid. This interaction of inlet spillage,
wing, and horizontal stabilizer is seen in Fig. 10. The fixed meshes provided by the SBPW-2 committee lacked adequate
resolution to capture this interaction on coarser members of a uniformly-refined mesh family [26, 67].

Details of the wing tip and leading edge break are shown in Fig. 11 for the refine and EGADS workflow. The initial
coarse EGADS tessellation is shown in Figs. 11(a) and 11(b). The final surface mesh for the volume mesh of 53M
vertices is shown in Figs. 11(c) and 11(d). An EGADS tessellation has the key elements of being watertight, while
coarse to reduce the initial grid generation time. The robustness of the combined surface and volume generation is
indicated in the resolution of the high curvature convex leading edge and the concave leading edge break. An initial
mesh that satisfies the geometry constraint metric is a key contributor to robustness. Imprints of the upper wing shock
on the surface are seen in both adapted surface grids.

Descriptive statistics were gathered from participants of the Second AIAA Sonic Boom Prediction Workshop as
described by Park and Nemec [26]. The pointwise mean (line) and standard deviation (error bar vertical extent) of the
centerline pressure signature at five body lengths below the vehicle is shown in Fig. 12 for the ensemble of fine-grid
participant submissions. Shock and expansion positions and levels of the FUN3D-FV+refine adapted solution are within
one standard deviation of participant fine-mesh submission. The X = [234 − 238] m region is a result of the critical
shock reflection pattern highlighted in Fig. 10 that is captured by multiscale adaptation.
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(a) Initial coarse tessellation provided by EGADS.

(b) Surface mesh adapted to refine geometry constraints.

Fig. 6 Isometric view of the surface mesh.

14



(a) Initial coarse tessellation provided by EGADS.

(b) Surface mesh adapted to refine geometry constraints.

Fig. 7 Surface meshes.
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Fig. 8 Initial surface mesh with MADCAP geometry constraints.
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(a) Initial refine mesh. (b) 53M vertices, FUN3D-FV+refine multiscale adaptation.

(c) Initial MADCAP mesh. (d) 22M vertices, multiscale GGNS+EPIC adaptation.

Fig. 9 Inlet surface meshes.
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(a) Pressure difference, 53M vertices, FUN3D-FV+refine multiscale adaptation.

(b) Pressure difference, 22M vertices, GGNS+EPIC multiscale adaptation.

Fig. 10 Pressure difference on C25F and symmetry plane.
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(a) Upper wing tip detail, EGADS tessellation. (b) Leading edge break detail, EGADS tessellation.

(c) Upper wing tip detail with footprint of wing shock, multiscale
adaptation.

(d) Leading edge break detail, multiscale adaptation.

Fig. 11 Wing surface mesh details for EGADS and FUN3D-FV+refine.
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Fig. 12 Centerline pressure signature at five body lengths below the vehicle.
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B. JSM Configuration
Rumsey, Slotnick, and Sclafani [27] describe the use of the JSM as part of HiLiftPW-3. Case 2 of HiLiftPW-3 was a

nacelle installation study for the JSM, which included all slat and flap support hardware. The nacelle-on geometry with
mesh adaptation Case 2d is the focus of this section.

refine makes a one-to-one assumption about the topology of the BREP model and the discrete mesh. The nacelle-on
STEP file from the HiLiftPW-3 website has a zero area face where the inner nacelle and pylon intersect. With this
zero area face, refine was unable to create a valid surface mesh that met the normal deviation constraint and was free
of self-intersecting triangles. This zero-area face had to be removed manually and a new STEP file created for refine
initial grid generation. This is a clear example where implementing virtual topology to suppress this zero area face and
supporting edges may avoid a manual topology repair operation.

Details of the JSM nacelle initial EGADS tessellation are shown in Fig. 13. The lower surface of the inboard slat
intersects the upper surface of the slat for the initial coarse EGADS tessellation. The surface meshes adapted to refine
and EPIC surface constraints are shown in Fig. 14. The curvature-based adaptation resolves the lower and upper slat
surfaces to alleviate this self-intersection that would prevent successful volume mesh generation. The dark spots in
Fig. 14(a) are locations where refine feature size or curvature constraints imposed a small mesh spacing as compared
to other surface locations. Resolving these constraints increases the execution time of refine and FUN3D-FV, but
improves the robustness of subsequent mesh adaptation operations. This additional cost could be reduced by repairing
the underlying features in the STEP file that trigger refinement (e.g., unintended curvature, short edges, narrow faces).
Introducing virtual topology and improving curvature filtering could reduce the cost incurred to resolve the unintended
STEP features, but is considered a topic for future work. The EPIC surface constraint in Fig. 14(b) did not resolve the
construction artifacts shown in Fig. 14(a). Away from these artifacts, both refine and EPIC produced similar triangle
size with some differences in size and aspect ratio on thin faces (nacelle trailing edge) and high curvature (slat and
nacelle leading edges).

Fig. 13 Nacelle, wing, and fuselage detail of JSM initial coarse EGADS tessellation.

The Mach number is 0.172 for Case 2d of HiLiftPW-3. Reynolds Number based on mean aerodynamic chord is 1.93
million and the static temperature is 551.79 ◦R. The 10.47◦ angle of attack case of the drag polar is selected. FUN3D-FV
and GGNS use the SA turbulence model. The multiscale metric is used to control estimated interpolation error in
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Mach. An intermediate adapted mesh is shown for FUN3D-FV+refine (Fig. 15(a)) and GGNS+EPIC (Fig. 15(b)). The
multiscale metric based on these turbulent calculations reduced the size of the triangles where the surface is curved to
control interpolation error in the boundary layer that follows the curved surface. The surface grid of low-curvature
regions (e.g., side of pylon) have larger triangles.

The final adapted meshes in Fig. 16 of the nacelle are highly resolved. The imprint of the slat wake is seen on the
side of the fuselage and the imprint of the nacelle wake is seen on the pylon. The mesh is fine enough over most of the
curved surfaces to saturate the images. This is an indication that tight model tolerances are required to support this
degree of adaptive refinement.

The underside of the wing, pylon, and flap fairings are shown in Fig. 17 for the intermediate adapted mesh and
Fig. 18 for the final adapted mesh. As for the nacelle grids, the surface resolution and anisotropy is very similar for the
two integrated adaptation processes. This similarity has previously been confirmed in verification studies by Park et
al. [5]. An imprint of vortices along the sides of the flap fairings is seen clearly in the GGNS+EPIC adapted surface
meshes but not as clearly in the FUN3D-FV+refine surface meshes. This may be due to differences in the flow solver
discretization or metric construction.

The final adapted meshes for the upper surface of the wing is shown in Fig. 19 for the intermediate adapted mesh
and Fig. 20 for the final adapted mesh. Imprints of wakes trailing the slat attachment hardware are seen on the upper
surface of the main element. Imprints of wakes trailing the flap attachment hardware are seen on the upper surface of
the flap. The slat wakes are more clearly seen in the FUN3D-FV+refine intermediate surface meshes than GGNS+EPIC
intermediate surface meshes, Fig. 19. The wake imprint topology is different for the inboard flap attachment hardware
and the outboard slat attachment hardware in Fig. 20.

Force trajectories are shown in Fig. 21. GGNS+EPIC is shown with circle symbols and FUN3D-FV+refine is shown
with squares. These trajectories consist of a number of grid adaptations at fixed complexity (a small variation in h
approximated by number of the vertices to the minus one-third power). The complexity is increased in a number of
steps, which result in step decreases in h. The adapted grid forces are within the scatter of HiLiftPW-3 core participant
submissions [27] shown as error bars where lift coefficient submissions were 2.24±0.08 and drag coefficient submissions
were 0.273 ± 0.011. The conclusions of the HiLiftPW-3 summary and the range of values across the participant
submissions indicate that the community has not obtained solutions and grids in the asymptotic region for this geometry
and physical model. Accurate results for the JSM may require larger grids and/or output-based/goal-oriented metrics.
However, stalled convergence of the mean flow equations and turbulence model of FUN3D-FV shown in Fig. 22 may
impede the convergence of the adjoint or dual system for use in error estimation and metric construction.
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(a) Surface mesh adapted to refine geometry constraints.

(b) Surface mesh adapted to EPIC geometry constraints

Fig. 14 Nacelle, wing, and fuselage detail of JSM adapted surface meshes.
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(a) FUN3D-FV+refine 4.5M vertices.

(b) GGNS+EPIC 7.4M vertices.

Fig. 15 Nacelle, wing, and fuselage detail of JSM intermediate adapted meshes.
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(a) FUN3D-FV+refine 32M vertices.

(b) GGNS+EPIC 37M vertices.

Fig. 16 Nacelle, wing, and fuselage detail of JSM final adapted meshes.
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(a) FUN3D-FV+refine 4.5M vertices.

(b) GGNS+EPIC 7.4M vertices.

Fig. 17 Lower wing detail of JSM intermediate adapted meshes.
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(a) FUN3D-FV+refine 32M vertices.

(b) GGNS+EPIC 37M vertices.

Fig. 18 Lower wing detail of JSM final adapted meshes.
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(a) FUN3D-FV+refine 4.5M vertices.

(b) GGNS+EPIC 7.4M vertices.

Fig. 19 Upper wing detail of JSM intermediate adapted meshes.
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(a) FUN3D-FV+refine 32M vertices.

(b) GGNS+EPIC 37M vertices.

Fig. 20 Upper wing detail of JSM final adapted meshes.
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Fig. 21 JSM forces.

Fig. 22 FUN3D-FV iterative convergence, 32M-vertex adapted grid, initial condition is interpolated solution
from previous grid.
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VI. Conclusions
A review of unintended geometry construction artifacts that plague Boundary REPresentation (BREP) commonly

manipulated through Mechanical Computer-Aided Design (MCAD) systems was presented. Examples of these artifacts
[9, 13] included translation, uneven parameterization, degeneracy, self-intersection, sliver faces, gaps, large tolerances
between topological elements, and local high curvature to enforce continuity. Surveys of the AIAA Geometry and
Mesh Generation Workshop (GMGW-1) participants and users of commercial mesh generation software indicated
that these issues are widespread and were routinely addressed through manual processing of input geometry prior to
fixed (nonadaptive) meshing. This manual processing entailed eliminating small gaps and unnecessary features with
improvements to tolerances and alignment of surfaces. A survey of GMGW-1 participants [13] indicate, “a diverse range
of actions were reported, with no evidence of a consistent approach being adopted by any two respondents.” Without
consistency in repair type or methods, a pessimistic outlook remains for automating this repair task in current workflows.
If these unintended geometry construction artifacts can not be repaired in an automated manner, then workflows must be
hardened to accept them.

The goal of unstructured grid adaptation is the automation of the labor-intensive fixed-grid generation process.
Methods were described that alleviate these classes of unintended geometry construction artifacts. Examples were
provided from two AIAA prediction workshops. The NASA Concept 25D with Flow-Through Nacelle (C25F) was used
in the Second AIAA Sonic Boom Prediction Workshop (SBPW-2). The Japan Aerospace Exploration Agency Standard
Model (JSM) with nacelle was used from Case 2d of the Third AIAA High Lift Prediction Workshop (HiLiftPW-3).
Both of these models contain intended and unintended artifacts that challenge fixed and adaptive mesh generation.

Multiscale adaptation proceeded from initial grid generation based on these geometry sources to final adapted grids
using two tool chains. The first was OpenCSM, EGADS, refine, and FUN3D-FV. The second tool chain was MADCAP,
EPIC, and GGNS. Details of the initial grid generation process and constraints imposed to increase the likelihood of
success were described. Virtual topology was discussed, but not directly implemented. Surrogate geometry sources that
implicitly handle topology was discussed for FEFLO.A and EPIC. The implementation of virtual topology or surrogate
geometry into the refine tool chain could have eliminated the one point of remaining human interaction, removing a zero
area face from the intersection of the JSM nacelle and pylon.

Construction details of initial, intermediate, and final adapted surface grids were presented. Details of the surface
grid resolution required by the high-curvature C25F leading edge and JSM slat and flap support hardware was seen. The
JSM turbulent flow solution required more surface resolution than the C25F inviscid solution to resolve the interpolation
error of the boundary layer attached to curved geometry, and therefore, placed greater demands on geometry model
tolerances.

To help focus on the geometry aspects, the study was limited to the multiscale metric to control interpolation error
of Mach number. Results presented were within the core submissions for both workshops. Extending the current study
to output-based or goal-oriented metrics may improve the consistency of the results by lowering discretization error of
workshop requested outputs.
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