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“Results of Theodorsen and Garrick Revisited”
by Thomas A. Zeiler

Journal of Aircraft
Vol. 37, No. 5, Sep-Oct 2000, pp. 918-920

Made known that –

• Some plots in the foundational trilogy
of NACA reports on aeroelastic flutter 
by Theodore Theodorsen and I. E. Garrick 
are in error

• Some of these erroneous plots appear in 
classic texts on aeroelasticity

Recommended that –

• All of the plots in the foundational trilogy 
be recomputed and published
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“Results of Theodorsen and Garrick Revisited”
by Thomas A. Zeiler

Journal of Aircraft
Vol. 37, No. 5, Sep-Oct 2000, pp. 918-920

Made known that –

• Some plots in the foundational trilogy
of NACA reports on aeroelastic flutter 
by Theodore Theodorsen and I. E. Garrick 
are in error

• Some of these erroneous plots appear in 
classic texts on aeroelasticity

Recommended that –

• All of the plots in the foundational trilogy 
be recomputed and published

Cautioned that –

• “One does not set about lightly to correct 
the masters.”
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Works Containing Erroneous Plots

1. Theodorsen, T.:  General Theory of Aerodynamic Instability and the Mechanism 
of Flutter.  NACA Report No. 496, 1934.

2. Theodorsen, T. and Garrick, I. E.: Mechanism of Flutter, a Theoretical and 
Experimental Investigation of the Flutter Problem.  NACA Report No. 685, 1940.

3. Theodorsen, T. and Garrick, I. E.:  Flutter Calculations in Three Degrees of 
Freedom.  NACA Report No. 741, 1942.

4. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L.:  Aeroelasticity, Addison-Wesley-
Longman, Reading, MA, 1955, pp. 539-543.

5. Bisplinghoff, R. L. and Ashley, H.:  Principles of Aeroelasticity, Dover, New York, 
1975, pp. 247-249.
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Purpose of This Presentation

• Make known a multi-year effort to re-compute all of the 
example problems in the foundational trilogy of NACA reports

• Re-computations performed using the solution method specific to each 
NACA report

• Re-computations checked and re-checked using modern flutter solution 
methods
(“One does not set about lightly to correct the masters.”)

• NASA TP has been / will be published for each report in the trilogy

• Present outlines of Theodorsen’s and Garrick’s –

• Equations of motion

• Solution methods

• Present representative re-computations and comparisons with 
the originals
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Publications of Re-Computed Results

NASA/TP-2019-xxxxxx

Summer or Fall 2019

685

https://ntrs.nasa.gov/

Available on NASA Technical Report Server
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Outline

• Background and Purpose

• Brief History

• Equations of Motion

• Solution Methods

• Re-Computations and Comparisons

• Concluding Remarks

7



1930’s and 40’s NACA Computing Environment
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1930’s and 40’s NACA Computing Environment

• “Computers”
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1930’s and 40’s NACA Computing Environment

• “Computers”
Employees whose job function
was to perform computations
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1930’s and 40’s NACA Computing Environment

• “Computers”
Employees whose job function
was to perform computations

• Tools
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1930’s and 40’s NACA Computing Environment

• “Computers”
Employees whose job function
was to perform computations

• Tools

– Pencil and paper
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1930’s and 40’s NACA Computing Environment

• “Computers”
Employees whose job function
was to perform computations

• Tools

– Pencil and paper

– Slide rules
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1930’s and 40’s NACA Computing Environment

• “Computers”
Employees whose job function
was to perform computations

• Tools

– Pencil and paper

– Slide rules

– Mechanical calculators
(comptometers – patented 1887)

1930’s 1940’s
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1930’s and 40’s NACA Computing Environment

• “Computers”
Employees whose job function
was to perform computations

• Tools

– Pencil and paper

– Slide rules

– Mechanical calculators
(comptometers – patented 1887)

1930’s 1940’s

Strong motivation to minimize 
human time and effort required to 
solve equations:

• Recast equations to eliminate -
- solution steps
- complex arithmetic
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1930’s and 40’s NACA Computing Environment

• “Computers”
Employees whose job function
was to perform computations

• Tools

– Pencil and paper

– Slide rules

– Mechanical calculators
(comptometers – patented 1887)

1930’s 1940’s

Unfortunately –
Human computers …
… are prone to error
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Outline

• Background and Purpose

• Brief History

• Equations of Motion

• Solution Methods

• Re-Computations and Comparisons

• Concluding Remarks
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Assumptions Made in NACA 496

• Flow is potential, unsteady, incompressible

• “Wing” is two-dimensional typical section

• Three degrees of freedom

– Torsion – α

– Aileron deflection – β

– Vertical deflection (flexure) – ℎ

• Wing motions are sinusoidal and infinitesimal

• Wing has no internal or solid friction, resulting in no 
internal damping
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Assumptions Made in NACA 496

Assumption removed in
NACA 685 and NACA 741

• Flow is potential, unsteady, incompressible

• “Wing” is two-dimensional typical section

• Three degrees of freedom

– Torsion – α

– Aileron deflection – β

– Vertical deflection (flexure) – ℎ

• Wing motions are sinusoidal and infinitesimal

• Wing has no internal or solid friction, resulting in no 
internal damping
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Equations of Motion Collected

..
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Equations of Motion Collected

..

(A) =  Sum of moments about the elastic axis
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Equations of Motion Collected

..

(A) =  Sum of moments about the elastic axis

(B) =  Sum of moments about the aileron hinge
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Equations of Motion Collected

..

(A) =  Sum of moments about the elastic axis

(B) =  Sum of moments about the aileron hinge

(C) =  Sum of forces in the vertical direction
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Equations of Motion Collected

..

24



Equations of Motion Collected

..
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Equations of Motion Collected

..

Steps taken to obtain “final” equations of motion:

(1) Make substitutions 𝛼 = 𝛼0𝑒
𝑖𝑘
𝑣
𝑏𝑡

𝛽 = 𝛽0𝑒
𝑖(𝑘

𝑣
𝑏𝑡+𝜑1)

ℎ = ℎ0𝑒
𝑖(𝑘

𝑣
𝑏𝑡+𝜑2)
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Equations of Motion Collected

..

Steps taken to obtain “final” equations of motion:

(1) Make substitutions ሶ𝛼 = 𝑖𝑘
𝑣

𝑏
𝛼

ሷ𝛼 = − 𝑘
𝑣

𝑏

2

𝛼

etc.

𝛼 = 𝛼0𝑒
𝑖𝑘
𝑣
𝑏𝑡

𝛽 = 𝛽0𝑒
𝑖(𝑘

𝑣
𝑏𝑡+𝜑1)

ℎ = ℎ0𝑒
𝑖(𝑘

𝑣
𝑏𝑡+𝜑2)
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Equations of Motion Collected

..

Steps taken to obtain “final” equations of motion:

(1) Make substitutions ሶ𝛼 = 𝑖𝑘
𝑣

𝑏
𝛼

ሷ𝛼 = − 𝑘
𝑣

𝑏

2

𝛼

etc.

After substitutions all terms,
except these terms,

contain 𝑣2

𝛼 = 𝛼0𝑒
𝑖𝑘
𝑣
𝑏𝑡

𝛽 = 𝛽0𝑒
𝑖(𝑘

𝑣
𝑏𝑡+𝜑1)

ℎ = ℎ0𝑒
𝑖(𝑘

𝑣
𝑏𝑡+𝜑2)
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Equations of Motion Collected

..

Steps taken to obtain “final” equations of motion:

(1) Make substitutions ሶ𝛼 = 𝑖𝑘
𝑣

𝑏
𝛼

ሷ𝛼 = − 𝑘
𝑣

𝑏

2

𝛼

etc.

𝛼 = 𝛼0𝑒
𝑖𝑘
𝑣
𝑏𝑡

𝛽 = 𝛽0𝑒
𝑖(𝑘

𝑣
𝑏𝑡+𝜑1)

ℎ = ℎ0𝑒
𝑖(𝑘

𝑣
𝑏𝑡+𝜑2)
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Equations of Motion Collected

..

Steps taken to obtain “final” equations of motion:

(2) Normalize all equations by 𝑣
𝑏𝑘

2
𝜅
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Equations of Motion Collected

..

Steps taken to obtain “final” equations of motion:

(2) Normalize all equations by 𝑣
𝑏𝑘

2
𝜅

After normalization
only these terms

contain Τ1 𝑣2
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Final 3DOF Equations of Motion

(𝐴𝑎𝛼 + Ω𝛼𝑋)𝛼 + 𝐴𝑎𝛽𝛽 + 𝐴𝑎ℎℎ = 0

𝐴𝑏𝛼𝛼 + (𝐴𝑏𝛽 + Ω𝛽𝑋)𝛽 + 𝐴𝑏ℎℎ = 0

𝐴𝑐𝛼𝛼 + 𝐴𝑐𝛽𝛽 + (𝐴𝑐ℎ + Ωℎ 𝑋)ℎ = 0

(A)

(B)

(C)

𝐴𝑎𝛼 = 𝑅𝑎𝛼 + 𝑖𝐼𝑎𝛼where ,  etc.

32



Final 3DOF Equations of Motion

(𝐴𝑎𝛼 + Ω𝛼𝑋)𝛼 + 𝐴𝑎𝛽𝛽 + 𝐴𝑎ℎℎ = 0

𝐴𝑏𝛼𝛼 + (𝐴𝑏𝛽 + Ω𝛽𝑋)𝛽 + 𝐴𝑏ℎℎ = 0

𝐴𝑐𝛼𝛼 + 𝐴𝑐𝛽𝛽 + (𝐴𝑐ℎ + Ωℎ 𝑋)ℎ = 0

(A)

(B)

(C)

Wa 𝑋

𝜔𝛼𝑟𝛼
𝜔𝑟𝑟𝑟

2
1

𝜅

𝑏𝜔𝑟𝑟𝑟
𝑣𝑘

2
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Final 3DOF Equations of Motion

(𝐴𝑎𝛼 + Ω𝛼𝑋)𝛼 + 𝐴𝑎𝛽𝛽 + 𝐴𝑎ℎℎ = 0

𝐴𝑏𝛼𝛼 + (𝐴𝑏𝛽 + Ω𝛽𝑋)𝛽 + 𝐴𝑏ℎℎ = 0

𝐴𝑐𝛼𝛼 + 𝐴𝑐𝛽𝛽 + (𝐴𝑐ℎ + Ωℎ 𝑋)ℎ = 0

(A)

(B)

(C)

Wa 𝑋

𝜔𝛼𝑟𝛼
𝜔𝑟𝑟𝑟

2
1

𝜅

𝑏𝜔𝑟𝑟𝑟
𝑣𝑘

2

The Ωs and 𝑋 are central to 
Theodorsen’s solution methods

34



Final 3DOF Equations of Motion

(𝐴𝑎𝛼 + Ω𝛼(1 + 𝑖𝑔𝛼)𝑋)𝛼 + 𝐴𝑎𝛽𝛽 + 𝐴𝑎ℎℎ = 0

𝐴𝑏𝛼𝛼 + (𝐴𝑏𝛽 + Ω𝛽(1 + 𝑖𝑔𝛽)𝑋)𝛽 + 𝐴𝑏ℎℎ = 0

𝐴𝑐𝛼𝛼 + 𝐴𝑐𝛽𝛽 + (𝐴𝑐ℎ + Ωℎ (1 + 𝑖𝑔ℎ)𝑋)ℎ = 0

(A)

(B)

(C)

-- with addition of structural damping terms --
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Final 3DOF Equations of Motion

(𝐴𝑎𝛼 + Ω𝛼(1 + 𝑖𝑔𝛼)𝑋)𝛼 + 𝐴𝑎𝛽𝛽 + 𝐴𝑎ℎℎ = 0

𝐴𝑏𝛼𝛼 + (𝐴𝑏𝛽 + Ω𝛽(1 + 𝑖𝑔𝛽)𝑋)𝛽 + 𝐴𝑏ℎℎ = 0

𝐴𝑐𝛼𝛼 + 𝐴𝑐𝛽𝛽 + (𝐴𝑐ℎ + Ωℎ (1 + 𝑖𝑔ℎ)𝑋)ℎ = 0

(A)

(B)

(C)

-- with addition of structural damping terms --

For all equations of motion, 2DOF and 3DOF,
solution is obtained when their determinant is zero
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Outline

• Background and Purpose

• Brief History

• Equations of Motion

• Solution Methods

• Re-Computations and Comparisons

• Concluding Remarks

37



Solution Methods

Solution Method 1

Employed in NACA 496

2DOF only

No 𝑔, allows 𝜉

Solution Method 2

Employed in NACA 685

2DOF or 3DOF

Allows 𝑔 and 𝜉

Solution Method 3

Employed in NACA 741

2DOF or 3DOF

Allows 𝑔 and 𝜉
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Solution Methods

Expand complex determinant
Separate into real and imaginary equations; set both to zero 

Solution Method 1

Employed in NACA 496

2DOF only

No 𝑔, allows 𝜉

Solution Method 2

Employed in NACA 685

2DOF or 3DOF

Allows 𝑔 and 𝜉

Solution Method 3

Employed in NACA 741

2DOF or 3DOF

Allows 𝑔 and 𝜉
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Solution Methods

Ω𝛼Ω𝛽𝑋
2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0

Real equation

Imaginary equation

𝐴𝑎𝛼 + 𝛺𝛼 𝑋 𝐴𝑎𝛽
𝐴𝑏𝛼 𝐴𝑏𝛽 + 𝛺𝛽 𝑋

= 0

2DOF Example – Torsion-Aileron (𝛼, 𝛽)

𝐴𝑖𝑗 = 𝑅𝑖𝑗 + 𝑖𝐼𝑖𝑗where

Expand complex determinant
Separate into real and imaginary equations; set both to zero 

Solution Method 1

Employed in NACA 496

2DOF only

No 𝑔, allows 𝜉

Solution Method 2

Employed in NACA 685

2DOF or 3DOF

Allows 𝑔 and 𝜉

Solution Method 3

Employed in NACA 741

2DOF or 3DOF

Allows 𝑔 and 𝜉
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Solution Methods

Ω𝛼Ω𝛽𝑋
2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0

Real equation

Imaginary equation

𝐴𝑎𝛼 + 𝛺𝛼 𝑋 𝐴𝑎𝛽
𝐴𝑏𝛼 𝐴𝑏𝛽 + 𝛺𝛽 𝑋

= 0

2DOF Example – Torsion-Aileron (𝛼, 𝛽)

𝐴𝑖𝑗 = 𝑅𝑖𝑗 + 𝑖𝐼𝑖𝑗whereSolution is obtained when real and imaginary equations 
are both satisfied for the same values of 𝑋 and 𝑘

Expand complex determinant
Separate into real and imaginary equations; set both to zero 

Solution Method 1

Employed in NACA 496

2DOF only

No 𝑔, allows 𝜉

Solution Method 2

Employed in NACA 685

2DOF or 3DOF

Allows 𝑔 and 𝜉

Solution Method 3

Employed in NACA 741

2DOF or 3DOF

Allows 𝑔 and 𝜉
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Solution Methods

Ω𝛼Ω𝛽𝑋
2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0

Real equation

Imaginary equation

𝐴𝑎𝛼 + 𝛺𝛼 𝑋 𝐴𝑎𝛽
𝐴𝑏𝛼 𝐴𝑏𝛽 + 𝛺𝛽 𝑋

= 0

2DOF Example – Torsion-Aileron (𝛼, 𝛽)

𝐴𝑖𝑗 = 𝑅𝑖𝑗 + 𝑖𝐼𝑖𝑗whereSolution is obtained when real and imaginary equations 
are both satisfied for the same values of 𝑋 and 𝑘

Expand complex determinant
Separate into real and imaginary equations; set both to zero 

Do 
this 
for 

many 
values 

of 𝑘

Solution Method 1

Employed in NACA 496

2DOF only

No 𝑔, allows 𝜉

Solution Method 2

Employed in NACA 685

2DOF or 3DOF

Allows 𝑔 and 𝜉

Solution Method 3

Employed in NACA 741

2DOF or 3DOF

Allows 𝑔 and 𝜉
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Solution Methods

Ω𝛼Ω𝛽𝑋
2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0

Real equation

Imaginary equation

𝐴𝑎𝛼 + 𝛺𝛼 𝑋 𝐴𝑎𝛽
𝐴𝑏𝛼 𝐴𝑏𝛽 + 𝛺𝛽 𝑋

= 0

2DOF Example – Torsion-Aileron (𝛼, 𝛽)

𝐴𝑖𝑗 = 𝑅𝑖𝑗 + 𝑖𝐼𝑖𝑗whereSolution is obtained when real and imaginary equations 
are both satisfied for the same values of 𝑋 and 𝑘

Expand complex determinant
Separate into real and imaginary equations; set both to zero 

Do 
this 
for 

many 
values 

of 𝑘

Solution Method 1

Employed in NACA 496

2DOF only

No 𝑔, allows 𝜉

Solution Method 2

Employed in NACA 685

2DOF or 3DOF

Allows 𝑔 and 𝜉

Solution Method 3

Employed in NACA 741

2DOF or 3DOF

Allows 𝑔 and 𝜉
Straightforward
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Solution Methods

Solution Method 1

Employed in NACA 496

2DOF only

No 𝑔, allows 𝜉

Solution Method 2

Employed in NACA 685

2DOF or 3DOF

Allows 𝑔 and 𝜉

Solution Method 3

Employed in NACA 741

2DOF or 3DOF

Allows 𝑔 and 𝜉

Ω𝛼Ω𝛽𝑋
2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0

Real equation

Imaginary equation

𝐴𝑎𝛼 + 𝛺𝛼 𝑋 𝐴𝑎𝛽
𝐴𝑏𝛼 𝐴𝑏𝛽 + 𝛺𝛽 𝑋

= 0

2DOF Example – Torsion-Aileron (𝛼, 𝛽)

𝐴𝑖𝑗 = 𝑅𝑖𝑗 + 𝑖𝐼𝑖𝑗where

StraightforwardIngenious,
but complicated

Solution is obtained when real and imaginary equations 
are both satisfied for the same values of 𝑋 and 𝑘

Expand complex determinant
Separate into real and imaginary equations; set both to zero 

Do 
this 
for 

many 
values 

of 𝑘
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Solution Methods

Solution Method 1

• Treat Ω𝛼 and 𝑋 as parameters
• Solve 2 equations in 2 unknowns, Ω𝛼 and 𝑋

Ω𝛼Ω𝛽𝑋
2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0
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Solution Methods

Solution Method 1

• Treat Ω𝛼 and 𝑋 as parameters
• Solve 2 equations in 2 unknowns, Ω𝛼 and 𝑋

Ω𝛼Ω𝛽𝑋
2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0
𝜴𝜶 vs 1/𝒌

𝑭 vs 𝜴𝜶
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Solution Methods

Solution Method 1

• Treat Ω𝛼 and 𝑋 as parameters
• Solve 2 equations in 2 unknowns, Ω𝛼 and 𝑋

Ω𝛼Ω𝛽𝑋
2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0
𝜴𝜶 vs 1/𝒌

𝑘𝑓 =
1

ൗ1 𝑘𝑓

Identify
problem-specific

value of 𝜴𝜶

𝑭 vs 𝜴𝜶

𝑣𝑓 = 𝐹
𝑏𝑟𝛽𝜔𝛽

𝜅

Identify
problem-specific

value of 𝜴𝜶

𝜴𝜶 =
𝝎𝜶𝒓𝜶
𝝎𝜷𝒓𝜷

𝟐
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Solution Methods

Solution Method 1

• Treat Ω𝛼 and 𝑋 as parameters
• Solve 2 equations in 2 unknowns, Ω𝛼 and 𝑋

Solution Method 2

• Define Ω𝛼 and Ω𝛽
• Treat 𝑋 as a parameter
• Solve polynomial equations for 𝑋1 and 𝑋2

Ω𝛼Ω𝛽𝑋
2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0
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Solution Methods
Ω𝛼Ω𝛽𝑋

2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0

Solution Method 1

• Treat Ω𝛼 and 𝑋 as parameters
• Solve 2 equations in 2 unknowns, Ω𝛼 and 𝑋

Solution Method 2

• Define Ω𝛼 and Ω𝛽
• Treat 𝑋 as a parameter
• Solve polynomial equations for 𝑋1 and 𝑋2

49



Solution Methods

Solution Method 1

• Treat Ω𝛼 and 𝑋 as parameters
• Solve 2 equations in 2 unknowns, Ω𝛼 and 𝑋

Solution Method 2

• Define Ω𝛼 and Ω𝛽
• Treat 𝑋 as a parameter
• Solve polynomial equations for 𝑋1 and 𝑋2

Solution Method 3

• Define Ω𝛼 and Ω𝛽
• Treat 𝑋 as a parameter
• Employ method of elimination
• Solve linear equations for 𝑋1 and 𝑋2

𝑎1𝑋 + 𝑎0 = 0

𝑏1𝑋 + 𝑏0 = 0

Ω𝛼Ω𝛽𝑋
2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0
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Solution Methods

Solution Method 3

• Define Ω𝛼 and Ω𝛽
• Treat 𝑋 as a parameter
• Employ method of elimination
• Solve linear equations for 𝑋1 and 𝑋2

𝑎1𝑋 + 𝑎0 = 0

𝑏1𝑋 + 𝑏0 = 0

Ω𝛼Ω𝛽𝑋
2 + Ω𝛼𝑅𝑏𝛽 + Ω𝛽𝑅𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝑅𝑏𝛽 − 𝐼𝑎𝛼𝐼𝑏𝛽 − 𝑅𝑎𝛽𝑅𝑏𝛼 + 𝐼𝑎𝛽𝐼𝑏𝛼 = 0

Ω𝛼𝐼𝑏𝛽 + Ω𝛽𝐼𝑎𝛼 𝑋 + 𝑅𝑎𝛼𝐼𝑏𝛽 + 𝑅𝑏𝛽𝐼𝑎𝛼 − 𝑅𝑎𝛽𝐼𝑏𝛼 − 𝐼𝑎𝛽𝑅𝑏𝛼 = 0

Solution Method 1

• Treat Ω𝛼 and 𝑋 as parameters
• Solve 2 equations in 2 unknowns, Ω𝛼 and 𝑋

Solution Method 2

• Define Ω𝛼 and Ω𝛽
• Treat 𝑋 as a parameter
• Solve polynomial equations for 𝑋1 and 𝑋2
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Outline

• Background and Purpose

• Brief History

• Equations of Motion

• Solution Methods

• Re-Computations and Comparisons

• Concluding Remarks
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Comparisons for Solution Method 1
From NACA 496; Case 1

Effect of  𝜔ℎ
𝜔𝛼

on Flutter Velocity, 𝑣
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Comparisons for Solution Method 1
From NACA 496; Case 1

Effect of  𝜔ℎ
𝜔𝛼

on Flutter Velocity, 𝑣

54



Comparisons for Solution Method 1
From NACA 496; Case 1

Effect of 𝑥𝛼 on 𝐹

55



Comparisons for Solution Method 1
From NACA 496; Case 1

Effect of 𝑥𝛼 on 𝐹
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Comparisons for Solution Method 1
From NACA 496; Case 1

Effect of 𝑥𝛼 on 𝐹
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Comparisons for Solution Method 1
From NACA 496; Case 1

Effect of 𝑥𝛼 on 𝐹
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Comparisons for Solution Method 2
From NACA 685; 2DOF

Case 1 Case 2

Single flutter mode
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Comparisons for Solution Method 2
From NACA 685; Case 1

Effect of  𝜔ℎ
𝜔𝛼

on  𝑣

𝑏𝜔𝛼
for various 𝑔ℎ and 𝑔𝛼
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Comparisons for Solution Method 2
From NACA 685; Case 2

Effect of  
𝜔𝛽

𝜔ℎ
on  𝑣

𝑏𝜔ℎ
for various quantities
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Comparisons for Solution Method 2
From NACA 685; Case 2

Effect of  
𝜔𝛽

𝜔ℎ
on  𝑣

𝑏𝜔ℎ
for various quantities

In parts (b) and (d)

𝒙𝜷 =
𝟏
𝟔𝟎 𝒓𝜷

𝟐 = 𝟏
𝟏𝟐𝟎
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Comparisons for Solution Method 3
From NACA 741; Case 2

Effect of  
𝜔𝛽

𝜔𝛼
on  𝑣

𝑏𝜔𝑎
for various 𝑥𝛽
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Comparisons for Solution Method 3
From NACA 741; Case 2

Effect of  
𝜔𝛽

𝜔𝛼
on  𝑣

𝑏𝜔𝑎
for various 𝑥𝛽
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Outline

• Background and Purpose

• Brief History

• Equations of Motion

• Solution Methods

• Re-Computations and Comparisons

• Concluding Remarks
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Concluding Remarks

• In an AIAA Engineering Note Thomas A. Zeiler –
• Made known that numerical errors exist in three foundational reports 

on aeroelastic flutter and on early aeroelasticity texts

• Recommended that all of the plots in NACA 496, NACA 685, and
NACA 741 be re-computed and published

• Current work is following Zeiler’s recommendation by –
• Re-computing and checking all numerical examples in these 

foundational reports

• Comparing original and re-computed results

• Publishing and making known the existence of the re-computations

• This paper has presented –
• Theodorsen’s and Garrick’s equations and solution methods

• Representative examples of re-computations and comparisons

• Overall good agreement between original and re-computed results 
(with some notable discrepancies)
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